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Abstract—This paper examines a simple model of how a
provider ISP charges customer ISPs by assuming the provider
ISP wants to maximize its revenue when customer ISPs have
the possibility of setting up peering connections. It is shown that
finding the optimal pricing is NP-complete, and APX-complete.
Customers can respond to price in many ways, including throt-
tling traffic as well as peering. An algorithm is studied which
obtains a 1/4 approximation for a wide range of customer
responses.

I. INTRODUCTION

The Internet is an aggregation of a large number of networks
owned by competing entities, which we generically call Inter-
net service providers (ISPs). It is well known that economic
considerations frequently override technical factors in the
Internet traffic routing. In general, ISPs seek to maximize
their own profit. The border gateway protocol (BGP) provides
routing information, but the choice of route is determined by
financial considerations as well as engineering factors.

The routes available depend on which ISPs are connected
by direct links. When two unconnected ISPs want to exchange
data, they must each pay a “provider” ISP to relay their data.
Topology measurement results [15] show that, among 4200
or so transit ISPs in the Internet today, only 15 of them are
more or less fully connected. This set of ISPs are commonly
referred to as tier-1 ISPs, and act as global providers. The
remaining transit ISPs either directly or indirectly rely on the
tier-1 ISPs for global reachability.

Much attention has recently been paid to ecomonic aspects
of interdomain routing [1], [3], [10], [14]. This paper concerns
the optimal prices a (tier-1) provider ISP can charge its (tier-2)
customers, taking into account the fact that its customers have
the option of “peering” with other tier-2 networks by operating
their own links to carry some or all of their traffic. In other
words, the provider ISP tries to balance the trade-off between
high prices and the number of subscribers.

Tier-2 networks are selfish, and do not necessarily peer
simply because it is their combined interest to peer; it must
be in the interest of both to peer. This work extends previous
work [12] by considering a range of conditions under which
tier-2 ISPs may decide to peer based on the prices they are
charged. It also models the fact that increased prices will cause
ISPs to generate less traffic, either by passing costs on to their
own customers or by explicitly throttling traffic.

This problem is of interest in the networking community as
a simple model that describes the basic relations among ISPs.
It serves as a starting point for future extensions to the case of
competing tier-1 ISPs. As we will soon see, it also has a rich
structure which is of interest to theoretical computer science.

The paper is organized as follows. Section II describes
our mathematical model, which captures the optimization
problem faced by a provider ISP in deciding what to charge
its customers. This problem is shown in Section III to be NP
hard. Moreover, it is shown that no polynomial time algorithm
exists to achieve an arbitrarily good approximation; that is,
it is APX-hard. Section IV develops an algorithm which is
guaranteed to achieve a at least 1/4 of the maximum revenue,
which generalize the algorithms previously presented in [12]

II. MODEL AND NOTATION

Let R
+ be the set of positive reals, and R

+
= R

+ ∪{0} be
the set of non-negative reals, and let |X | denote the cardinality
of any set X .

With this notation, consider transit ISPs in two adjacent
tiers, modeled as follows. Assume that all ISPs in the top
tier cooperate to avoid a price war [14], so that they act as a
single provider. This is modeled as a simple undirected graph
G = (V, E). Elements of V = {v1, v2, . . . , v|V |} are called
nodes, vertices or customers, and elements of E ⊂ V × V
are called links or edges. We also assume that the provider is
directly connected to every customer v ∈ V . Let µ : V → R

+

be a price function, such that µ(v) is the price customer v
pays the provider when they exchange one unit of traffic, in
either direction.

When customer ISPs are charged more to send data, they
typically throttle their own customers’ traffic to reduce the
load. This paper considers the case that the total traffic volume
(per unit time) in both directions between customers u and
customer v depends only on the sum of the prices they are
charged. Let that total volume be W (µ(u)+µ(v)). If u and v
do not peer, then the traffic goes through their providers and
they have to pay a total of (µ(u) + µ(v))W (µ(u) + µ(v)).

If the provider charges too much, then customers will form
peering arrangements, and no longer send traffic through the
provider. In previous work [12], it was assumed that, for each
pair u and v, customers u and v would peer if the sum of
the prices charged by the provider, µ(u) + µ(v), exceeded a
particular amount, c(u, v). This was interpreted as the cost
per unit time of peering. However, selfish customers will be
more motivated by their own costs than the joint costs to both
customers. In this paper, we consider a function φ(a, b) such
that users will peer if φ(µ(u), µ(v)) ≥ c(u, v). Note that we
still assume that the decision to peer is based purely on the
prices, and that the provider knows the value of c(u, v). Thus
the revenue to the provider from the edge (u, v) is (µ(u) +
µ(v))W (µ(u) + µ(v)) if φ(µ(u), µ(v)) ≤ c(u, v), and zero
otherwise.

286978-1-4244-2247-0/08/$25.00 ©2008 IEEE.

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:11 from IEEE Xplore.  Restrictions apply.



2

The revenue of the provider is then given by the total, over
all pairs of customers who do not peer, of the product of the
sum of their prices times the total traffic between them. For
any subset of edges E ′ ∈ E, let

ν(µ; E′) ≡
∑

(u,v)∈E′

φ(µ(u), µ(v)) ≤ c(u, v)

(µ(u) + µ(v))W (µ(u) + µ(v)) (1)

giving the total revenue from G = (V, E) as

ν(µ) ≡ ν(µ; E). (2)

The following mild conditions are placed on the forms φ
and W may have

1) φ and W are left-continuous
2) φ ≥ 0, W ≥ 0
3) φ(a, b) = φ(b, a)
4) b ≤ c⇒ φ(a, b) ≤ φ(a, c)
5) x ≤ y ⇒W (x) ≥W (y)
6) For any ek ∈ E, Ik ≡ {a|φ(a, 0) ≤ c(ek)} is computable

in polynomial time.
7) xW (x) has a finite number of local maxima, and we can

compute the locations in polynomial time
8) B = supx xW (x) is known, although possibly infinite.

The following lemma, proved in the appendix, shows that
assumption 6 is equivalent to being able to compute bk ≡

sup(Ik) ∈ R
+
∪ {−∞,∞} in polynomial time.

Lemma 1. For any K ∈ R, the set of solutions of

φ(0, a) ≤ K (3)

is the empty set, R
+

, or [0, b] for some b ∈ R
+

.

Remark:

1) The “price to peer”, c, could equally well model the total
cost to u and v of forgoing their connectivity.

2) This model assumes that the costs of peering are primarily
on-going costs.

3) In addition to gaining revenue, the provider incurs addi-
tional cost for traffic it carries. This is not included in the
current model.

The problem we seek to solve is to maximize ν(µ) for a
graph G:

max
µ:V →R

+
ν(µ) (P1)

with optimal value denoted opt(G).
This notation is shown for a small example network in

Figure 1. The circles represent ISPs, and are labeled with
their prices, µ(v), while the edges are labeled with the
peering costs. In this example, if φ(a, b) = 2 min(a, b), the
provider obtains revenue from edges (2,3) and (3,4), but
not from (1,3) since φ(µ(1), µ(3)) > c(1, 3). Edge (1,2),
where φ(µ(1), µ(2)) = c(1, 2), yields revenue, but shows
the discontinuity which gives this problem its combinatorial
difficulty. There is negligible traffic between ISPs 1 and 4.

Problem (P1) is related to the problem of finding the
maximum cut of a graph. A cut of a graph G = (V, E) is a

Fig. 1. An example with four ISPs

partition of the nodes {X, X} with X ∩X = ∅, X ∪X = V .
The “size” of the cut of a graph with edge weights c is
weighted sum of the “cut edges” with one vertex in each side
of the partition,

∑

{(u,v):u∈X,v∈X} c(u, v). This paper uses
two NP-complete problems related to maximum cuts. The
“simple max-cut” [7], used in Section III, finds the cut of
maximum size of an unweighted simple graph (c(e) = 1 for
all e ∈ E). The “weighted max-cut”, used in Section IV-B,
finds the maximum cut of an arbitrary weighted graph.

Note also that the problem can be solved by solving convex
programs in the case that φ and xW (x) are concave (or linear
programs if they are also piecewise linear). As in [12], this is
done by considering the maximum revenue achieved enforcing
the requirement that φ(µ(u), µ(v)) < c(u, v) for specific
subsets of edges. Once again, the number of convex programs
that we need to solve grows exponentially as a function of the
number of possible links. This combinatoric structure hints
that the problem could be NP-hard, which will be formally
shown in the next section.

III. NP-COMPLETENESS

Before presenting an algorithm to solve (P1) to within a
constant time, we demonstrate that it is not possible to do
better, unless P = NP . That is, (P1) is APX-complete.

APX is the set of optimization problems which are approx-
imable to within some constant factor in polynomial time.
Under the same assumption that NP-complete problems are
difficult (P 6= NP ), there cannot even exist a polynomial time
approximation scheme (PTAS) for APX-complete problems;
that is, they have some constant factor within which they
cannot be approximated in polynomial time unless P = NP .
We show here APX-completeness, which implies the more
usual NP-completeness but is a stronger result.

An APX-completeness proof consists of showing that the
problem is in APX, and providing a polynomial time reduction
from some APX-hard problem P to a target problem T , and
some function f : (0, 1] → (0, 1], for which it is possible
to find an α-approximation to the instance of P directly by
finding an f(α)-approximation to T .

The general problem (P1) can be shown to be APX-hard by
the following reduction from MAX-CUT to the particular case
when W (x) = 1 and φ(a, b) = a + b. Note that MAX-CUT
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Fig. 2. The construction used in this reduction.

on 3-regular graphs is known to be APX-hard [2], whence the
general MAX-CUT also is.

This result is similar to the one presented in [9] for single-
minded customers buying pairs of items. In the terms of the
present paper, the difference is that [9] allowed multiple edges
between pairs of nodes, each with a different cost c(e), while
(P1) does not.

Let d(x) denote the degree of node x in the MAX-CUT
instance. Attach d(x) copies of the construction in Figure 2 to
each node x, and give weight 1 to each edge from the original
graph, which we call “original edges”.

The following three lemmas are proved in the appendix.

Lemma 2. The maximum revenue achievable from the graph
in Figure 2 given a fixed price for x, 0 ≤ µ(x) ≤ 1 is max(9−
µ(x), 8 + µ(x)).

Note that these bounds are achievable with µ(a) = µ(c) =
µ(d) = 1, µ(e) = 0 and either µ(b) = 1 or µ(b) = 1− µ(x).
Furthermore, if µ(x) > 1, then edge (x, b) cannot contribute
any revenue, whence the maximum revenue is still at most 9.
Furthermore, if µ(x) > 1, this prevents revenue from all d(x)
original edges. Thus, we only consider the case µ(x) ≤ 1.

Lemma 3. If the optimal solution has 0 ≤ µ(x) ≤ 1/2, then
the solution with µ(x) replaced by 0 is also optimal.

Lemma 4. If the optimal solution has 1/2 < µ(x) ≤ 1 and
no nodes have prices µ(y) ∈ (0, 1/2], then the solution with
µ(x) replace by 1 is also optimal.

Combining these lemmas, from any optimal prices µ, op-
timal prices with µ(x) ∈ {0, 1} can be found. For such an
assignment of prices, the revenue from the constructions sums
up to 2|E| ·9 (where |E| is the number of original edges), and
the revenue from the original edges is the number of edges
between a node of weight 1 and one of weight 0. Since this
is the weight of a cut, the original MAX-CUT instance has a
maximum cut weight of k if and only if the created graph has
a maximum revenue of 18|E|+ k.

Note that if the created graph can give revenue s, the MAX-
CUT instance has a cut of size at least s− 18|E|. Since every
graph has a cut of size at least |E|/2, k ≥ |E|/2. Applying
this inequality, if there is a 36+α

37 approximation to the pricing
problem, applying it and using the result to find a MAX-
CUT result on a 3-regular graph gives an α-approximation.
This shows that (P1) is APX-hard. APX-completeness will
follow from the main result of this paper, Theorem 7, which
establishes (P1) can be approximated to within a factor of 1/4
in polynomial time.

IV. APPROXIMATION ALGORITHMS

Since (P1) is APX-hard, it is useful to investigate constant-
ratio approximation algorithms. This section presents an al-

gorithm which obtains a 1/4 approximation by applying an
approximate max-cut algorithm to a related graph.

A. Bounding the maximum revenue

Following [6] and [12], bounds are found in terms of an
upper bound F (V ), defined as follows. For any v ∈ V and any
t ∈ R

+
, define λv,t : V → R, by λv,t(v) = t and λv,t(u) =

0 for all u 6= v. Then let f(v) be the supremum revenue
obtainable from ISP v, and g(v) be the corresponding price
charged to v. That is,

f(v) = sup{ν(λv,t) | t ∈ R
+
} (4)

g(v) = inf{t ∈ R
+
| ν(λv,τ )→ f(v) as τ → t}. (5)

It is possible that f(v) or g(v) is infinite, although this would
not correspond to realistic functions φ and W . An algorithm to
compute f(v) and g(v), and to determine if opt(G) is finite,
is deferred until Section V. Nonetheless, the results of this
section are valid, using arithmetic on R

+
∪ {∞}.

Denote the edges from which v could get revenue when its
price is µ(v) by

Eµ(v) = {(u, v) ∈ E | φ(0, µ(v)) ≤ c(u, v)} (6)

and note that, taking µ = g,

f(v) = g(v) W (g(v)) |Eg(v)| . (7)

For any subset U ⊆ V , let

F (U) =
∑

v∈U

f(v). (8)

Lemma 5. For any graph G = (V, E),

opt(G) ≤ F (V ). (9)

Proof: Let µ be a function such that ν(µ) = opt(G). As
φ is monotone increasing and W is monotone decreasing,

opt(G) =
∑

v∈V

∑

(u,v)∈E

φ(µ(u),µ(v))≤c(u,v)

µ(v) W (µ(v) + µ(u))

≤
∑

v∈V

∑

(u,v)∈E

φ(0,µ(v))≤c(u,v)

µ(v) W (µ(v))

≤
∑

v∈V

|Eµ(v)| µ(v) W (µ(v))

= F (V )

B. Max-cut algorithm

A tighter bound can be obtained using an approximate
weighted max-cut algorithm. First, consider how prices µ
could be allocated if a suitable cut were known.

Given a cut {X, X} of G, which cuts edges E ′ = {(u, v) ∈
E | u ∈ X, v ∈ X}, define a price function µX which sets
price to 0 for nodes on one side of the cut, and g(v) for nodes
on the other, as follows:

288

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:11 from IEEE Xplore.  Restrictions apply.



4

Let 1A = 1 if A is true and 0 if A is false. If
∑

v∈X

∑

(u,v)∈E′

φ(0, g(v)) ≤ c(u, v)

g(v)W (g(v)) ≥
∑

v∈X

∑

(u,v)∈E′

φ(0, g(v)) ≤ c(u, v)

g(v)W (g(v))

(10)
then,

µX (v)← g(v)1v∈X (11)

otherwise
µX (v)← g(v)1v∈X (12)

Also, define c′ : E → R
+
∪ {∞} by

c′(e) =
∑

v∈e, φ(0,g(v))≤c(e)

g(v)W (g(v)), (13)

which is either 0, min
(

g(u)W (g(u)), g(v)W (g(v))
)

or
g(u)W (g(u)) + g(v)W (g(v)).

Lemma 6. For an arbitrary cut {X, X} with cutting edges
E′ ⊆ E, the revenue generated by µX is related to the c′-
weight of the cut by

ν(µX) ≥
1

2

∑

e∈E′

c′(e) (14)

Proof: Without loss of generality, consider the case that
more revenue can be gained from nodes in X than in X , in
the sense of (10). Then, considering revenue only from the cut
edges in E′,

ν(µX) ≥
∑

(v∈X,u∈X)∈E′

φ(µX (u), µX (v)) ≤ c(u, v)

(µ(u) + µ(v))W (µ(u) + µ(v)). (15)

By (10), µ is given by (11), whence then summand in (15)
becomes g(v), giving

ν(µX ) ≥
∑

(v∈X,u∈X)∈E′

φ(0,g(v))≤c(u,v)

g(v)W (g(v))

=
∑

v∈X

∑

(u,v)∈E′

φ(0,g(v))≤c(u,v)

g(v)W (g(v))

≥
1

2

∑

v∈X∪X

∑

(u,v)∈E′

φ(0,g(v))≤c(u,v)

g(v)W (g(v))

where the last step follows from (10), since the sum of two
terms is at most twice the maximum term. Thus, since X and
X partition V ,

2ν(µX) ≥
∑

v∈V

∑

(u,v)∈E′

c(u,v)≥φ((0,g(v))

g(v)W (g(v))

=
∑

e∈E′

∑

v∈e

c(u,v)≥φ(0,g(v))

g(v)W (g(v))

and the result follows by the definition of c′ in (13).
Algorithm 1 finds a suitable cut, not by performing a max-

cut on the graph with the original weights c, but instead with
the weights c′, which allows the performance to be bounded.

Algorithm 1 Max-cut-based algorithm

Given a graph G = (V, E) and peering costs c : E → R
+:

1: Compute f(v) and g(v) of (4) and (5) by Algorithm 2
2: Compute c′ according to (13).
3: Use the approximate weighted max-cut algorithm of [13]

to get a cut X , X of G, with edge weights c′, of weight
at least

∑

e∈E c′(e)/2.
4: Let µ← µX given by (10)–(12).

The main result of this section is

Theorem 7. The µ generated by Algorithm 1 satisfies

ν(µ) ≥
1

4
opt(G) (16)

This is a straightforward consequence of Lemma 6 and the
following two lemmas.

Lemma 8. The weight function c′ defined by (13) satisfies

F (V ) =
∑

v∈V

f(v) =
∑

e∈E

c′(e) (17)

Proof: By the definitions of f , g and ν and λ,

F (V ) =
∑

v∈V

ν(λv,g(v))

=
∑

v∈V

∑

(u,v)∈E

φ(0,g(v))≤c(u,v)

g(v)W (g(v))

=
∑

e∈E

∑

v∈e

φ(0,g(v))≤c(u,v)

g(v)W (g(v))

and the result follows by the definition of c′ in (13).

Lemma 9. The weight of the max-cut satisfies
∑

e∈E′

c′(e) ≥
1

2
F (V ) (18)

Proof: Since E′ is generated using the algorithm of [13],
it is guaranteed that

∑

e∈E′

c′(e) ≥
1

2

∑

e∈E

c′(e) (19)

The result then follows from Lemma 8.
Note that Algorithm 1 uses a max-cut algorithm which

guarantees 1/2 of sum of edge weights [13]. It is tempting
to think that this result could be tightened by using the
celebrated 0.878 approximation algorithm of [8]. However,
this is unsuitable here since it guarantees 0.878 of the true
max-cut, which may be less than 1/2 of the sum of the edge
weights.

V. EVALUATING f(v) AND g(v)

An algorithm will now be presented which shows how
to compute f(v) and g(v) and determine that the objective
function is unbounded. Let

hi(x) = (d− i + 1)xW (x). (20)
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Algorithm 2 Compute f(v) and g(v)

For vertex v ∈ V and set Ev of edges incident on v:

1: for k ∈ Ev do
2: Compute bk /* Polynomial time by assumption 6 */
3: end for
4: Sort Ev = {e1, e2, ..., ed}, such that b1 ≤ b2 ≤ ... ≤ bd

5: for i← 1 to d do
6: /* Find max revenue when {ei, ..., ed} do not peer */
7: if bi = −∞ then
8: continue for next i.
9: else if bi ∈ R

+
then

10: xi ← argmaxx∈Ii
xW (x)

11: /* Polynomial time by Lemma 10 */
12: fi ← hi(xi)
13: else if bi =∞ then
14: if B = supx xW (x) <∞ then
15: if x∗W (x∗) = B for some local maximum x∗

then
16: fi ← hi(x∗), xi ← x∗

17: else /* xW (x)→ B as x→∞ by Lemma 11 */
18: fi ← (d− i + 1)B, xi ←∞
19: end if
20: else /* hi(x) is unbounded, so opt(G) =∞ */
21: fi ←∞, xi ←∞
22: end if
23: end if
24: end for
25: f(v) = max{fi|1 ≤ i ≤ d}
26: g(v) = xj , where j =min{i|fi = f(v)}

Algorithm 2 computes f(v) and g(v) in polynomial time using
the following results, proved in the appendix.

Lemma 10. For all 0 ≤ a < b, xW (x) has a maximum on
Ik = [a, b], whose location can be found in polynomial time.

Lemma 11. If B = supx xW (x) < ∞ and xW (x) < B for
all x ∈ R

+
, then xW (x)→ B as x→∞.

VI. BOUNDEDNESS OF PRICE AND REVENUE

It is important to know under what conditions on φ, W and
c the problem is well defined, and under what conditions the
output of Algorithms 1 and 2 is well defined.

Theorem 12. Let µ be the price function computed by Algo-
rithm 1 and f(v), g(v) be the values computed by Algorithm 2.
Then

i f(v) =∞ if and only if xW (x) is unbounded and bd =∞
ii g(v) =∞ only if bd =∞

iii opt(G) =∞ if and only if f(v) =∞ for some v
iv µ(v) =∞ only if g(v) =∞
v ν(µ) =∞ if and only if opt(G) =∞.

Proof: By Algorithm 2, f(v) = ∞ if and only if for
some i, both hi(x) is unbounded and bi = ∞. These hold if
and only if xW (x) is unbounded and bd = ∞, establishing
claim (i).

Claim (ii) holds since g(v) = ∞ implies that xi = ∞ for
some i, which implies bd =∞.

Note also that F (V ) =
∑

v∈V f(v) = ∞ if and only if
f(v) =∞ for some v. Claim (iii) follows since supv f(v) ≤
opt(G) ≤ F (V ).

Claim (iv) holds since µ(v) is either 0 or g(v) by (11).
By claim (iii) and (8), opt(G) =∞ if and only if F (V ) =

∞. Thus Theorem 7 establishes the “if” of claim (v), and
Lemma 5 establishes the “only if”.

Let µ∗ be the optimal price function and µ′ be that obtained
by Algorithm 1. We now show that the finiteness of µ∗

does not imply that of µ′, nor the converse. If multiple price
functions achieve opt(G), then µ∗ is selected to be one which
assigns ∞ to the minimum number of nodes.

Let

φ(a, b) = min(a + b, 4 + ε) (21)

xW (x) =

{

x x ≤ 4
4 + ε(1− e−(x−4)) x > 4

(22)

V = {a, b, c, d} (23)

E = {(a, b), (b, c), (c, d)} (24)

Note that edges with cost at least 4+ε yield revenue however
high the price charged to their nodes is, even though the extra
revenue by charging more than 4 is at most ε. Manipulating
just the cost function c yields examples where Algorithm 1
assigns infinite price to a node but the optimum does not, and
vice versa. Note that for any c, the max-cut of G above is
{{a, b} , {c, d}}.

Example 1. There is an input where µ∗(v) is finite for all v,
but µ′(v) is infinite for some v.

Proof: Let c(a, b) = 2, c(b, c) = 4 + ε, and c(c, d) = 2.
Then opt(G) = 8 with µ∗(a) = µ∗(d) = 0, µ∗(b) = µ∗(c) =
2. However, f(b) = f(c) = 4+ε with g(b) = g(c) =∞. Since
b and c are in different partitions in any 1/2 approximation to
the max-cut, Algorithm 1 yields µ′(b) =∞ or µ′(c) =∞.

Example 2. There is an input where µ′(v) is finite for all v,
but µ∗(v) is infinite for some v.

Proof: Let c(a, b) = 4 + ε, c(b, c) = 4, and c(c, d) = 2.
Then opt(G) = 10+ε with µ∗(a) =∞, µ∗(b) = 4, µ∗(c) = 0,
µ∗(d) = 2. However, f(b) = 8, f(d) = 2 from g(b) = 4,
g(d) = 2, and their sum exceeds f(a) + f(c) = 8 + ε.
Therefore, Algorithm 1 chooses b, d, which means µ′(a) =
µ′(c) = 0, µ′(b) = 4, µ′(d) = 2, which are all finite.

VII. CONCLUSION

The problem of a tier-1 ISP finding prices to charge its
customers to maximize its revenue is NP-hard and APX-hard
when customers may form peering arrangements. However,
this paper proposed an algorithm which yields a 1/4 approxi-
mation for a class of peering criteria. The algorithm is based
on an existing weighted max-cut algorithm. Conditions were
found under which a given instance of this model yields
meaningful (finite) revenue and prices.
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APPENDIX

Proof (Lemma 1): Let φ2(a) = φ(0, a), which is left-
continuous. Let I be the set of solutions of (3). If I is empty,
the result holds. Otherwise, 0 ∈ I since φ2(0) ≤ φ2(a) for
all a ∈ R

+
. Furthermore, φ2(b) ≤ K ⇒ φ2(a) ≤ K for

a ≤ b, which implies I is connected and hence an interval.
Since φ(a, 0) is defined only for a ≥ 0, that implies either I is
R

+
, or for some b ∈ R

+
it is [0, b] or [0, b). However, the last

cannot hold since it implies that φ2(b) = K ′ > K whence, by
left-continuity, a left-neighborhood of b would not be in I .

Proof (Lemma 2): First, consider the maximum possible
revenue from edges (x, a) and (a, e). If µ(a) > 1, then there’s
no revenue from (a, e), so the max revenue is 2. However, if
µ(a) ≤ 1, the revenue is at most 1 from (a, e) and µ(a) +
µ(x) ≤ 1+µ(x) for (x, a). Thus, the revenue from these two
edges is at most 2 + µ(x).

Next consider the revenue from the other edges. If no
revenue is achieved from the edge (x, b), this is bounded by 6.
Otherwise, µ(b) ≤ 1− µ(x).

By symmetry, the maximum revenue from the edges inci-
dent on c is equal to that of those incident on d, and can be
bounded as follows. Using the same arguments as applied to
node a, each of these is at most 2 + µ(b) ≤ 3− µ(x).

So in this case, the total revenue from the five edges under
consideration is at most 1 from (x, b), plus 2(3− µ(x)) from
the others, for a total of 7− 2µ(x).

Thus, the maximum revenue from these other edges is at
most max(6, 7 − 2µ(x)). Adding in the maximum revenue
from (x, a) and (a, e) of 2 + µ(x), we have a maximum total
revenue of max(8 + µ(x), 9− µ(x)).

Proof (Lemma 3): Since 0 ≤ µ(x) ≤ 1/2, the maximum
revenue from the d(x) constructions is d(x)(9−µ(x)). More-
over x contributes at most d(x)µ(x) revenue to the original
edges to which it is adjacent. Thus, the combined revenue
from x and the nodes in constructions attached to it is at most
9d(x). This is also obtained by setting µ(x) = 0. Since setting
µ(x) = 0 maximizes the revenue obtainable by the nodes
connected to x by original edges, the revenue obtained with
µ(x) = 0 is at least as much as obtained with the original
µ(x).

Proof (Lemma 4): If µ(x) ∈ (1/2, 1), the revenue from
the d(x) constructions is d(x)(8 + µ(x)). If we increase µ(x)
to 1, this too will increase. Any node connected to x by an
original edge either has weight 0 or weight greater than 1/2. If
the weight is 0, increasing µ(x) will increase the revenue from
that edge. Otherwise, the total cost of the two nodes already
exceeds the weight of the edge, and the revenue is unchanged
at 0. Thus, increasing µ(x) increases the total revenue. Since
the revenue is left-continuous in µ(x), the maximum revenue
is obtained by replacing µ(x) = 1.

Proof (Lemma 10): Because W (x) is left continuous
and decreasing, and a ≥ 0 xW (x) is upper semi-continuous
on [a, b]. Thus, the extreme value theorem implies that it is

bounded above and attains its supremum. The maximum must
occur either at a local maximum of xW (x), of which there
are a constant (finite) number or at a or b. Thus, it sufficies
to evaluate xW (x) at those points.

Proof (Lemma 11): The proof is by showing that xW (x)
eventually becomes monotonic increasing under the hypothe-
ses. By assumption, xW (x) has a finite number of local
maxima. Let x1 be the rightmost point where a local maximum
occurs. Since [0, x1] is closed, xW (x) has a global maximum
B1 on this interval, by Lemma 10, with B1 < B by hypothesis.
Since B is the least upper bound, for any 0 < ε < B − B1,
there exists x2 > x1 such that x2W (x2) > B − ε. If there
is x3 ∈ (x1, x2) such that x3W (x3) > x2W (x2), xW (x)
has the global maximum on [x1, x2] by Lemma 10. Since
x3W (x3) > x2W (x2) > x1W (x1), the global maximum does
not occur at boundaries, which implies the existence of another
local maximum. This is contradiction, so x2W (x2) ≥ xW (x)
for any x < x2. Then for any x > x2, xW (x) ≥ x2Wx2 >
B − ε, since if there is some x4 such that x2 < x4 and
x2W (x2) > x4W (x4), and Lemma 10 guarantees the exis-
tence of a local maximum on [x2, x4]. That contradicts the
choice of x1 as the rightmost local maximum.
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