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Abstract— When heterogeneous congestion control protocols
that react to different pricing signals (e.g. packet loss, queueing
delay, ECN marking etc.) share the same network, the current
theory based on utility maximization fails to predict the network
behavior. Unlike in a homogeneous network, the bandwidth
allocation now depends on router parameters and flow arrival
patterns. It can be non-unique, inefficient and unfair. This paper
has two objectives. First, we demonstrate the intricate behaviors
of a heterogeneous network through simulations and present a
rigorous framework to help understand its equilibrium efficiency
and fairness properties. By identifying an optimization problem
associated with every equilibrium, we show that every equilibrium
is Pareto efficient and provide an upper bound on efficiency
loss due to pricing heterogeneity. On fairness, we show that
intra-protocol fairness is still decided by a utility maximization
problem while inter-protocol fairness is the part over which we
don’t have control. However it is shown that we can achieve any
desirable inter-protocol fairness by properly choosing protocol
parameters. Second, we propose a simple slow timescale source-
based algorithm to decouple bandwidth allocation from router
parameters and flow arrival patterns and prove its feasibility.
The scheme needs only local information.

I. INTRODUCTION

Congestion control algorithm in TCP (Transmission Control
Protocol), first introduced in [8], has made important contri-
butions for enabling the explosive growth of the Internet. The
currently deployed implementation, referred to as TCP Reno in
this paper, uses packet loss as congestion signal to dynamically
adapt its transmission rate, or equivalently, its window size.1 It
has worked remarkably well in the past, but its limitations in
wireless networks and in networks with large bandwidth-delay
product have motivated various proposals that use different
congestion signals. For example, in addition to loss based
protocols such as HighSpeed TCP [7], STCP [15] and BIC
TCP [30], schemes that use queueing delay include the early
proposals CARD [10], DUAL [27] and Vegas [2], and the
recent proposal FAST [11], [28]. Schemes that use one-bit
congestion signal include ECN [20], and those that use multi-
bit feedback include XCP [13], MaxNet [29], and RCP [4].
Indeed, the Linux operating system already allows users to
choose from a variety of congestion control algorithms since
kernel version 2.6.13. Clearly, going forward, our network will
become more heterogeneous in which protocols that react to
different congestion signals interact. Yet, our understanding of
such a network is rudimentary at best.

1All our experiments and simulations use NewReno with SACK. These
are enhanced versions of the original Tahoe and Reno, but we will refer them
generically as TCP Reno.

More specifically, in a homogeneous network, even though
the sources may control their rates using different algorithms,
they all adapt to the same type of congestion signals, e.g.,
all react to loss probability, as in the various variants of Reno
and TFRC [6], or all to queueing delay, as in Vegas and FAST.
For homogeneous networks, there is already a theory, based on
network utility maximization, e.g. [14], [16], [17], [18], [19],
[31], that can help understand and design network behaviors.
In particular, we know that a homogeneous network of general
topology always has a unique equilibrium (operating) point
and it is Pareto efficient and the fairness associated with it
can be well predicted and controlled. More importantly, the
allocation depends only on the congestion control algorithms
(equivalently, its underlying utility functions) but not on net-
work parameters (e.g., buffer size) or flow arrival patterns, and
hence can be designed through the choice of TCP algorithms.

A heterogeneous network (e.g., one shared by TCP Reno
and FAST), however, may have multiple equilibrium points,
and they cannot all be stable unless the equilibrium is globally
unique [23], [24]. Moreover, the bandwidth allocation among
heterogenous flows is now coupled with both network param-
eters and flow arrival patterns! This is illustrated in Section II
through simulations that involve Reno and FAST. It implies
that in general we cannot predict, nor control, the bandwidth
allocation through the current design of congestion control
algorithms for heterogeneous networks. In Section III, a simple
source-based algorithm is presented that decouples bandwidth
allocation from network parameters and flow arrival patterns
in a heterogenous network. Moreover, it drives the network to
a unique equilibrium which is efficient and fair.

The rest of the paper then provides a rigorous framework
that explains the behavior of heterogeneous networks, and
extends the algorithm in section III to the general case. We
set up the basic model in section IV. By identifying an opti-
mization problem associated with any given equilibrium point,
we discuss efficiency in section V-A. Study of fairness then
follows in section V-B. Finally, we propose a general scheme
to steer an arbitrary heterogeneous network to the unique
equilibrium which solves the standard utility maximization
problem by updating a linear scaler in the sources’ algorithms
in a slow timescale (Section VI). The scheme fully explains the
solution we proposed in section III and is readily deployable:
it needs only local end-to-end information and linear updates.
More realistic experiments that are conducted using WAN in
Lab are reported to show the algorithm’s effectiveness and
some of its byproducts (section VII). We conclude in section
VIII and provide some possible future extending directions.
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II. TWO EXAMPLES

In this section, we describe two examples to illustrate some
bandwidth allocation problems in heterogenous networks. In
the next section, we describe a simple algorithm that solves
these problems. All simulations use TCP Reno, which uses
packet loss as congestion signal, and FAST TCP, which uses
queueing delay as congestion signal. Indeed, networks with
both Reno and FAST provide an excellent arena to study
problems on heterogeneous networks. Both the problems and
the solution will be extended to general networks and protocols
beyond Reno and FAST in the following sections IV-VI.

The first experiment (Example 1a) shows that when a Reno
flow shares a single bottleneck link with a FAST flow, the
relative bandwidth allocation depends critically on the link
parameter (buffer size): the Reno flow achieves much higher
bandwidth than FAST when the buffer size is large and much
smaller bandwidth when it is small. This implies that one
cannot control the fairness between Reno and FAST through
just the design of end-to-end congestion control algorithms,
since fairness is now linked to the network parameters, unlike
the case of homogeneous networks.

The second experiment (Example 2a) shows that even on a
(multi-link) network with fixed parameters, one cannot control
the fairness between Reno and FAST because the relative
allocation can change dramatically depending on which flow
starts first!

A. Example 1a: dependence of bandwidth allocation on net-
work buffer size

FAST [28] is a high speed TCP variant that uses delay as
its main control signal. Every 20ms, a FAST flow adjusts its
congestion window W according to

W ← baseRTT

RTT
W + α (1)

In equilibrium, each FAST flow i achieves a throughput x∗
i =

α
q∗

i
, where q∗i is the equilibrium queueing delay observed by

flow i. Hence, α is the number of packets that each FAST
flow maintains in the bottleneck links along its path.

In this example, one FAST flow and one Reno flow share
a single bottleneck link with capacity of 8.3 pkts per ms
(equivalent to 100Mbps with typical packet size) and round
trip propagation delay 50ms. The topology is shown in Figure
1. The FAST flow fixes its α parameter at 50 packets.
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Fig. 1. Single link example.

In all of the ns-2 simulations in this paper, heavy-tail noise
traffic is introduced in each link with an average rate of 10% of

the link capacity.2 Figure 2 shows the result with a bottleneck
buffer size B = 400 packets. In this case, FAST gets an
average of 2.1 pkts per ms while Reno gets 5.4 pkts per ms.
Figure 3 shows the result with B = 80 packets. Since the
bottleneck buffer size is smaller, the average queue is also
smaller. Therefore FAST gets a higher throughput of 3.4 pkts
per ms and Reno gets a much lower throughput of 0.6 pkt per
ms. In this case, the loss rate is fairly high and the aggregate
throughput is much lower (53.6 percent utilization) than the
bottleneck capacity due to many timeout events.

In summary, bandwidth sharing between Reno and FAST
depends on network parameters in a heterogeneous network,
contrary to the case of homogeneous network. This is unde-
sirable since the bandwidth allocation among all competing
flows in a network should depend only on their valuation of
bandwidth (utility functions) but not on network parameters.
In the next section, we propose a simple source-based solution
to achieve this.
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Fig. 2. FAST vs. Reno with a buffer size of 400 pkts.
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Fig. 3. FAST vs. Reno with a buffer size of 80 pkts.

B. Example 2a: dependence of bandwidth allocation on flow
arrival pattern

The topology of this example is shown in Figure 4. We use
RED algorithm [5] and packet marking instead of dropping.
The marking probability p(b) of RED is a function of queue
length b:

p(b) =




0 b ≤ b
1
K

b−b

b−b
b ≤ b ≤ b

1
K b ≥ b

(2)

2We always present one sample figure on the left and the summary figure
on the right. The sample figure shows the rate trajectory in one simulation run.
The rate value is measured every 2 seconds. The summary figure presents the
rate trajectory averaged over 20 simulation runs with different random seeds.
Each point in the summary figure represents the average throughput over a
period of one minute. The error bars are also shown in the figure.
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where b, b and K are RED parameters. Links 1-2 and 3-4 are
both configured with 9.1pkts per ms capacity (equivalent to
111 Mbps), 30 ms one-way propagation delay, and a buffer
of 1500 packets. Their RED parameters are (b, b, K) = (300,
1500, 10000). Link 2-3 has a capacity of 13.8 pkts per ms (166
Mbps) with 30 ms one-way propagation delay and a buffer size
of 1500 packets. Its RED parameters are set to (0, 1500, 10).

There are eight Reno flows on path 1-2-3-4, utilizing all
three links, with one-way propagation delay of 90 ms. There
are two FAST flows on each of paths 1-2-3 and 2-3-4. Both
of them have one-way propagation delay of 60 ms. All FAST
flows use a common α = 50 packets.

1 2
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(300,1500,10000)

Path 1
(2 FAST flows)

Path 3
(8 Reno flows)

3 4
c=9.1pkt/ms
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c=13.8pkt/ms
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(0,1500,10)

Path2
   (2 FAST flows)

Fig. 4. Multiple equilibria scenario.

Two sets of simulations have been carried out with different
starting times for Reno and FAST flows. The intuition is that
if FAST flows start first, link 2-3 will be saturated and links
1-2 and 3-4 will not. Since the RED dropping slope of link
2-3 is steep, when Reno flows join, they will experience so
many losses that links 1-2 and 3-4 will remain unsaturated.
If Reno flows start first, on the other hand, links 1-2 and 3-
4 are saturated while link 2-3 is not because link 2-3 has a
higher capacity. Since the RED dropping slopes of link 1-
2 and 3-4 are not steep, they can generate enough queueing
delay to squeeze FAST flows when they join and keep link
2-3 unsaturated. In the simulations, one set of flows (Reno or
FAST) starts at time zero, and the other set of flows starts at
the 100th second. We present the throughput achieved by one
of the FAST flows and one of the Reno flows (Figures 5 and
6). Each point in the summary figures represents the average
rate over 5 minutes.
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Fig. 5. Bandwidth shares of Reno and FAST when FAST starts first.

Since the difference of rate allocations in these two figures
is far greater than the standard deviation, it is clear that
the network has reached very different equilibria depending
on which flows start first. In short, bandwidth sharing in
heterogeneous networks depends on which type of TCP starts
first and becomes not predictable. This is also undesirable.
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Fig. 6. Bandwidth shares of Reno and FAST when Reno starts first.

Algorithm 1 α adaptation algorithm
1) Every α update interval (2 minutes by default), calculate:

α∗ =
q

lw

q and l are average queueing delay and average packet
loss rate over the interval, w is a parameter. Then

α =
{

min {(1 + δ)α, α∗} if α < α∗

max {(1 − δ)α, α∗} if α > α∗

δ is 0.1 by default.
2) Every window update interval (20ms by default), run

FAST algorithm (1).

III. ONE SOLUTION

We now propose a simple source-based algorithm (Algo-
rithm 1) for FAST flows to solve the problems on unfair-
ness and unpredictable parameter sensitivity illustrated by the
examples in the previous section. Complete development of
the algorithm, together with the theoretical foundation and
simulation verifications of the solution for general cases, which
are beyond networks with just Reno and FAST, form the rest
of the paper after this section. The solution tries to achieve
a unique equilibrium that efficiently and fairly utilizes the
bandwidth. The allocation is independent of router setting.
The solution only uses end-to-end local information that is
available to each flow and only requires simple parameter
updates, such as the linear parameter α in FAST.

This α adaptation algorithm, Algorithm 1, fine-tunes the
value of α according to the signals of queue delay and loss
in a large time scale (several RTTs). The basic idea of the
solution is that FAST should adjust its aggressiveness (α) to
the proper level by looking at the ratio of end-to-end queueing
delay and end-to-end loss. In other words, FAST also reacts
to loss in a slow timescale.

A. Example 1b: independence of bandwidth allocation on
buffer size

We repeat the simulations in Example 1a with Algorithm 1,
w is set to be 125s3. Figure 7, Figure 8, Figure 9 and Figure
10 should be compared with Figure 2, Figure 3, Figure 5 and
Figure 6 correspondingly.

With Algorithm 1, FAST achieves 3.4 pkts per ms with
buffer size of 400 and 3.2 pkts per ms with buffer size of

3w determines the equilibrium bandwidth share. Formally, it is stated in
(23)-(24). Here w is chosen so that Reno and FAST get equal rates.
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80, while Reno gets 4.2 pkts per ms and 4.1 pkts per ms,
respectively. The fairness is greatly improved and essentially
independent of buffer size now, which we summarize in table I
by listing the ratio of bandwidth that Reno gets to what FAST
gets in different scenarios. We also note that the utilization
of the link for B = 80 case increases dramatically from 53.6
percent to 97.7 percent. This point will be further discussed
in Experiment 3 in section VII.

B=400 B=80
Without Algorithm 1 5.4/2.1=2.6 0.6/3.4=0.18

With Algorithm 1 4.2/3.1=1.4 4.1/3.2=1.3

TABLE I

RATIO OF RENO’S RATE AND FAST’S RATE
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Fig. 7. FAST vs. Reno, with buffer size of 400 pkts.
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Fig. 8. FAST vs. Reno, with buffer size of 80 pkts.

B. Example 2b: independence of bandwidth allocation on flow
arrival pattern

We repeat the simulations in Example 2a with Algorithm 1,
w is set to be 1820s. Figure 9 and Figure 10 show the effect of
α adaptation in the multiple-bottleneck case that we introduced
in Example 2. As we will prove in Theorem 6, there is always
a unique equilibrium if we adapt α according to Algorithm 1.
In this particular case, this single equilibrium is around the
point where each Reno flow gets a throughput of 0.6 pkts
per ms and each FAST flow gets 1.5 pkts per ms. At this
single equilibrium, link 1 and link 3 are the bottleneck links.
In Figure 9, FAST flows start on time zero and link 2 becomes
the bottleneck. When Reno flows join on the 100th second,
the ratio of queue delay to loss at link 2 is much higher than
the target value. The FAST flows hence reduce their α values
gradually and the set of bottleneck links switches from link 2

to link 1 and 3 around the 2000th second. After that, FAST
flows and Reno flows converge to the unique equilibrium.
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Fig. 9. FAST starts first.
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Fig. 10. Reno starts first.

So far, we have used TCP Reno and FAST to show the
problems of networks using both loss and delay as conges-
tion measures. A solution is also proposed and validated by
simulations. The remainder of the paper will be devoted to
studying this topic in a general setting beyond networks with
just Reno and FAST, and showing the intuition and correctness
of this solution, which also involves developing understanding
of important properties of heterogeneous congestion control,
including efficiency and fairness.

IV. MODEL

A. Notations and Assumptions

Consider a network consisting of a set of L links, indexed
by l = 1, . . . , L, with fixed finite capacities cl. We sometimes
abuse notation and use L to denote both the number of links
and the set L = {1, . . . , L} of links. Each link has a price
pl as its congestion measure. There are J different congestion
control protocols indexed by superscript j, and N j sources
using protocol j, indexed by (j, i) where j = 1, . . . , J and
i = 1, . . . , N j . The set of links used by source (j, i) is denoted
by L(j, i), and the total number of sources by N :=

∑
j N j .

The L×N j routing matrix Rj for type j sources is defined
by Rj

li = 1 if source (j, i) uses link l, and 0 otherwise. The
overall routing matrix is denoted by

R =
[

R1 R2 · · · RJ
]

Even though different classes of sources react to different
prices, e.g. Reno to packet loss probability and Vegas/FAST
to queueing delay, the prices are related. We model this
relationship through a price mapping function that maps a
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common "intrinsic" price (e.g. queue length) at a link to
different prices (e.g. loss probability and queueing delay)
observed by different sources. Formally, every link l has a
price pl. A type j source reacts to the "effective price" mj

l (pl)
in its path, where mj

l is a price mapping function, which can
depend on both the link and the protocol type. The exact form
of mj

l depends on the AQM algorithm used at the link; see
(2) for links with RED.4 Let mj(p) = (mj

l (pl), l = 1, . . . L)
and m(p) = (mj(pl), j = 1, . . . J). The aggregate prices for
source (j, i) is defined as

qj
i =

∑
l

Rj
lim

j
l (pl) (3)

Let qj = (qj
i , i = 1, . . . , N j) and q = (qj , j = 1 . . . , J)

be vectors of aggregate prices. Then qj =
(
Rj

)T
mj(p) and

q = RT m(p).
Let xj be a vector with the rate xj

i of source (j, i) as its
ith entry, and x be the vector of xj

x =
[

(x1)T , (x2)T , . . . , (xJ)T
]T

Source (j, i) has a utility function5 U j
i (xj

i ) that is strictly con-
cave increasing in its rate xj

i . Let U = (U j
i , i = 1, . . . , N j , j =

1, . . . , J).
With the above notation, we refer to (c,m, R,U) as a

network, where (in general) z denotes the (column) vector
z = (zk, ∀k). The following basic assumptions are adopted,
as in [23], [25] that studied the existence and uniqueness of
equilibrium for heterogeneous protocols.
A1: Utility functions U j

i are strictly concave increasing, and
twice continuously differentiable in their domains. Price
mapping functions mj

l are continuously differentiable
and strictly increasing with mj

l (0) = 0.
A2: For any ε > 0, there exists a number pmax such that if

pl > pmax for link l, then

xj
i (p) < ε for all (j, i) with Rj

li = 1

B. Network Model

We consider the “dual algorithm” [17] where sources select
transmission rates that maximize their utility minus bandwidth
cost, and network links adjust bandwidth prices according to
the utilization of the links:

xj
i

(
qj
i

)
=

[(
U j

i

)′−1 (
qj
i

)]+

ṗl(t) = yl(p(t)) − cl =: fl(p(t)) (4)

Under the assumptions in this paper,
(
U j

i

)′−1 (
qj
i

)
> 0 for

all the prices p that we consider, and hence we can ignore the
projection [·]+ and assume, without loss of generality, that

xj
i

(
qj
i

)
=

(
U j

i

)′−1 (
qj
i

)
(5)

4One can also take the price pj
l used by one of the protocols, e.g. queueing

delay, as the common price pl. In this case the corresponding price mapping
function is the identity function, mj

l (pl) = pl.
5Almost all TCP variants people have proposed or deployed can be shown

to implicitly maximize some strictly concave increasing utility functions [18].
One can also start from a given utility function (e.g. from application layer)
and derive protocols. Here we take this view and use utility function to
represent the exact form of congestion protocol.

(5) is nothing but the responsive function of TCP which
determines source average sending rate based on its observed
end-to-end congestion signal.

As usual, we use xj
(
qj

)
=

(
xj

i

(
qj
i

)
, i = 1, . . . , N j

)
and

x(q) =
(
xj

(
qj

)
, j = 1, . . . , J

)
to denote the vector-valued

functions composed of xj
i . Since q = RT m(p), we often abuse

notation and write xj
i (p), xj(p), x(p). Define the aggregate

source rates y(p) = (yl(p), l = 1, . . . , L) at links l as:

yj(p) = Rjxj(p), y(p) = Rx(p) (6)

In equilibrium, the aggregate rate at each link is no more
than the link capacity, and they are equal if the link price is
strictly positive. Formally, we call p an equilibrium price (or
a network equilibrium or an equilibrium) if it satisfies (from
(3), (5), (6))

P (y(p) − c) = 0, y(p) ≤ c, p ≥ 0 (7)

where P := diag(pl) is a diagonal matrix.
When all sources react to the same price, then the equilib-

rium described by (3), (5)-(7) is the unique solution of the
following utility maximization problem defined in [14] and its
Lagrange dual [17]:

max
x≥0

∑
i

Ui(xi) (8)

subject to Rx ≤ c (9)

where we have omitted the superscript j = 1. The strict
concavity of Ui guarantees the existence and uniqueness of
the optimal solution of (8)–(9).

For heterogeneous case, the utility maximization problem
no long underlies the equilibrium described by (3), (5)-
(7). The current theory cannot be directly applied and great
difficulties arise when exploring even the basic questions such
as uniqueness of equilibrium [23], [25].

V. ANALYSIS OF EFFICIENCY AND FAIRNESS

A. Efficiency

In this subsection, efficiency of equilibrium of networks
with heterogeneous protocols is explored. We first make
the following key observation, which not only leads to the
remaining results of this subsection, but also is the starting
point of our algorithm design in section VI.

Theorem 1. Given an equilibrium p∗, there exists a positive
vector γ, such that the equilibrium rate vector x∗(p) is the
unique solution of following problem:

max
x≥0

∑
i,j

γj
i U j

i (xj
i ) (10)

subject to Rx ≤ c (11)

Proof. The KKT (Karush-Kuhn-Tucker) optimality conditions
for (10), (11) are:

γj
i

(
U j

i

)′
(xj

i ) =
∑

l

Rj
ilpl for all (i, j) (12)

pT (Rx − c) = 0 (13)

Rx − c ≤ 0 (14)
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where the (x, p) are the primal-dual variables. We now claim
these conditions are satisfied with equilibrium rates and prices
(x∗, p∗) by choosing

γj
i =

∑
l Rj

ilp
∗
l∑

l Rj
ilm

j
l (p

∗
l )

(15)

To see this, note (13) and (14) are conditions for equilibrium.
After substituting (15) into (12), we have(

U j
i

)′
(xj∗

i ) =
∑

l

Rj
ilm

j
l (p

∗
l ) (16)

That is consistent with equations (3) and (5) that are used to
define equilibrium.

Theorem 1 gives an underlying convex optimization prob-
lem that an equilibrium solves, which is amenable to dis-
tributed solutions as we will see in section VI. However, it is
important to note that this optimization problem itself depends
on equilibrium. Hence it cannot be used to find equilibrium
directly, nor does it guarantee existence and uniqueness as in
the single-protocol case [23], [25].

As stated by the celebrated first fundamental theorem of
welfare economics, any competitive equilibrium is Pareto
efficient. That explains the most basic reason that congestion
signals are used to regulate source rates and hence realize
bandwidth allocation. We know the unique equilibrium is
Pareto efficient when there is a single price. Now we can also
show that the same holds for networks with heterogeneous
protocols as a direct corollary of Theorem 1:

Corollary 2. All equilibrium points are Pareto efficient.

Pareto efficiency can be viewed as a qualitative requirement
for an efficient allocation. However, it does not give a quan-
titative description. Instead, aggregate utility (social welfare)
is the standard criterion for efficiency. As shown in (8)-(9),
for homogeneous cases, the unique equilibrium achieves the
maximum aggregate utility. For heterogeneous protocol cases,
we now study efficiency loss by lower-bounding the ratio of
the achieved aggregate utility to its maximum.

Theorem 3. Assume all utility functions are nonnegative, i.e.,
U(x) ≥ 0. Suppose the optimal aggregate utility is U∗ and
Û is the achieved aggregate utility at an equilibrium (x̂) of a
network with heterogeneous protocols. Then

Û

U∗ ≥ γ

γ
(17)

where γ and γ are the lower and upper bounds of γj
i

6, i.e.,
γ ≤ γj

i ≤ γ.

Proof. Assume x̂ is one of the solutions of Theorem 1, then

max
x

∑
i,j

γj
i U j

i (xj
i ) =

∑
i,j

γj
i U j

i (x̂j
i ) ≤ γÛ (18)

On the other hand,

max
x

∑
i,j

γj
i U j

i (xj
i ) ≥ γ max

x

∑
i,j

U j
i (xj

i ) = γU∗ (19)

6Both γ and γ can be bounded using ṁj
l . For example, for a network

with both loss based and delay based protocols and assuming RED is used, the
slopes of RED at different links can provide information on ṁj

l and therefore
γ and γ.

Combining the two equalities above, we get

Û

U∗ ≥ γ

γ

It has been well known for long time that price can serve as
the “invisible hand” to coordinate competing users and realize
optimal resource allocation. That however requires two basic
assumptions. The first assumption is that users are all price
takers. If instead they are noncooperative game players, there
will be efficiency loss. Such “price of anarchy” was recently
bounded from above for both routing [21] and congestion
control [12]. The second assumption is the homogeneity of
price that all users see, which does not hold in networks with
more than one type of congestion control protocols. Our result
above quantifies the “price of heterogeneity”.

B. Fairness

In this subsection, we study fairness in networks shared by
heterogeneous congestion control protocols. Two questions we
address are: how the flows within each protocol share among
themselves (intra-protocol fairness) and how these protocols
share bandwidth in equilibrium (inter-protocol fairness). The
results here generalize corresponding theorems in [24].

1) Intra-protocol fairness: As indicated by (8)–(9), when
the network is shared only by flows using the same congestion
signal, the equilibrium flow rates are the unique optimal
solution of the utility maximization problem. In other words,
the utility functions describe how the flows share bandwidth
among themselves. When flows using different congestion
signals share the same network, it turns out that this feature
is still preserved “locally” within each protocol, as we now
show.

Theorem 4. Given an equilibrium (x̂, p̂) ≥ 0, let ĉj := Rj x̂j

be the total bandwidth consumed by flows using protocol j
at each link. The corresponding flow rates x̂j are the unique
solution of:

max
xj≥0

Nf∑
i=1

U j
i (xj

i ) subject to Rjxj ≤ ĉj (20)

Proof: Since (x̂j , p̂j) ≥ 0 is an equilibrium, from (3) to (7),
we have(

U j
i

)′ (
x̂j

i

)
=

∑
l

Rj
lip̂

j
l for i = 1, ..., Nf

This, together with (from the definition of ĉj)

∑
i

Rj
lix̂

j
i ≤ ĉj

l , p̂j
l

(∑
i

Rj
lix̂

j
i − ĉj

l

)
= 0, ∀l

forms the necessary and sufficient condition for x̂j and p̂j to
be optimal for (20) and its dual respectively.

Note that in Theorem 4, the “effective capacities” ĉj’s are
not preassigned. They are the outcome of competition among
flows using different congestion prices and are related to inter-
protocol fairness, which we now discuss.
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2) Inter-protocol fairness: Even though flows using differ-
ent congestion signals individually solve a utility maximization
problem to determine their intra-protocol fairness, they in
general do not jointly solve any predefined convex utility
maximization problem. This makes the study of inter-protocol
fairness hard. Here we provide a feasibility result, which says
any reasonable inter-protocol fairness is achievable by linearly
scaling congestion control algorithms.

Assume flow (j,i) has a parameter µj
i with which it chooses

its rate in the following way:

xj
i

(
qj
i

)
=

(
U j

i

)′−1
(

1
µj

i

qj
i

)
(21)

For example, if we consider FAST’s utility function α log(x),
then the α parameter in the protocol can be viewed as µ
here. Our main result in this subsection says for a network
with J protocols, if J − 1 protocols have their linear scaler
vectors µj , then there exists a µ vector such that one of the
resulting equilibria with that µ can achieve any predefined
bandwidth partition. Before we get to the theorem itself, we
first characterize the feasible set of predefined bandwidth
allocation.

Assume that except for j = J , flow (i, j) has parameter
µj

i . Or equivalently, we can define µJ
i = 1. The equilibrium

rates xj clearly depend on parameter µ. For j = 1, 2, ...J −1,
let xj(µ) be the unique rate vector of flows using protocol
j if there were no other protocols in the network. Let xj(µ)
be the unique rates of type j flows if network capacity were
(c − ∑

k �=j Rkxk)+.
Let

X := { x|xj(µ) ≤ xj ≤ xj(µ), µ ≥ 0, Rx ≤ c}
X includes all possible rates of flows using protocol j if they
were given strict priority over other flows or if others were
given strict priority over them, and all rates in between. In
this sense X contains the entire spectrum of inter-protocol
fairness among different protocols. The next result says that
every point in this spectrum is achievable by an appropriate
choice of parameter µ.

Let S(µ) denote the set of equilibrium rates of flows
when the protocol parameter is µ. Clearly, equilibrium is
characterized by (3), (21), (6) and (7).

Theorem 5. For every link l, assume there is at least one type
J flow that only uses that link. Given any x ∈ X , there exists
an µ ≥ 0 such that x ∈ S(µ).

Proof: Given any x ∈ X , the capacity for all type J flows
is c − ∑

k �=J Rk(xk). Since Rx ≤ c (for all coordinates), we
have c−∑

k �=J Rk(xk) ≥ (xJ ), which is greater than or equal
to 0. Hence the following utility maximization problem solved
by flows of type J is feasible:

max
xJ≥0

∑
i

UJ
i (xJ

i )

subject to RJxJ ≤ c −
∑
k �=J

Rk(xk)

Let pJ be the associated Lagrange multiplier vector. By
the assumption that every link has at least one single-link

type J flow, we know pJ
l > 0 for all l. Choose (µj

i ) =
∑

l Rj
lim

j
l ((m

J )−1
l (pJ

l ))

(Uj
i )′(xj

i)
. It can be checked that all equations

that characterize equilibrium ((3), (21), (6) and (7)) are satis-
fied.

In general, one can view Theorem 1 as defining fairness
of flows using heterogeneous protocols and can conclude
that price mapping functions (router parameters) affect fair-
ness (supported by Example 1a). Clearly, if one can choose
price mapping functions, one can achieve any predefined
fairness. More interestingly, Theorem 5 implies that given any
reasonable fairness among flows using different congestion
signals, in terms of a desirable rate allocation x, there exists
a protocol parameter vector µ that can achieve it without
changing parameters inside the network. It is however yet
unclear how to compute µ dynamically in practice using only
local information. In section VI, we will discuss distributed
algorithms to compute a particular µ, which will result in the
optimal bandwidth allocation.

VI. SLOW TIMESCALE UPDATE

A. Theoretical Foundation

As pointed out in Corollary 2, all equilibria are Pareto
efficient. However, based on analysis in section V, large
efficiency loss may occur and no guarantee on fairness can
be provided. These motivate us now to turn from analy-
sis to design, and develop a readily implementable control
mechanism that “drives” any network with heterogeneous
congestion control protocols to any desired operating point
with a fair and efficient bandwidth allocation. It generalizes
the Algorithm 1 in section III and explains the intuition and
theoretical foundation of it. The central problems that motivate
our study here include: What is the equilibrium the system
should be driven to? Can we make it unique? Will it solve any
global optimization problem? How to do that in a distributed
way? In this section, we propose an answer by introducing
slow timescale updating. Our target equilibrium is still the
maximizer of some weighted aggregate utility. The first step
is to set up the existence and uniqueness of such a solution.

Theorem 6. For any given network (c,m, U,R), for any
positive vector w, there exists a unique positive vector µ such
that, if every source scales their own prices by µj

i , i.e.,

xj
i =

(
U j

i

)′−1
(

1
µj

i

∑
mj

l (pl)

)
(22)

then, at equilibrium(x, p), x solves

max
x≥0

∑
(i,j)

1
wj

i

U j
i (xj

i ) (23)

subject to Rx ≤ c (24)

Moreover,

µj
i =

1
wj

i

∑
l∈L(j,i) mj

l (pl)∑
l∈L(j,i) pl

Proof. We claim that the optimality conditions of (23) and (24)
are the same as equations that characterize the equilibrium of
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Algorithm 2 Two timescale control scheme
1) Every source chooses its rate by

xj
i (t) = (U ′)−1 ( qj

i (t)

µj
i (t)

);

2) Every source updates its µj
i by

µj
i (t+T ) = µj

i (t)+κj
i

(∑
l∈L(j,i) mj

l (pl(t+T ))
∑

l∈L(j,i) pl(t+T ) − µj
i (t)

)
where κj

i is the stepsize for flow (j, i) and T is large
enough so that the fast timescale dynamics among x and
p can reach steady state.

the above system ((3), (22), (6) and (7)). Capacity constraints,
nonnegativity, and complementary slackness are obviously the
same. We only need to check the relation between rates and
prices at equilibrium. Those are

µj
i

(
U j

i

)′
(xj

i ) =
∑

l∈L(j,i)

mj
l (pl) (25)

and

µj
i =

1
wj

i

∑
l∈L(j,i) mj

l (pl)∑
l∈L(j,i) pl

(26)

Combining them, we get

1
wj

i

(
U j

i

)′
(xj

i ) =
∑

l∈L(j,i)

pl (27)

which is the relation between x and p specified by the
optimality conditions of problem (23)-(24). On the other hand,
given x and p that satisfy (27), one can always define µ by
(26), and (25) will also be satisfied.

Parameter w enables us to measure fairness and to achieve
any desired fair bandwidth allocation. But we need all sources
to have access to one common price. Moreover, Theorem 6
suggests Algorithm 2 as a two-timescale scheme to control
the operation point of networks with heterogenous congestion
control protocols. The essential idea in Algorithm 2 is that
by reacting to the same price in slow timescale, uniqueness
and fairness of equilibrium is guaranteed in the long run. Yet
the algorithm allows sources to react to their own effective
prices mj

i (pl(t)) in fast timescale. This flexibility in timescales
is important in practice when, for example, the link prices
pl are loss probability that are hard to reliably estimate at
the fast timescale. The slow timescale algorithm only updates
a linear scaler, which is readily implementable, e.g., this
corresponds to update a parameter α in FAST. Indeed, if we
specialize Algorithm 2 to FAST/Reno networks using loss as
the common price p, we get Algorithm 1 in section III. In
general, as we can always choose mj

l (pl) = pl for a particular
j, say j = 1. Then we have µ1

i = 1, which means sources of
type 1 don’t need to adapt. This is crucial for deployment as
only new protocols need to adapt while the current Reno does
not.

B. Numerical Results

Throughout this subsection, we provide some numerical
results to further validate the effectiveness of Algorithm 2. For

simplicity we choose w to be a vector with all components
being 1, i.e., we attempt to maximize the aggregate utility.

Experiment 1: L=3 with multiple equilibria
In this experiment, we use the following example that has
multiple equilibria [23]. The network is shown in Figure 11
with three unit-capacity links, cl = 1. There are three different
protocols with the corresponding routing matrices

R1 = I, R2 =
[

1 1 0
0 1 1

]T

, R3 = (1, 1, 1)T

The price mapping functions are linear: mj
l (pl) = kj

l pl where

K1 = I, K2 = diag(5, 1, 5), K3 = diag(1, 3, 1)

Utility functions of sources (j, i) are

1x1
2x1

1x2

1x3

3x1

2x2

Fig. 11. A three-link network with three equilibria

U j
i (xj

i , α
j
i ) =

{
βj

i (xj
i )

1−αj
i /(1 − αj

i ) if αj
i �= 1

βj
i log xj

i if αj
i = 1

with appropriately chosen positive constants αj
i and βj

i [23].
These utility functions can be viewed as a weighted version
of the α-fairness utility functions proposed in [19]. µj

i ’s are
updated every 20 time units. We show that starting from dif-
ferent initial conditions, although the system reaches different
equilibria after the first iteration, it nevertheless finally reaches
the unique optimal equilibrium with p∗1 = 0.222.
Case 1: We start with initial point p1(0) = p2(0) = p3(0) =
0.3. After the first iteration, the network goes to an equilibrium
(p1 = p3 = 0.165, p2 = 0.170). p1(t) with different updating
stepsize κj

i is shown in Figures 12.
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(a) stepsize κj
i = 0.1
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(b) stepsize κj
i = 0.5

Fig. 12. Case 1: p1(t) with different κj
i

Case 2: We choose another initial point p1(0) = p3(0) = 0.1,
p2(0) = 0.3 As shown in Figure.13. After the first iteration,
the system reaches another equilibrium, p1 = p3 = 0.135 and
p2 = 0.230. However finally, the system still reaches the same
steady state as in Figure 13.
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Fig. 13. Case 2: p1(t) with different κj
i

Experiment 2: L=5 with asynchronous update
In this experiment, the network has five links and 15 flows.
Algorithm 2 is tested in an asynchronous environment. We
assume that every five time units, flows can update their µj

i and
they do so with certain probability. Hence every five time units,
only a portion of flows update their µj

i . We randomly set link
capacities uniformly between 1 to 10, price mapping functions
are m1(p) = p and m2(p) = pα, where α is randomly chosen
between 0.5 to 5 with uniform distribution. Flows 1 to 5 use
links 1 to 5 correspondingly while a random routing matrix
with entries 0 or 1 with equal probability is used to define
routes for other flows. Finally each flow randomly chooses to
use price 1 or 2 with equal probability.

All of the 1000 trials converge to the right target point. Some
typical convergence patterns are shown in Figure 14 where the
five curves correspond to the p value of the five links. It shows
clearly that although asynchronism causes longer convergence
time, the system still converges to the same equilibrium.
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(a) update with probability 0.6
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(b) update with probability 0.3

Fig. 14. p(t) with different probability of updating

VII. WAN IN LAB EXPERIMENTS

The objective of experiments in this section is to show
the effectiveness and some other features of Algorithm 2
(Algorithm 1 when we focus on networks with TCP Reno and
FAST) in a more realistic setting. We achieve that by carrying
out experiments with TCP Reno and FAST in the hardware
testbed of WAN in Lab [26], which is a wide area network
consisting of an array of reconfigurable routers, servers and
clients, and by considering some previously ignored scenar-
ios (e.g., small buffer size, only FAST flows). We test our
algorithm with a single bottleneck link shown in Figure 15.

Experiment 3: small buffer size
As we have seen in Example 1a and Example 1b, Algorithm
1 can dramatically increase link utilization when buffer size

Fig. 15. WAN in Lab experiment setup

B is not too larger than α0. In this experiment, we go to the
extreme region when B < α0. As every FAST flow tries to
maintain α packets in the queues along its path. Clearly if
B < α0, constant high packet loss rate will occur and both
Reno and FAST will have very poor throughput. We show a
a byproduct of Algorithm 1 that it can adjust α automatically
to a proper value to fit the inside network parameter B.

One FAST and one Reno compete for bandwidth of a
bottleneck link of 1Gbps (80pkts/ms) capacity. The buffer
capacity B is 480pkts. The initial α is set to be α0=800pkts.
The results are summarized in Figure 16. As the left part
of the figure shows, both Reno and FAST get very low
throughput due to the high packet loss rate (FAST: 135Mbps;
Reno: 22Mbps). However, using Algorithm 1, FAST decreases
its α as it sees high loss and finally both flows get high
throughput (FAST: 593Mbps; Reno: 246Mbps). The utilization
is increased dramatically from 15.7 percent to 83.9 percent.

(a) Without Algorithm 1 (b) With Algorithm 1

Fig. 16. Bandwidth partition between Reno and FAST

Experiment 4: only FAST flows
Although the slow timescale update shows desirable properties
in various tests we have discussed so far, there is a problem we
have not touched, namely the case when there are only FAST
flows in a network. As FAST is designed to achieve a steady
state with no loss, flows will keep increasing their α according
to Algorithm 1 until the buffer is filled and loss is generated.
This is not desirable and we propose to turn off the slow
timescale update when a FAST flow has not seen any loss for
a certain amount of time (ten seconds by default). We conduct
a test using three FAST flows all with α0=200pkts sharing
the same link as in Experiment 3. The throughput trajectories
are shown in Figure 17. We can see that after a period of
adjusting, all flows are stabilized. The steady state throughputs
are 128Mbps, 234Mbps and 566Mbps, which result in a high
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utilization of 92.8 percent even though the initial sum of α
(600 pkts) exceeds the buffer capacity (480 pkts). However,
this introduces potential fairness problem as we cannot control
the exact α values when the updating algorithm stops. For
example, instead of achieving perfect fairness with a Jain
index [9] of 1, we have 0.733 in this experiment. We tend
to think that this short term unfairness is not so important
as in practice, flows come and go [1], which will give many
chances for existing flows to reshuffle and the random short
term unfairness can be averaged out to yield long term fairness.

Fig. 17. Bandwidth sharing among FAST flows

VIII. CONCLUSION

When sources sharing the same network do flow control
based on different congestion signals, the existing duality
model no longer explains the behaviors of bandwidth allo-
cation. In this paper, we have studied fundamental properties
of such networks like efficiency and fairness. In particular, it
is shown that qualitatively equilibrium is still Pareto efficient
but quantitatively there is efficiency loss about which we can
provide an upperbound. On fairness, intra-protocol fairness is
still determined by utility maximization problem, while inter-
protocol fairness is the part which we don’t have control on.
However, we can achieve any desirable inter-protocol fairness
by properly choosing protocol parameters. Motivated by and
based on these results, we propose a distributed scheme to steer
the whole network to the unique equilibrium which maximizes
aggregate utility. The scheme only needs to update a linear
scaler in source algorithm in a slow timescale.

There are a number of ways to extend this work. For
example, more efforts are needed to fully clarify the dynamics
of the system. Another interesting question would be what is
the optimal way for sources to regulate their rates given they
have access to multiple congestion signals. Some steps have
been taken along this direction by combining delay-based and
loss-based congestion control protocols [3], [22].
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