The content and copyrights of the attached material are the property of its owner.

- Operating Range $2-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$
- 3-State Outputs Drive Bus Lines Directly
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

description

The 'AHC574 devices are octal edge-triggered D-type flip-flops that feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels of the data (D) inputs.

A buffered output-enable ($\overline{\mathrm{OE}}$) input places the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{C} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP - N	Tube	SN74AHC574N	SN74AHC574N
	SOIC - DW	Tube	SN74AHC574DW	AHC574
		Tape and reel	SN74AHC574DWR	
	SOP - NS	Tape and reel	SN74AHC574NSR	AHC574
	SSOP - DB	Tape and reel	SN74AHC574DBR	HA574
	TSSOP - PW	Tape and reel	SN74AHC574PWR	HA574
	TVSOP - DGV	Tape and reel	SN74AHC574DGVR	HA574
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube	SNJ54AHC574J	SNJ54AHC574J
	CFP - W	Tube	SNJ54AHC574W	SNJ54AHC574W
	LCCC - FK	Tube	SNJ54AHC574FK	SNJ54AHC574FK

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com $/ \mathrm{sc} /$ package.
c

FUNCTION TABLE
(each flip-flop)

INPUTS			
OUTPUT			
$\overline{\mathrm{OE}}$	CLK	D	Q
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

logic diagram (positive logic)

To Seven Other Channels

SN54AHC574, SN74AHC574
 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
 WITH 3-STATE OUTPUTS
 SCLS244H - OCTOBER 1995 - REVISED MARCH 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Package thermal impedance, θ_{JA} (see Note 2): DB package $70^{\circ} \mathrm{C} / \mathrm{W}$
DGV package $92^{\circ} \mathrm{C} / \mathrm{W}$
DW package ... $58^{\circ} \mathrm{C} / \mathrm{W}$
N package ... $69^{\circ} \mathrm{C} / \mathrm{W}$
NS package .. 60… C / W
PW package $83^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54AHC574	SN74AHC574	UNIT
			MIN	TYP MAX	MIN MAX	MIN MAX	
V_{OH}	$\mathrm{l} \mathrm{OH}=-50 \mu \mathrm{~A}$	2 V	1.9	2	1.9	1.9	V
		3 V	2.9	3	2.9	2.9	
		4.5 V	4.4	4.5	4.4	4.4	
	$\mathrm{IOH}=-4 \mathrm{~mA}$	3 V	2.58		2.48	2.48	
	$\mathrm{OH}=-8 \mathrm{~mA}$	4.5 V	3.94		3.8	3.8	
$\mathrm{V}_{\text {OL }}$	$\mathrm{I}^{\mathrm{OL}}=50 \mu \mathrm{~A}$	2 V		0.1	0.1	0.1	V
		3 V		0.1	0.1	0.1	
		4.5 V		0.1	0.1	0.1	
	$\mathrm{IOL}=4 \mathrm{~mA}$	3 V		0.36	0.5	0.44	
	$\mathrm{IOL}=8 \mathrm{~mA}$	4.5 V		0.36	0.5	0.44	
1	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND	0 V to 5.5 V		± 0.1	$\pm 1^{*}$	± 1	$\mu \mathrm{A}$
IOZ	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5 V		± 0.25	± 2.5	± 2.5	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or $\mathrm{GND}, \quad \mathrm{IO}=0$	5.5 V		4	40	40	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5 V		$3 \quad 10$		10	pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5 V		3			pF

* On products compliant to MIL-PRF-38535, this parameter is not production tested at $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$.
timing requirements over recommended operating free-air temperature range,
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

timing requirements over recommended operating free-air temperature range,
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54AHC574		SN74AHC574		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t_{w}	Pulse duration, CLK high or low	5		5		5		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	3		3		3		ns
	Hold time, data after CLK \uparrow	1.5		1.5		1.5		ns

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM(INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54AHC574		SN74AHC574		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\prime}$ max			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	80*	125*		65*		65		MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	50	75		45		45		MHz
tPLH	CLK	Q	$C_{L}=15 \mathrm{pF}$		8.5*	13.2*	1*	15.5*	1	15.5	ns
tPHL					8.5*	13.2*	1^{*}	15.5*	1	15.5	
tPZH	$\overline{\mathrm{OE}}$	Q	$C_{L}=15 \mathrm{pF}$		8.2*	12.8*	1*	15*	1	15	ns
tPZL					8.2*	12.8*	1^{*}	15*	1	15	
tPHZ	$\overline{O E}$	Q	$C_{L}=15 \mathrm{pF}$		8.5*	13*	1*	15*	1	15	ns
tpLZ					8.5*	13*	1*	15*	1	15	
tPLH	CLK	Q	$C \mathrm{~L}=50 \mathrm{pF}$		11	16.7	1	19	1	19	ns
tphL					11	16.7	1	19	1	19	
tPZH	$\overline{O E}$	Q	$C_{L}=50 \mathrm{pF}$		10.7	16.3	1	18.5	1	18.5	ns
tpZL					10.7	16.3	1	18.5	1	18.5	
tPHZ	$\overline{O E}$	Q	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		11	15	1	17	1	17	ns
tpLZ					11	15	1	17	1	17	
$\mathrm{t}_{\text {sk(0) }}$			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			$1.5 * *$				1.5	ns

* On products compliant to MIL-PRF-38535, this parameter is not production tested.
** On products compliant to MIL-PRF-38535, this parameter does not apply.
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM(INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54AHC574		SN74AHC574		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {fmax }}$			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	130*	180*		110*		110		MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	85	115		75		75		
tPLH	CLK	Q	$C_{L}=15 \mathrm{pF}$		5.6*	8.6*	1^{*}	10*	1	10	ns
tpHL					5.6*	8.6*	1*	10*	1	10	
tPZH	$\overline{\mathrm{OE}}$	Q	$C_{L}=15 \mathrm{pF}$		5.9*	9^{*}	1^{*}	10.5*	1	10.5	ns
tPZL					5.9*	9*	1*	10.5*	1	10.5	
tPHZ	$\overline{O E}$	Q	$C_{L}=15 \mathrm{pF}$		5.5*	9*	1^{*}	10.5*	1	10.5	ns
tpLZ					5.5*	9*	1*	10.5*	1	10.5	
tPLH	CLK	Q	$C_{L}=50 \mathrm{pF}$		7.1	10.6	1	12	1	12	ns
tPHL					7.1	10.6	1	12	1	12	
tPZH	$\overline{O E}$	Q	$C_{L}=50 \mathrm{pF}$		7.4	11	1	12.5	1	12.5	ns
tpZL					7.4	11	1	12.5	1	12.5	
tPHZ	$\overline{O E}$	Q	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7.1	10.1	1	11.5	1	11.5	ns
tplZ					7.1	10.1	1	11.5	1	11.5	
$\mathrm{t}_{\text {sk(0) }}$			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			1**				1	ns

[^0]noise characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 4)

PARAMETER		SN74AHC574	UNIT
		MIN MAX	
$\mathrm{V}_{\text {OL(P) }}$	Quiet output, maximum dynamic V_{OL}	0.8	V
$\mathrm{V}_{\mathrm{OL}(\mathrm{V})}$	Quiet output, minimum dynamic V_{OL}	-0.8	V
$\mathrm{V}_{\mathrm{OH}(\mathrm{V})}$	Quiet output, minimum dynamic V_{OH}	4.2	V
$\mathrm{V}_{\mathrm{IH}(\mathrm{D})}$	High-level dynamic input voltage	3.5	V
$\left.\mathrm{V}_{\text {IL (}} \mathrm{D}\right)$	Low-level dynamic input voltage	1.5	V

NOTE 4: Characteristics are for surface-mount packages only.
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd} Power dissipation capacitance	No load, $\mathrm{f}=1 \mathrm{MHz}$	28	pF

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	V_{Cc}
tPHZ/tPZH	GND
Open Drain	$\mathrm{V}_{\text {cc }}$

LOAD CIRCUIT FOR
3-STATE AND OPEN-DRAIN OUTPUTS

LOAD CIRCUIT FOR TOTEM-POLE OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 3 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

[^0]: * On products compliant to MIL-PRF-38535, this parameter is not production tested.
 ** On products compliant to MIL-PRF-38535, this parameter does not apply.

