ECE 6980

An Algorithmic and Information-Theoretic Toolbox for Massive Data
Instructor: Jayadev Acharya
Lecture \#4
Scribe: Xiao Xu
Please send errors to xx243@cornell.edu and acharya@cornell.edu
We did a brief recap of the previous lecture. We then outline the three things we will discuss today:

- Basics of information theory
- Proof of Fano's Inequality
- A "simple" algorithm to learn "many" classes "almost" optimally

1 Basic Information Theory

1.1 Entropy

Definition 1. The entropy of a discrete distribution P over \mathcal{X} is defined as

$$
\begin{equation*}
H(P)=\sum_{x \in \mathcal{X}} P(x) \log \left(\frac{1}{P(x)}\right) \tag{1}
\end{equation*}
$$

Claim 2. Let P be a discrete distribution over \mathcal{X}, then

$$
\begin{equation*}
H(P) \leq \log |\mathcal{X}| \tag{2}
\end{equation*}
$$

Proof. We use Jensen's inequality and the concavity of $\log (x)$ to prove the claim.

$$
\begin{equation*}
H(P)=\sum_{x \in \mathcal{X}} P(x) \log \left(\frac{1}{P(x)}\right) \leq \log \left(\sum_{x \in \mathcal{X}} P(x) \frac{1}{P(x)}\right)=\log |\mathcal{X}| \tag{3}
\end{equation*}
$$

To understand entropy, we consider an example of distinguishing a number in a set. Suppose $\mathcal{X}=\{0,1,2, \ldots, 127\}$ and x is randomly chosen from \mathcal{X} with equal probability. We would like to identify x by asking several Yes/No questions. The problem is what is the smallest number of questions we need to ask to find the exact value of x. The answer is $7=\log (128)$ and we will use a binary search method to do this: firstly, we ask if $x \leq 64$, if yes, we ask the second question if $x \leq 32$, or otherwise, ask if $x \leq 96$ and keep doing this until we successfully identify the exact value of x. Actually, entropy H characterizes the shortest length we need to distinguish a random variable.

1.2 Joint Entropy

Definition 3. We consider a joint discrete distribution P over $\mathcal{X} \times \mathcal{Y}$, then the joint entropy is defined as

$$
\begin{equation*}
H(P)=\sum_{x, y} P(x, y) \log \left(\frac{1}{P(x, y)}\right) \tag{4}
\end{equation*}
$$

Definition 4. Suppose P is a joint distribution over $\mathcal{X} \times \mathcal{Y}$, the marginal distribution of P is defined as

$$
\begin{align*}
P_{\mathcal{X}}(x) & =\sum_{y} P(x, y) \tag{5}\\
P_{\mathcal{Y}}(y) & =\sum_{x} P(x, y) \tag{6}
\end{align*}
$$

Definition 5. Suppose P is a joint distribution over $\mathcal{X} \times \mathcal{Y}$, we say P is a product distribution if

$$
\begin{equation*}
P(x, y)=P_{\mathcal{X}}(x) \cdot P_{\mathcal{Y}}(y) \tag{7}
\end{equation*}
$$

We consider the following example. Table 1 gives us some statistics of the weather in San Diego. Suppose $\mathcal{X}=\{$ Sunny, Not Sunny $\}, \mathcal{Y}=\{$ Hot, Cold $\}$.

	Hot	Cold
Sunny	30	125
Not Sunny	20	190

Table 1: Number of days of different weather
The question is, is the probability distribution of different kind of weather a product distribution? The answer is no since given $Y=$ Hot or Cold, the probability

$$
\operatorname{Pr}(X=\text { Sunny } \mid Y=\text { Hot })=\frac{3}{5} \neq \frac{25}{63}=\operatorname{Pr}(X=\text { Sunny } \mid Y=\text { Cold })
$$

In fact, we can change the number in the table appropriately to make it a product distribution.

Claim 6. If $P: \mathcal{X} \times \mathcal{Y}$ is a product distribution, then we have

$$
\begin{equation*}
H(P)=H\left(P_{\mathcal{X}}\right)+H\left(P_{\mathcal{Y}}\right) \tag{8}
\end{equation*}
$$

Proof.

$$
\begin{align*}
H(P) & =\sum_{x, y} P(x, y) \log \left(\frac{1}{P(x, y)}\right) \\
& =\sum_{x, y} P_{\mathcal{X}}(x) P_{\mathcal{Y}}(y) \log \left(\frac{1}{P_{\mathcal{X}}(x)} \frac{1}{P_{\mathcal{Y}}(y)}\right) \\
& =\sum_{x, y} P_{\mathcal{X}}(x) P_{\mathcal{Y}}(y) \log \left(\frac{1}{P_{\mathcal{X}}(x)}\right)+\sum_{x, y} P_{\mathcal{X}}(x) P_{\mathcal{Y}}(y) \log \left(\frac{1}{P_{\mathcal{Y}}(y)}\right) \tag{9}\\
& =\sum_{x} P_{\mathcal{X}}(x) \log \left(\frac{1}{P_{\mathcal{X}}(x)}\right)+\sum_{y} P_{\mathcal{Y}}(y) \log \left(\frac{1}{P_{\mathcal{Y}}(y)}\right) \\
& =H\left(P_{\mathcal{X}}\right)+H\left(P_{\mathcal{Y}}\right)
\end{align*}
$$

Definition 7. If X is a random variable from a distribution P over \mathcal{X}, we define the entropy of the random variable X as

$$
\begin{equation*}
H(X) \triangleq H(P) \tag{10}
\end{equation*}
$$

Similar to Claim 6, we also have the conclusion that if X, Y are independent r.v.s,

$$
\begin{equation*}
H(X, Y)=H(X)+H(Y) \tag{11}
\end{equation*}
$$

More generally, we have the following claim.
Claim 8. Consider two random variables X, Y, the following inequality holds:

$$
\begin{equation*}
H(X, Y) \leq H(X)+H(Y) \tag{12}
\end{equation*}
$$

Proof. According to the definition,

$$
\begin{align*}
H(X, Y) & =\sum_{x, y} P(x, y) \log \left(\frac{1}{P(x, y)}\right) \\
H(X) & =\sum_{x} P_{X}(x) \log \left(\frac{1}{P_{X}(x)}\right)=\sum_{x, y} P(x, y) \log \left(\frac{1}{P_{X}(x)}\right) \tag{13}\\
H(Y) & =\sum_{y} P_{Y}(y) \log \left(\frac{1}{P_{Y}(y)}\right)=\sum_{x, y} P(x, y) \log \left(\frac{1}{P_{Y}(y)}\right)
\end{align*}
$$

Thus, we have

$$
\begin{align*}
H(X)+H(Y)-H(X, Y) & =\sum_{x, y} P(x, y) \log \left(\frac{P(x, y)}{P_{X}(x) P_{Y}(y)}\right) \tag{14}\\
& =D\left(P \| P_{X} \cdot P_{Y}\right) \geq 0
\end{align*}
$$

1.3 Conditional Entropy

Definition 9. Consider two random variables X, Y defined on \mathcal{X}, \mathcal{Y} respectively. P is the joint distribution. The conditional entropy of X given Y is defined as

$$
\begin{gather*}
H(X \mid Y=y)=\sum_{x} P(X=x \mid Y=y) \log \left(\frac{1}{P(X=x \mid Y=y)}\right) \tag{15}\\
H(X \mid Y)=\sum_{y} P_{Y}(y) H(X \mid Y=y)=\sum_{x, y} P(x, y) \log \left(\frac{1}{P(X=x \mid Y=y)}\right) \tag{16}
\end{gather*}
$$

Exercise. Show the chain rule of entropy:

$$
\begin{equation*}
H(X, Y)=H(Y)+H(X \mid Y)=H(X)+H(Y \mid X) \tag{17}
\end{equation*}
$$

More generally, suppose X_{1}, \ldots, X_{n} are n random variables, show that:

$$
\begin{equation*}
H\left(X_{1}, \ldots X_{n}\right)=H\left(X_{1}\right)+\sum_{i=2}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \tag{18}
\end{equation*}
$$

Remark. Combine the chain rule of entropy and Claim 8 together, we can derive that

$$
\begin{equation*}
H(X \mid Y) \leq H(X) \tag{19}
\end{equation*}
$$

Intuitively, when given Y, we get more information of X, then the uncertainty of X is smaller.

Definition 10. The mutual information of two r.v.s X, Y is defined as

$$
\begin{align*}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \tag{20}\\
& =H(X)+H(Y)-H(X, Y)
\end{align*}
$$

Intuitively, $I(X ; Y)$ characterizes the information provided by $Y($ or $X)$ to reduce the uncertainty of X (or Y) and is always non-negative.

2 Multiway Classification and Fano's Inequality

2.1 Multiway Classification

Suppose there are M different distributions P_{1}, \ldots, P_{M}. Consider the following steps:

1. Randomly choose a distribution $P_{X}, X \sim U[M]$,
2. Observe Y from distribution P_{X},
3. Using the outcome Y to predict \tilde{X}.

For the process described above, we have the following claim:

Claim 11.

$$
\begin{equation*}
I(X ; Y) \geq \operatorname{Pr}(\text { correct }) \cdot \log (M-1)-\log 2 \tag{21}
\end{equation*}
$$

Proof. Define

$$
Z= \begin{cases}0, & \text { if } X \neq \tilde{X} \tag{22}\\ 1, & \text { if } X=\tilde{X}\end{cases}
$$

It is obvious that $H(Z \mid X, \tilde{X})=0$. Thus, using the chain rule of entropy, we can get

$$
\begin{equation*}
H(X, Z \mid \tilde{X})=H(X \mid \tilde{X})+H(Z \mid X, \tilde{X})=H(X \mid \tilde{X}) \tag{23}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
H(X, Z \mid \tilde{X}) & =H(Z \mid \tilde{X})+H(X \mid Z, \tilde{X}) \\
& \leq H(Z)+\operatorname{Pr}(Z=1) H(X \mid \tilde{X}, Z=1)+\operatorname{Pr}(Z=0) H(X \mid \tilde{X}, Z=0) \tag{24}\\
& \leq \log 2+\operatorname{Pr}(Z=0) \log (M-1)
\end{align*}
$$

The last inequality holds because $H(X \mid \tilde{X}, Z=1)=0$ and

$$
H(X \mid \tilde{X}, Z=0)=H(X \mid \tilde{X}, X \neq \tilde{X}) \leq \log (M-1)
$$

Thus, we can get

$$
\begin{equation*}
H(X \mid \tilde{X}) \leq \log 2+\operatorname{Pr}(\text { error }) \log (M-1) \tag{25}
\end{equation*}
$$

Since $H(X)=\log M$, we have

$$
\begin{equation*}
I(X ; \tilde{X}) \geq \operatorname{Pr}(\text { correct }) \cdot \log (M-1)-\log 2 \tag{26}
\end{equation*}
$$

Consider the probability model, we have

$$
X \rightarrow Y \rightarrow \tilde{X}
$$

Using data processing inequality, we get the conclusion that

$$
\begin{equation*}
I(X ; Y) \geq I(X ; \tilde{X}) \geq \operatorname{Pr}(\text { correct }) \cdot \log (M-1)-\log 2 \tag{27}
\end{equation*}
$$

We use this result to prove Fano's inequality.

2.2 Fano's Inequality

Theorem 12 (Fano's inequality). Suppose there are M different distributions P_{1}, \ldots, P_{M} s.t.

$$
D\left(P_{i} \| P_{j}\right) \leq \beta, \forall i, j
$$

For the multiway classification problem defined in section 2.1, the following inequality holds:

$$
\begin{equation*}
\operatorname{Pr}(\text { correct }) \cdot \log (M-1)-\log 2 \leq \beta \tag{28}
\end{equation*}
$$

Proof. For the multiway classification problem, it is not hard to find that

$$
\begin{align*}
\operatorname{Pr}(X=j) & =\frac{1}{M} \tag{29}\\
\operatorname{Pr}(Y=y) & =\frac{1}{M} \sum_{j} P_{j}(y)=\bar{P}(y) \tag{30}
\end{align*}
$$

Using the result in Claim 11, we know that if $I(X ; Y) \leq \beta$, the statement is true. Consider

$$
\begin{align*}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =\sum_{j, y} \operatorname{Pr}(X=j, Y=y) \log \left(\frac{\operatorname{Pr}(X=j \mid Y=y)}{\operatorname{Pr}(X=j)}\right) \\
& =\sum_{j, y} \operatorname{Pr}(X=j, Y=y) \log \left(\frac{\operatorname{Pr}(X=j, Y=y)}{\operatorname{Pr}(X=j) \operatorname{Pr}(Y=y)}\right) \tag{31}\\
& =\sum_{j, y} \frac{1}{M} P_{j}(y) \log \left(\frac{P_{j}(y)}{\frac{1}{M} \sum_{j} P_{j}(y)}\right) \\
& =\frac{1}{M} \sum_{j} D\left(P_{j} \| \bar{P}\right)
\end{align*}
$$

So, we only need to prove that $D\left(P_{i} \| \bar{P}\right) \leq \beta$. Since

$$
\begin{align*}
\sum_{j=1}^{M} D\left(P \| Q_{j}\right) & =\sum_{x} P(x) \log \left(\frac{P^{M}(x)}{\prod_{j=1}^{M} Q_{j}(x)}\right) \\
& =M \sum_{x} P(x) \log \left(\frac{P(x)}{\left(\prod_{j=1}^{M} Q_{j}(x)\right)^{1 / M}}\right) \\
& \leq M \sum_{x} P(x) \log \left(\frac{P(x)}{\frac{1}{M}\left(\sum_{j=1}^{M} Q_{j}(x)\right)}\right) \tag{32}\\
& =M D\left(P \| \frac{1}{M} \sum_{j=1}^{M} Q_{j}(x)\right)
\end{align*}
$$

The inequality comes from convexity of $\exp (\cdot)$:

$$
\begin{align*}
\left(\prod_{j=1}^{M} Q_{j}(x)\right)^{1 / M} & =\exp \left(\frac{1}{M} \sum_{j=1}^{M} \log \left(Q_{j}(x)\right)\right) \\
& \geq \frac{1}{M} \sum_{j=1}^{M} \exp \left(\log \left(Q_{j}(x)\right)\right) \tag{33}\\
& =\frac{1}{M} \sum_{j=1}^{M} Q_{j}(x)
\end{align*}
$$

Thus,

$$
D\left(P_{i} \| \bar{P}\right) \leq \frac{1}{M} \sum_{j} D\left(P_{i} \| P_{j}\right) \leq \beta
$$

Thus, $I(X ; Y) \leq \beta$ and then we get the conclusion.

3 Learning Distributions

Definition 13. Consider a collection of distributions \mathcal{P} and a distance measure $d: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$, define an ε-cover of \mathcal{P} as a set of distributions $P_{1}, P_{2}, \ldots, P_{N} \in \mathcal{P}$, s.t. $\forall P \in \mathcal{P}$, there exists $1 \leq i \leq N$ s.t. $d\left(P, P_{i}\right)<\varepsilon$.
Claim 14. For any collection of distributions \mathcal{P}, we use the total variation distance as the distance measure, i.e. $d=d_{T V}$. Let N_{ε} be the smallest size of the $\varepsilon-$ cover of \mathcal{P}. Then for any distribution $P \in \mathcal{P}$, we need only

$$
\begin{equation*}
\frac{\log \left(N_{\varepsilon}\right)}{\varepsilon^{2}} \tag{34}
\end{equation*}
$$

samples to learn \hat{P} s.t. $d_{T V}(\hat{P}, P)<\varepsilon$ with probability at least $3 / 4$.

To prove this claim, we first introduce the problem of finding the closest distribution. Consider a collection of distributions \mathcal{P} and N distributions $P_{1}, P_{2}, \ldots, P_{N} \in \mathcal{P}$. Suppose there is another distribution $P \in \mathcal{P}$ and we observe n samples X_{1}, \ldots, X_{n} from P. Our goal is to output the closest distribution to P among $\left\{P_{i}\right\}_{1}^{N}$ based on the distance measure $d=d_{T V}$.

Theorem 15. With

$$
\begin{equation*}
\frac{C \log (N)}{\varepsilon^{2}} \tag{35}
\end{equation*}
$$

samples, with probability at least $3 / 4$ we can learn P_{j} s.t.

$$
\begin{equation*}
d_{T V}\left(P, P_{j}\right) \leq 8 \Delta+O(\varepsilon) \tag{36}
\end{equation*}
$$

where $\Delta=\min _{j} d_{T V}\left(P, P_{j}\right)$
In the next lecture, we will show how to prove this theorem and therefore prove the previous claim. Also, we will give a "simple" algorithm to learn distributions optimally.

