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The topics we covered in class today are:

• Learning Tree Graphical Models

• Covering Numbers

• Mixtures of Gaussians

1 Learning Tree Graphical Models

1.1 Chow-Liu Algorithm

For n different people, and corresponding random variables {X1, X2,...,Xn}, we estimate the mu-
tual information between random variables Î(Xi; Xj) and look at the distributions over n samples.
We know that the mutual information of two random variables is defined as

I(Xi;Xj) = −H(Xi, Xj) +H(Xi) +H(Xj) (1)

Î(Xi; Xj) gives the weight of a possible edge between Xi and Xj . From this information, we can
produce a max-weight spanning tree that maximizes the data likelihood using greedy algorithms
such as Kruskal’s or Prim’s algorithms.

2 Covering Numbers

We saw in Learning Distributions that for a collection of distributions P with radius ε, the smallest
cover is Nε for the total variation distance, and the minimum number of samples needed is log(Nε)

ε2
.

For a collection of distributions {P1, P2,...,Pn}, with P ε ∆k, we want dTV (P, Pi) < ε for some i.
Then for a P = (p(1), p(2), ..., p(i)), where p(i) = j · εk , and p consists of k

ε elements. Then, the

covering number Nc < (kε )k. Then for any such P , the error distance for some p(i) is ± ε
2k for a

total error of ± ε
2k · k = ε. For such a distribution,

k·log( k
ε
)

ε2
samples are sufficient.

Then suppose we know the collection of distributions P1, P2,...,Pn, and there is an unknown distri-
bution P consisting of random variables X1, X2,...,Xn. Our goal is to then find a Pi in our known
collection of distributions such that dTV (P, Pi) < c ·minjdTV (P, Pj) +O(ε). To solve this we will
take a player vs. player type approach, where we compare the output the distribution it matches
closest to. For example, consider two known distributions P1 and P2. Then we define A12 as

A12 = {x ε X : P1(x)− P2(x)} (2)

Then for X1, ..., Xn,

µ(A) ,
|XiεA|
n

(3)



Using µ, we compute µ(A12 which will give us an output of two different possibilities: P1(A12) or
P2(A12. We compare the output to each distribution P1 and P2, and the distribution that matches
closest to the output will be the distribution we will model as the unknown distribution. We can
apply this to any number of known distributions, putting distributions against each other until the
closest matching distribution is found.
To generalize, consider an underlying distribution Q∗. Then, for log(N)

ε2
samples,

dTV (P,Q∗) < c ·∆min +O(ε) (4)

where ∆min = minjdTV (P, Pj).

3 Mixtures of Gaussians

Consider a collection of Gaussian distributions ω1, ω2, ..., ωk where
∑k

i=1 ωi = 1. Each ωi has a mean
µi and a variance σ2i . Then a mixture of Gaussians is a combination of these normal Gaussians,
which we can learn through 3 notions of learning:

• Proper Learning

• Improper Learning

• Parameter Learning

The main concept of learning mixtures of Gaussians is to find such a distribution where the total
variation distance between the underlying distribution and some known or unknown distribution
is minimal. We will only cover proper and improper learning in this section. For proper learning
of mixtures of Gaussians, the underlying distribution is in a known mixture of Gaussians, with a
max error of ±2ε. For improper learning, the underlying distribution is compared to an estimated
distribution, not necessarily a mixture of Gaussians, with a max error of ±ε.
The number of samples for both proper and improper learning are the same. The properties of
proper and improper learning are shown in the table below:

Samples Time

improper k
ε2
log k

ε
k
ε2
log k

ε

proper k
ε2
log k

ε
1
ε

3k±1

The time for improper learning can be expressed as a piecewise polynomial. For X1, ..., Xn, we
can find ω1, ..., ωk, µ1, ..., µk and σ21, ..., σ

2
k according to the table below:

ω1, ..., ωk { εk ,
2ε
k , ..., 1}

µ1, ..., µk {X1, ..., Xn}
σ21, ..., σ

2
k {Xi −Xj}2 ∀i, j

The idea for setting these parameters according the table is that for X1, ..., Xn, some will equate
to the mean of a normal Gaussian distribution, and using this idea, the variance can be found by
subtracting their values and squaring the result for all X1, ..., Xn. Then for (kε · n)k distributions,
one of them will be close to O(ε).
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