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We did a brief recap of the previous lecture. We then outlined the three things we will discuss

today:

• Basics of minimax theory

• Learning discrete distributions

• Lower bound for learning Bernoulli distributions

1 Basic Minimax Theory

Minimax theory provides an elegant framework to study the performance of various estimators.
We study it in the context of the learning distributions, but it can be defined for any statistical
estimation problem.

Let P be a known collection of distributions. We want to learn an unknown distribution from
P given samples Xn

1 from it. Consider the following steps:

1. We pick an estimator that takes a set of n samples and outputs a distribution QXn
1

.

2. An adversary (with the knowledge of our estimator) picks a distribution P ∈ P.

3. We observe n independent samples X1, . . . , Xn from P .

4. We output QXn
1

as our estimator.

5. We incur a loss L(P,QXn
1

) for some loss function L.

Given a loss function, we would like the loss to be small. In the last lecture we learnt Bernoulli
distributions under total variation distance.

There are two related performance measures, the expected loss, and the sample complexity.
Goal 1: Design an estimator that has the least expected loss when we carry out the steps above.

Let us call it L∗. It turns out that this expected value will be equal to:

L∗ = min
Q

max
P∈P

EXn
1 ∼P

[
L(P,QXn

1
)
]
. (1)

Do not read the math for a second. All we want to do is to find the least number of samples, such
that for any possible underlying underlying distribution P , the probability that the loss we incur
exceeds ε is at most δ.

Please stare at this definition, and notice how it relates to the steps described. Also, notice the
order of min, and max (we choose estimator, then adversary chooses an instance). This expected



loss is widely used in statistics, information theory etc. In the cs theory literature somehow these
problems have been studied in the context of sample complexity.

Goal 2: Given an error parameter ε > 0, and an error probability δ (typically a constant, say
1/4). We want to find the following quantity:

n∗(P, ε, δ, L)
def
= min

n
: ∃ QXn

1
: ∀P ∈ P Pr

(
L(P,QXn

1
) > ε

)
< δ (2)

For most of the lectures, we will bother with δ being a fixed constant, say 1/4, and the loss is
the total variation distance. Let

n∗(P, ε) = n∗(P, ε, 1/4, dTV ). (3)

This is the least number of samples sufficient to estimate any distribution in P to accuracy ε with
probability at least 3/4.

We will typically be interested in understanding n∗(P, ε) in terms of some parameterization of
P. Some example classes are:

1. ∆k: This is the collection of all discrete distributions over a set X with |X | = k. We would
like to know n∗(P, ε) as a function of k, and ε.

Note that ∆2 is the collection of all Bernoulli distributions.

2. Mk : These are the collection of all monotone (decreasing) distributions over say {1, 2, . . . , k}.
Such distributions satisfy P (x) ≥ P (y) for x ≤ y.

3. One dimensional Gaussian distributions

4. High dimensional Gaussians with some structure

5. Mixtures of simple distributions

In the last lecture, we proved a bound on the number of samples required to learn a Bernoulli
distribution. Using p(1− p) ≤ 1/4 for any p ∈ R, we have

n∗(∆2, ε) ≤
1

ε2
. (4)

2 Learning ∆k

Suppose we observe Xn
1

def
= X1, . . . , Xn from a distribution P over X . Let

Nx
def
= {# times symbol x appears in Xn

1 }.

For example, if Xn
1 = H T T H T , NH = 2, NT = 3. Under independent sampling from P , where

the probability of x is P (x), Nx is a Binomial Bin(n, P (x)) distribution (Show this).
Define the empirical estimator PML as:

PML(x) =
Nx

n
,

2



the distribution that assigns the empirical probability to each symbol. It is also the distribution
that assigns the highest probability to the sequence Xn

1 under independent sampling (requires a
short proof).

Question: Show that of all distributions in ∆k, the distribution PML assigns the highest
probability to Xn

1 , namely

PML = arg max
P∈P

n∏
i=1

P (Xi) =
∏
x∈X

P (x)Nx .

We will understand the complexity of the ML estimator under the total variation distance. Let

LML
def
= |P − PML|1 =

∑
x∈X
|P (x)− Nx

n
|.

be the random variable denoting the L1 distance between the ML distribution and the underlying
distribution P . Bounding the sum of absolute values can be painful. A very useful routine is to
upper bound these as squares, which can be easier to handle. The Cauchy-Schwarz inequality can
be very helpful in this:

Lemma 1 (Cauchy Schwarz Inequality (CSI)). Let a1, . . . , an, and b1, . . . , bn be real numbers.
Then, (∑

aibi

)2
≤
(∑

a2i

)
·
(∑

b2i

)
Using CSI with bi = 1, for any Xn

1 ,

L2
ML =

(∑
x∈X
|P (x)− Nx

n
|

)2

≤ |X | ·

(∑
x∈X

(
P (x)− Nx

n

)2
)
.

Taking expectations of both sides,

E[L2
ML] ≤ |X | · 1

n2
E[
∑
x∈X

(Nx − nP (x))2] =
|X |
n2
·

(∑
x∈X

nP (x)(1− P (x))

)
≤ |X |

n2

∑
x∈X

nP (x) =
|X |
n
.

Recall that LML = 2 · dTV (P, PML). Applying Markov’s Inequality for the random variable
L2
ML,

Pr (dTV (P, PML) ≥ ε) = Pr (LML ≥ 2ε)

= Pr
(
L2
ML ≥ 4ε

)
≤

E[L2
ML

4ε2

≤ |X |
4nε2

. (5)

Therefore, when n ≥ |X |/ε2 = k/ε2, with probability at least 3/4, PML is at a total variation
at most ε from P . Therefore,

Theorem 2.

n∗(∆k, ε) ≤
k

ε2
.
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3 Lower bound for Bernoulli Estimation

In the last lecture we saw that

n∗(∆2, ε) ≤
1

ε2
,

which is achieved by the ML estimator.
We would like to prove a lower bound on the performance of any estimator. We will do it via

a reduction to the following hypothesis testing problem. We will set it similar to the first class
(Bayes error).

The distribution D is uniformly chosen to be either P = Bern(12), or Q = Bern(12 +2ε). We are
given n independent samples from D, and we have to decide between P and Q. Giving n samples
from D is equivalent to giving one sample from the distribution Pn defined as:

Pn(Xn
1 )

def
= P (X1) · · ·P (Xn).

Therefore, the error of the best classifier (from previous lecture) is

1

2
− 1

4
· |Pn −Qn|1.

Let nT be the minimum number of samples such that the testing error is at most 1/4. We relate
the testing and learning complexity with the following claim.

Claim 3. nT ≤ n∗(∆2, ε).

Proof. When we run the learning algorithm on D, the output is ε close to D with probability at
least 3/4. Since P and Q are TV 2ε, we simply output the P or Q which is closer to PML. The
testing error is at most the error probability of learning, which is at most 1/4.

Let n ≥ nT . Then,

1

4
≥ 1

2
− 1

4
· |Pn −Qn|1

implying that

|Pn −Qn|1 ≥ 1.

Now, by Pinsker’s Inequality

1 ≤ |Pn −Qn|21 ≤ 2 ·D(Qn||Pn). (6)

Recall from last lecture that D(Qn||Pn) = n ·D(Q||P ). Moreover, using log(1 + x) ≤ x,

D(Q||P ) = (
1

2
+ 2ε) log

(12 + 2ε)
1
2

+ (
1

2
− 2ε) log

(12 − 2ε)
1
2

(7)

≤ (
1

2
+ 2ε) · (4ε) + (

1

2
− 2ε) · (−4ε) (8)

= 16 · ε2. (9)
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Therefore,
1 ≤ 32nε2.

Combining these results we obtain

1

32ε2
≤ n∗(∆2, ε) ≤

1

ε2
. (10)

In the order notation, this means,

n∗(∆2, ε) = Θ

(
1

ε2

)
.

Question: Improve the constants for n∗(∆2, ε) by improving any side of (10).
In the next lecture, we will cover some basics of Information theory, and techniques for proving

lower bounds. In particular, we aim to prove a lower bound of the form c · k/ε2 on n∗(∆k, ε).
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