
Min-Min Times in Peer-to-Peer File Sharing Networks

G. Matthew Ezovski, Animashree Anandkumar, and A. Kevin Tang
School of Electrical and Computer Engineering

Cornell University
Ithaca, NY 14853

{gme8,aa332,at422}@cornell.edu

Lachlan L.H. Andrew
Computer Science

California Institute of Technology
Pasadena, CA 91125

lachlan@caltech.edu

Abstract— Peer-to-peer (P2P) file distribution is a scalable
way to disseminate content to a wide audience. This paper
presents an algorithm by which download times are sequentially
minimized; that is, the first peer’s download time is minimized,
and subsequent peers’ times are minimized conditional on
their predecessors’ times being minimized. This objective gives
robustness to the file distribution in the case that the network
may be partitioned. It is also an important step towards the
natural objective of minimizing the average download time,
which is made challenging by the combinatorial structure of the
problem. This optimality result not only provides fundamental
insight to scheduling in such P2P systems, but also can serve
as a benchmark to evaluate practical algorithms and illustrate
the scalability of P2P networks.

I. INTRODUCTION

Peer-to-peer (P2P) networking utilities are among the
most frequently used applications on the Internet and have
often been observed to consume large fractions of available
Internet bandwidth. In fact, studies [19], [20] have shown
that upwards of 45% of Internet traffic can be attributed to
P2P applications. They have also generated a great deal of
research activity in the last couple of years; see e.g., [3]–[6],
[8], [12], [20], [22], [24] and the references therein.

The fundamental advantage of peer-to-peer architectures
compared with classic client-server architectures is their
scalability. As every peer is both a client and a server at
the same time, a P2P network can potentially distribute data
to a large number of peers in a much shorter period of time.
This paper considers a classical situation, in which a file is to
be distributed as quickly as possible to a known set of peers.
This can be used as a basic model for many scenarios such as
distributing a software patch to an existing subscriber base. It
is also a standard model used to illustrate the scalability of
P2P networks [9], in which one can calculate the amount
of time needed to distribute a file of certain size to all
peers under both P2P and client-server architectures. The
calculation is typically done using the last finish time metric,
which is defined to be the time when the last peer gets the
complete file. Another natural fundamental metric is average
finish time, which is the sum of finish times of all peers
divided by the number of peers. However, minimizing it
brings significantly more analytical challenges and this paper
is devoted to the intermediate step of finding an explicit
scheduling procedure to sequentially minimize the download
times.

Several papers have explored performance of P2P net-
works [1], [8], [13], [15]–[17], [21], [23], [25]. Several of
these deal with optimal scheduling algorithms. For example,
Mundinger et al. [16], [17] characterize the problem of file
sharing in networks with heterogeneous upload capacities
and discrete file divisions. They also explore initial results for
cases where the file to be shared can be divided into infinitely
small pieces. Another example is [8] which discusses optimal
strategies for file distribution when multiple classes of ser-
vice exist. Recently, Mehyar et al. [15] extended Mundinger’s
upload-constrained result and look at average finish time
problems. They provide solutions for all cases in which
the number of nodes is three or less, as well as solutions
to a special class of larger cases. Building upon all this
work while identifying new inductive structures and using
new techniques such as water-filling, this paper provides a
complete explicit algorithm to minimize average finish time
with an arbitrary number of peers.

The main difficulty of the design of optimal file-
distribution algorithms is the need to keep track of data
identity. In other words, a node must receive a whole file,
rather than just an amount of data equal to the file size
which could include much duplication. This complicates the
problem of how a node should choose to send a piece
of data from “who most needs this amount of data?” to
“who most needs this particular piece of data?” Ignoring
this constraint significantly reduces the complexity of the
problem [18] but results in unrealistic results. In general,
how the overall network benefits from the decision to send a
particular piece of data to a particular node depends on the
optimality criterion, as well as the physical constraints of the
nodes involved.

This paper is a step towards addressing the problem of
designing explicit file dissemination scheduling algorithms
which provably minimize average finish time. To overcome
the above mentioned difficulty, our overall strategy is to
use an intermediate step by introducing another concept
(min-min time), which has an inherent inductive structure
that facilitates algorithm design. This sub-problem is of
independent interest when there is a chance that the network
will be partitioned by network failures; by minimizing the
time until another node has an entire copy of the file,
this schedule improves the probability that all nodes will
eventually be able to recieve the complete file [11].

The paper is organized as follows. Section II reviews the

Forty-Sixth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 23-26, 2008

FrA4.2

978-1-4244-2926-4/08/$25.00 ©2008 IEEE 1487

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:10 from IEEE Xplore. Restrictions apply.

solution that achieves the optimal last finish time and then
formulates the min-min and average finish time problems.
After that, we present the main result in section III, where
an explicit solution to achieve the optimal min-min times
is provided, along with a water-filling interpretation. We
conclude in section IV and discuss some possible interesting
extensions.

II. PROBLEM FORMULATION

A. Model and notation

Consider a single node, referred to as the server, which
needs to distribute a file of size |F | to N peer nodes. The
system is assumed to be churn-free, in that peers neither
arrive nor leave. We assume that there are no topological
constraints; each node, including the server, can communi-
cate with each other node with no bottlenecks other than
the nodes’ upload constraints. Finally, the file can be broken
into infinitesimally small pieces; thus, there is no forwarding
delay, and a node can immediately relay what it receives to
another node.

This paper uses the following notation:

• |F |: size of the file
• Fi(t): portion of the file that peer i has at time t
• |Fi(t)|: size of that portion
• N : total number of peer nodes (not including the server)
• C0: server upload capacity
• Ci: node i upload capacity C1 ≥ C2 ≥ . . . ≥ CN

• C = C0 +
∑N

i=1
Ci: total system capacity

• Rij(t, t + τ): data sent from node i to node j in the
interval (t, t + τ).

• rij(t) = d
dt
|Rij(0, t)|: rate at which node i sends to

node j at time t
• Finish time ti for peer i: the smallest t with |Fi(t)| =

|F |
• |F |/C0 – bottleneck time: the time it takes for one node

to directly receive the entire file from the server, and a
lower bound on the time for all nodes to receive the file

We consider an upload-constrained scenario in which each
node can receive information with unlimited data rate, but the

Fig. 1. A diagram showing the constraints on communication between
nodes in a 3-node plus server configuration. The dashed lines represent the
sum rate constraints

∑N
j=0

rij(t) ≤ Ci ∀i.

sum rate of any uploads from each node must be no greater
than that node’s given upload capacity. Mathematically,

N∑
j=1

rij(t) ≤ Ci ∀i, t.

The “data identity” constraint can now be expressed as
• Rij(t, t + τ) ⊆ Fi(t + τ) (received data constraint; can

only send data already received)
• Rij(t, t + τ) ∩ Fj(t) = ∅ (only receive new data)
• Rij(t, t + τ)∩Rkj(t, t + τ) = ∅ ∀i �= k (only receive

non-duplicate data)
• rii(t) = 0 (a node can’t send data to itself)
• Fj(t) =

⋃N

i=0
Rij(0, t), whence

•
d
dt
|Fj(t)| =

∑N
i=0

rij(t) ∀j, t.

B. Average Finish Time

We first briefly review the problem of minimizing the last
finish time (the time for all nodes in the network to receive
the entire file). Clearly, this time, T ∗

L, can’t be less than
|F |/C0, which is the time it takes for the server to send
the file to one recipient, or less than the time it would take
to share the file with all nodes if every node in the network
was fully utilized for all time, N |F |/C. Formally,

T ∗
L ≥ max(|F |/C0, N |F |/C) (1)

Mundinger et al. [16] show that this lower bound is tight by
looking at the following two possibilities.

1) Case 1 – Fast Server: When C0 ≥
∑N

i=1
Ci/(N − 1),

each peer is assigned server capacity of rate Ci/(N−1), and
each peer can then re-upload to the remaining N − 1 peers
at rate Ci/(N − 1). The excess capacity is shared equally.
This results in each peer receiving total capacity C/N on
the time interval (0, T ∗

L).
2) Case 2 – Slow Server: When C0 ≤

∑N

i=1
Ci/(N −1),

the server can allocate to each peer i an upload rate of

CiC0∑N

j=1
Cj

which does not exceed that peer’s upload capacity. Each node
can forward on what it receives to every other peer; thus,
each peer effectively receives at rate C0 from the server.

It turns out that forcing all the nodes to finish receiving
the file at T ∗

L might artificially limit the performance of
the network by other metrics. In other words, by allowing
small increases in TL > T ∗

L, we can potentially substantially
decrease the average finish time, TA, and thus improve the
overall performance of the network. This is illustrated with
the following simple numerical example.

Example 1: Potential improvement over minimizing last
finish time.

Let N = 4, with C0 = 12, C1 = 6, C2 = 4, C3 = 2, C4 =
1, and |F | = 144. We calculate the optimal last finish time
T ∗

L and the optimal average finish time, TA. The results are
summarized in Fig. 2. By allowing a very small upward shift
in finish time t4, substantial improvements in other finish
times can be achieved. For example, with the selected set

FrA4.2

1488

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:10 from IEEE Xplore. Restrictions apply.

of upload capacities and specified file size, an average finish
time decrease of 28.9% corresponds to a 0.91% increase in
last finish time.

It is now clear that the average finish time is an important
performance metric. Formally, we have

TA =

∑N

i=1
ti

N
. (2)

In general, to minimize the average finish time, we want
to maximize the rate at which information is exchanged in
the network for all times, and attempt to minimize the finish
times of nodes with high capacity as quickly as possible.
However, due to the combinatorial structure of the problem
and especially the data identity constraint, it is hard even
to write down the optimization problem for general case.
The following example illustrates this difficulty with a very
simple 2-peer network.

Example 2: Direct minimizing average finish time for a two-
peer network.

Consider the 2-peer case, we can set up a linear program
which optimizes the average finish time by adjusting the sizes
of the blocks of data the nodes send to each other in each
time interval within the constraints of the problem.

min
R01,R02,R12

t1 + t2

subject to t1 = |R01(0, t1)|/(λC0)

t2 = t1 + (|R01(0, t1)| − |R12(0, t1)|

−
|R01(0, t1) ∩ R02(0, t1)|)

(C1 + C0)

λ = |R01(0, t1)|/(|R01(0, t1)| + |R02(0, t1)|)

|R01(0, t1) ∪ R02(0, t1)| = |F |

|R21(0, t1)| ≤ C2t1

|R12(0, t1)| ≤ C1t1

|R01(0, t1)| + |R02(0, t1)| = C0t1

|R21(0, t1)| = |R02(0, t1)\R01(0, t1)|

|R12(0, t1)| ≤ |R01(0, t1)|

Here the data identity constraint forces us to keep track of
the sizes of many distinct pieces of data even when N = 2

1 2 3 4
0

5

10

15

20

25

Node index (i)

F
in

is
h

tim
e

T∗L

TA

Fig. 2. Results for the N = 4 case, with C0 = 12, C1 = 6, C2 = 4,
C3 = 2, C4 = 1, and |F | = 144. TA is the associated average finish time,
and T ∗

L
is the optimal last finish time.

(the last six constraints in the above optimization). In general,
similar optimizations can be written for larger N , but the
number of variables and constraints grows exponentially with
the size of the problem. This difficulty motivates us to look
for inductive structures which allows us not to optimize all
data pieces at the same time. The min-min times that will
be introduced in section II-C serve this role.

C. Min-Min Times

The min-min time sequentially minimizes the individual
finish times. Besides its relation to the optimal average finish
time, it is also of independent interest, since minimizing the
completion times of early flows improves the robustness to
disconnection of the network [11].

Formally, let tsi be the finish time of peer i under rate
scheme s.

• Let S1 be the set of schemes which minimize time t1.
• Let Si+1 be the set of schemes which minimize the

i + 1st finish time, given that all previous finish times
are minimized.

A scheme in s ∈ SN is said to achieve min-min times, and
the times tsi are called the min-min times.

The inductive structure imposed by sequential minimiza-
tion allows us to find an explicit schedule to achieve min-
min times. This will be shown in section III. Before delving
into our main results, we introduce the useful concept of
multiplicity [15], which will be used to classify problems.
Define multiplicity, M , as the maximum number of nodes
which can receive a file with size |F | in bottleneck time
|F |/C0. The following lemma is proved in [14].

Lemma 1: Let M be the largest value of K such that there
exists a schedule with

Fi

(
|F |

C0

)
= F, ∀i ≤ K.

Then M is the largest integer such that

C0 ≤
M∑
i=1

Ci

M − 1
+

N∑
M+1

Ci

M
. (3)

III. SCHEDULING TO ACHIEVE MIN-MIN TIMES

When the multiplicity M = N , all nodes can finish by
|F |/C0 using the schedule reviewed in section II-B. We now
study optimal schedules for the remaining cases (M < N).

The main difficulty in achieving min-min times is when
we try to minimize ti, how to use the extra capacities of
some peers. It will be shown that they only need to minimize
ti+1. In other words, scheduling for more than one step
ahead is not useful. Another difficulty is how to schedule all
peers to minimize ti given they all have different capacities
Ci. A “water filling” technique will be used to decide
optimal scheduling for all peers. The potential contributions
of finished nodes to the next finishing node can be thought
of as “water”, and the data scheduled to be shared by other
nodes forms an uneven floor.

This is illustrated in Fig. 3(a). During the interval
(ti−1, ti), the jth column has width Cj , and area Fj(t1) \

FrA4.2

1489

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:10 from IEEE Xplore. Restrictions apply.

Fi(ti−1). Thus, the depth is the minimum time it would take
for node j to upload all of the data it could to node i.

Note that the sets Fj(t1) \ Fi(ti−1) are disjoint for j >
i. (This will be guaranteed by our scheduling algorithm.)
Thus, the region in columns j > i is exactly the data which
must be transmitted to node i in the interval (ti−1, ti), and
the question is who should transmit what to minimize this
interval. If the server and completed nodes did not send any
further data to node i, the maximum depth is the minimum
possible value of ti−ti−1 (column N in Fig. 3). The optimal
way is to let nodes 0 ≤ j < i send the shaded data in
Fig. 3(b), equalizing the finish times ti − ti−1 = |Fj(t1) \
Fi(ti−1)|/Cj .

The only remaining question is what node i should do
when others are uploading data to it. Due to the “data
identity” constraint, rii(t) = 0, and therefore it cannot
transfer data to itself. The optimal way is to use node i’s
capacity to send data to i + 1. The specific data to be sent
will be determined by “helium-filling” for the following time
interval, (ti, ti+1) as follows: Data Uij , sent at rate γij, is
chosen such that it would have been in column j at time ti
had it not been sent to node i + 1 in interval (ti−1, ti), but
it instead “comes off the top” of the columns, in proportion
to their capacities (Fig. 3(b)). (Note that Ui0 corresponds
to data which would have been sent by the server on the
interval (ti, ti+1), and thus is represented by “water,” but
is instead sent by node i on the previous interval.) In later
proofs, we will provide specialized water-filling figures for
different cases (Figures 4 and 5).

The actual scheduling algorithm is stated in Algorithm 1.
It uses C∗

0 , which is an upper bound on the range of C0, for
a particular given multiplicity M , for which exactly one set
of optimal values Fi(|F |/C0), ∀i > M +1, is able to achieve
first M + 1 min-min times. Formally, it is the solution to

M(C∗
0 − CM+1

M
−

∑M

i=1

Ci

M−1
) + C∗

0

C∗
0 +

∑M

i=1
Ci

(4)

=
(M + 1)

(
C∗

0 − CM+1

M
−

∑M

i=1

Ci

M−1

)
∑N

i=M+2
Ci

.

When C0 > C∗
0 , there could be multiple sets of Fi(|F |/C0),

∀i > M + 1 that all achieve the first M + 1 min-min times.
Then Algorithm 1 also uses the following linear program to
select the only set of Fi(|F |/C0) values which allows all
min-min times to be achieved.

max
N∑

i=M+2

(N − i)λi (5)

s.t.

Ci

M + 1
< λi ≤

Ci

M
∀i ≥ M + 2

N∑
i=M+2

λi = C0 −
CM+1

M
−

M∑
i=1

Ci

M − 1

(M + 1)λi − Ci

Ci

≥

1

M−1

∑M

i=1
Ci + (M + 1)

∑N

i=M+2
λi −

∑N

i=M+2
Ci

C − CM+1

The following theorem characterizes Algorithm 1.
Theorem 1: Algorithm 1 achieves min-min times.

Proof: We state the proof for M = 1 here; the proof
for 1 < M < N can be found in Appendix I.

Note first that Algorithm 1 is feasible. In particular, until
time ti, all nodes j > i have disjoint data, while nodes j < i
have all data. Similarly, Ui,j can be forwarded by i as it is
received from node j, since γi,j ≤ Cj , allowing the three
claimed conditions to be satisfied.

It remains to establish optimality. Let ti denote the min-
min finish time of node i. The proof of optimality first
establishes lower bounds on t1 and t2, and shows that
Algorithm 1 achieves those times, and that the λi are the
unique values which can achieve that. It then inductively
shows that subsequent times are minimized.

Let C′ =
∑N

i=3
Ci. This can be thought of as the capacity

of a “virtual node” consisting of nodes 3, . . . , N . As in [15],
the amount of information that can go into nodes 1 and 2 on
(0, t2) is bounded above as

F1(t2) + F2(t2) ≤ (C0 + C1)t2 + C2t1 +
C′

2
t2. (7)

The first terms shows that the server and node 1 can con-
tribute on the whole time interval. The second term reflects
node 2’s transmission to node 1 on (0, t1); on (t1, t2), it
cannot contribute, since it cannot upload to itself, and on
(t1, t2) node 1 has already received the whole file. The term
t2C

′/2 arises as follows. Node i ≥ 3 can send information

(a) (b)

Fig. 3. Water filling. The width of column j is capacity Cj , and the
depth is the time to transmit Fj(t1) \ Fi(ti−1) at rate Cj . In (a), node
N takes longer to transmit its information. In (b), the server has water-
filled, decreasing the time for all to complete transmission to node i, and
allowing full utilization for the interval. The helium-filling by (ti−ti−1)γij

in interval (ti−1, ti) reduces the heights of all columns equally.

FrA4.2

1490

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:10 from IEEE Xplore. Restrictions apply.

Algorithm 1 Optimal scheduling to achieve min-min times
If M=1

• On (0, t1), let r0i = λi, ri1 = min(λi, Ci), ri2 = Ci −
min(λi, Ci), where λi satisfy

N∑
i=1

λi = C0 λ2 = C2

2λi

Ci

=
C0 + λ1

C0 + C1

, ∀i > 2.

(6)
• On (ti−1, ti), 2 ≤ i < N :

rji(t) = Cj ∀j �= i, with Rji(ti−1, ti) ∩
Rki(ti−1, ti) = ∅ and (Rji(ti−1, ti) ∪ Rki(ti−1, ti)) ∩
Fi(ti−1) = ∅ for all k �= j. Node i sends data Uij

(helium) to node i + 1 with ri,i+1(t) = Ci such that

1) Uij ∩ Uik = ∅ for all k �= j (data is disjoint)
2) Uij ∈ Fj(ti−1) (data is held at ti−1 by node j)
3) for all j ≥ 0, j �= i + 1,

|Uij |

ti − ti−1

= γij =
Cj(∑N

k=0,k �=i+1
Ck

)Ci.

Else

• If M = N − 1 or C0 ≤ C∗
0 , given by (4),

Then let λi solve

N∑
i=1

λi = C0

λi

Ci

=

⎧⎨
⎩

λ1/C1 if i ≤ M
1/M if i = M + 1
λM+2/CM+2 if i ≥ M + 2

λM+2

CM+2

=
M +

∑M

i=1
λi + C0

(M + 1)
∑M

i=0
Ci

Else let λi = Ci/(M − 1), ∀i ≤ M , and let λi for
i ≥ M + 2 satisfy the LP (5).
EndIf

• On (0, tM):
r0i = λi, ∀i; rij(t) = λi for j ≤ M, j �= i; rij(t) = 0
for j > M + 1; ri,M+1(t) = Ci −

∑
j �=M+1

rij(t).
• On (ti−1, ti) for M + 1 ≤ i < N :

rji(t) = Cj for j �= i, such that

|R0i(ti−1, ti) ∩ Fj(ti−1)| = μji(ti − ti−1),

for j < i, where

μj,M+1 =
C0

(
∑N

k=1
Ck) − CM+1

Cj , ∀j �= M + 1,

μj,i = λit1 − Ci

(C0 − λi)t1
C0 + C − Ci

, ∀j �= i �= M + 1.

Also ri,i+1(t) = Ci, such that |Ri,i+1(ti−1, ti) ∩
Fj(ti−1)| = γji where

γji =
CiCj

(
∑N

k=1
Ck) − Ci+1

, ∀j �= i + 1

EndIf
On (tN−1, tN), riN (t) = Ci for i < N , and rik(t) = 0 ∀k.

Fig. 4. A visual depiction of the waterfilling argument for the case when
M = 1. Note that the bottoms of columns M + 2, . . . , N are level.

which it has received up to time t2 to both nodes 1 and 2, but
it cannot exceed its own upload capacity, and cannot upload
to t1 data which it does not have until t1. Thus, its uploads to
1 and 2 are bounded above by min {Cit2, Fi(t1) + Fi(t2)}.
However, the data obtained by node i from the server comes
at the expense of data that the server could have sent to node
1 or 2 directly, giving a net contribution of

min {Cit2, Fi(t1) + Fi(t2)} − Fi(t2). (8)

Note that

min {Cit2, Fi(t1) + Fi(t2)} ≤
Cit2 + 2Fi(t2)

2
(9)

with equality only if

2Fi(t1) = 2Fi(t2) = Cit2. (10)

Substituting (9) into (8) and summing over i ≥ 3 gives
C′T2/2, establishing (7).

A lower bound on t2 results from substituting F1(t2) +
F2(t2) = 2F into (7), and substituting the known value t1 =
|F |/C0, giving

t2 ≥
2|F | − C2|F |/C0

C0 + C1 + C′/2
. (11)

This is achieved by Algorithm 1.
To see that the choice of λi is the only one which achieves

t2, note that (10) is a necessary condition for all i ≥ 3.
Dividing by Cit1 and substituting λi = |Fi(t1)|/t1 gives

2λi

Ci

=
t2
t1

(12)

for all i ≥ 3. Similarly, the data known only to node 1 and the
server at t1, of which there is an amount (λ1 −C1)t1, must
also be delivered at rate C1 + C0 in time t2 − t1. Dividing
by t1 and adding 1 gives

λ1 + C0

C0 + C1

=
t2
t1

. (13)

FrA4.2

1491

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:10 from IEEE Xplore. Restrictions apply.

Combining (12) and (13) shows that λi, i > 2, must
satisfy (6) to achieve t2. Thus, Algorithm 1 achieves t1 and
t2, and (6) are necessary for any scheme which does.

Given that (6) must hold in order to achieve t1 and t2, it
can be shown by induction on i that: (a) node i receives no
data in the interval (t1, ti−2), and (b) ti is tightly bounded
below by

ti ≥
|F | − λit1 − Ci−1(ti−1 − ti−2)

C − Ci

+ ti−1. (14)

The term λit1 is the amount of data received by node i
from the server during the first interval, (0, t1), and the term
Ci−1(ti−1− ti−2) is the data received from node i−1 in the
interval (ti−2 − ti−1). Minimizing the latter term requires
that node i + 1 receives no data in the interval (t1, ti−1).
Algorithm 1 satisfies that and hence establishes the inductive
step.

IV. CONCLUSION

This paper has considered the transmission scheduling
issue in an upload-constrained peer-to-peer file distribution
system. Under the assumptions that the network is static and
that the file is infinitely divisible, an explicit transmission
scheduling algorithm has been proposed which provably min-
imizes the average finish time for all peers. New inductive
concepts like min-min times and novel techniques such as
water-filling are used in obtaining the result.

There are a number of related directions in which to
extend this work. First, it would be useful to investigate
how the optimal results change when download constraints
are introduced. Second, understanding the behavior of our
optimal scheduling when nodes dynamically enter and leave
upon completion [5], [24] would be necessary before its
application in practice. Another interesting direction is to
look at similar optimality results under peer-to-peer stream-
ing [4], [6] context. Finally, this paper only gives the best
possible centralized solution without any coding. Exploring
corresponding distributed solutions or the effect of tools like
network coding [2], [7], [10] can be potentially fruitful.

V. ACKNOWLEDGEMENTS

This research was performed under an appointment to the
U.S. Department of Homeland Security (DHS) Scholarship
and Fellowship Program, administered by the Oak Ridge
Institute for Science and Education (ORISE) through an in-
teragency agreement between the U.S. Department of Energy
(DOE) and DHS. ORISE is managed by Oak Ridge Associ-
ated Universities (ORAU) under DOE contract number DE-
AC05-06OR23100. All opinions expressed in this paper are
the author’s and do not necessarily reflect the policies and
views of DHS, DOE, or ORAU/ORISE.

APPENDIX I
PROOF OF THEOREM 1 WITH 1 < M < N

Proof: The proof begins by establishing conditions for
appropriate λ values. It then finds the exact values of λ and
min-min times t1, . . . , tM+1, and applies the water/helium-
filling concept to establish all remaining min-min times.

In order to achieve minimum t1 . . . tM , each node must
relay whatever it receives from the server on (0, tM) to nodes
i ∈ {1, . . . , M}. Thus, an upper bound on what each node
can receive from the server on (0, tM) is

λi ≤
Ci

M − 1
∀i ≤ M (15)

λi ≤
Ci

M
∀i > M (16)

Since Algorithm 1 keeps λi values in these ranges,
and relays all server streams to nodes {1, . . . , M}, times
t1, . . . , tM = |F |/C0 are minimized.

To establish a lower bound on tM+1, consider first how
much data node M + 1 can receive on (0, tM), from the
server, nodes {1, . . . , M}, itself, and nodes {M +2, . . . , N}:

|R0,M+1(0, tM)| = λM+1tM∣∣∣∣∣
M⋃
i=1

Ri,M+1(0, tM)

∣∣∣∣∣ ≤
(

M∑
i=1

Ci − (M − 1)

M∑
i=1

λi

)
tM

|RM+1,M+1(0, tM)| = 0∣∣∣∣∣
N⋃

i=M+2

Ri,M+1(0, tM)

∣∣∣∣∣ ≤
(

N∑
i=M+2

Ci − M

N∑
i=M+2

λi

)
tM

On (tM , tM+1), each node i ∈ {0, 1, . . . , M} could send
to M + 1 with rate ri,M+1(t) = Ci, giving∣∣∣∣∣

M⋃
i=0

Ri,M+1(tM , tM+1)

∣∣∣∣∣ ≤ (tM+1 − tM)

M∑
i=0

Ci. (17)

The contribution
⋃N

i=M+2
Ri,M+1(tM , tM+1) of nodes

{M+2, . . . , N} is limited both by their sum upload capacity,∑N

i=M+2
Ci, and by the amount of information they received

on (0, tM). Thus

∣∣∣∣
N⋃

i=M+2

Ri,M+1(tM , tM+1)

∣∣∣∣ ≤ min

(
N∑

i=M+2

Ci(tM+1 − tM),

N∑
i=M+2

λit1 −

[
N∑

i=M+2

Ci −
N∑

i=M+2

λiM

]
tM

)
. (18)

These combine to form the upper bound on the amount
of information which can be received by node M + 1 by
time tM+1 shown in (19). Also note that by definition,
FM+1(tM+1) = F .

Considering each term of the min in (19) separately, and
solving for tM+1 yields two lower bounds on tM+1 in terms
of

∑M
i=1

λi, λM+1, and
∑N

i=M+2
λi.

When
∑N

i=M+2
CitM+1 ≤

∑N

i=M+2
(M + 1)λit1,

tM+1(C − CM+1) ≥ tM (M − 1)
M∑
i=1

λi − tMλM+1 (20)

+ tMC0 + tMM

N∑
i=M+2

λi + |F |

FrA4.2

1492

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:10 from IEEE Xplore. Restrictions apply.

|FM+1(tM+1)| ≤

(
M∑
i=1

Ci − (M − 1)

M∑
i=1

λi

)
tM − M

N∑
i=M+2

λitM + λM+1tM (19)

+(tM+1 − tM)

(
C0 +

M∑
i=1

Ci

)
+ min

(
N∑

i=M+2

CitM+1,

N∑
i=M+2

(M + 1)λit1

)

and in the converse case

tM+1

M∑
i=0

Ci ≥ tM (M − 1)

M∑
i=1

λi − tMλM+1 (21)

+ tMC0 − tM

N∑
i=M+2

λi + |F |.

Note that in both cases, the lower bound is decreasing in
λM+1, and so is minimized by maximizing λM+1 by setting

λM+1 =
CM+1

M
. (22)

Since the bound given by (20) is increasing in
∑N

i=M+2
λi

and that given by (21) is decreasing, the min in (19) is
minimized, for a given C0 =

∑N

i=1
λi, when the two bounds

coincide. This gives the fundamental lower bound

tM+1 ≥
(M2C0 − M2λM+1 + 2MC0 − MλM+1 + C0)|F |

C0

(
(M + 1)(

∑M
i=0

Ci) + M
∑N

i=M+2
Ci

) .

(23)
When C0 > C∗

0 , the value of
∑M

i=1
λi necessary to

achieve this bound violates (15). In this case, the algo-
rithm sets λi, i < M , to its upper bound of Ci/(M −
1), and (18) becomes |

⋃N

i=M+2
Ri,M+1(tM , tM+1)| =∑N

i=M+2
CitM+1.

When C0 > C∗
0 , nodes i ∈ {M + 2, . . . , N} need not

upload all of their information Fi(tM) to node M to achieve
the lower bound (18); it is sufficient that λi, i ∈ {M +
2, . . . , N}, be large enough that ri,M+2(t) = Ci for all t ∈
(tM , tM+1). The LP (5) ensures that condition is met, while

Fig. 5. A visual depiction of the waterfilling argument for the case when
1 < M < N and C0 > C∗

0
. Note the tiered structure of the columns for

i > M .

sequentially providing as much server capacity on (0, tM) as
possible to nodes M + 2, . . . , N .

In either case, Algorithm 1 achieves the lower bound on
tM+1 while maintaining t1, . . . , tM = |F |/C0.

Finally, we claim after tM+1, each node i receives at
rate C − Ci on its finishing interval, and Ci−1 on the
previous interval. To confirm, consider the fictional time
interval when another node k /∈ {1, . . . , N}, needs to receive
all information held by nodes {1, . . . , N} (i.e., it has no
portion of the file). In this case, the amount of time it takes
to transmit if all nodes have access to the entire file, |F |/C,
is less than the amount of time it takes for any individual
node to upload its assigned portion of the file, λit1/Ci.

Under Algorithm 1,

λN ≤ λi, ∀i ∈ {1, . . . , N}, (24)

including in the case that C0 > C∗
0 . To show that each node

has enough information to transmit fully on any time interval,
it is sufficient to show that∑M

i=1
λi

C0 +
∑N

i=1
Ci

≤
λN

CN

(25)

which can be reformed as

C0

C
≤

∑N

i=M+2
λi∑N

i=M+2
Ci

(26)

and results in a bound of

C0 ≥
CM+1(C − C0)

MCM+1 +
∑N

i=M+2
Ci

. (27)

This lower bound on C0 for the condition to hold is strictly
less than the lower bound due to the multiplicity constraint.
Thus, full utilization is maintained for all time intervals prior
to (tN−1, tN) when following the suggested optimal scheme.

REFERENCES

[1] J. Chan, V. Li and K. Lui. Performance comparision of scheduling al-
gorithms for peer-to-peer collaborative file distribution. IEEE Journal
on Selected Areas in Communications, 25(1):146–154, January 2007

[2] P. Chou and Y. Wu. Network coding for the Internet and wireless
networks. IEEE Signal Processing Magazine, 24(5):77–85, September
2007

[3] B. Fan, D. Chiu and J. Lui. The delicate tradeoffs in Bit Torrent-like
file sharing protocol design. In Proccedings of IEEE ICNP, 2006.

[4] L. Gao, D. Towsley and J. Kurose. Efficient schemes for broadcasting
popular videos. In Proceedings of ACM NOSSDAV, 1998.

[5] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker and
I. Stoica. The impact of DHT routing geometry on resilience and
proximity. In Proceedings of ACM SIGCOMM, 2003.

FrA4.2

1493

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:10 from IEEE Xplore. Restrictions apply.

[6] X. Hei, C. Liang, Y. Liu and K. Ross. A measurement study of
a large-scale P2P IPTV system. IEEE Transactions on Multimedia,
9(8):1672–1687, December 2007

[7] T. Ho, M. Mèdard and R. Koetter. An information-theoretic view
of network management. IEEE Transactions on Information Theory,
51(4):1295–1312, April 2005

[8] R. Kumar and K. Ross. Peer-assisted file distribution: The minimal
distribution time. In Proccedings of IEEE Workshop on Hot Topics in
Web Systems and Technologies, 2006.

[9] J. Kurose and K. Ross. Computer Networking. Fourth edition, Addison
Wesley, 2007.

[10] S. Li, R. Yeung and N. Cai Linear network coding IEEE Transactions
on Information Theory, 49(2):371–381, February 2003

[11] M. Lingjun and K. Liu. Scheduling in P2P file distribution – On
reducing the average distribution time. In Proceedings of Consumer
Communications and Networking Conference, 2008.

[12] S. Liu, R. Shen, W. Jiang, J. Rexford and M. chiang. Performance
bounds for peer-assisted live streaming. Proceedings of ACM SIG-
METRICS, 2008.

[13] L. Massoulié and M. Vojnović. Coupon Replication Systems.
IEEE/ACM Transactions on Networking, 16(3):603–616, June 2008

[14] M. Mehyar. Distributed Averaging and Efficient File Sharing on Peer-
to-Peer Networks. Doctoral Thesis, California Institute of Technology,
2006.

[15] M. Mehyar, G. WeiHsin, S. Low, M. Effros and T. Ho. Optimal
strategies for efficient peer-to-Peer file sharing. Proceedings of IEEE
ICASSP, 2007.

[16] J. Mundinger, R. Weber and G. Weiss. Analysis of peer-to-peer file
dissemination amongst users of different upload capacities. ACM
SIGMETRICS Performance Evaluation Review, 34(2):5-6, September
2006.

[17] J. Mundinger, R. Weber and G. Weiss. Optimal scheduling of peer-
to-peer file dissemination. Journal of Scheduling, 11(2):1094-6136,
April 2008.

[18] Q. Ou and D. Tsang. An optimal bandwidth allocation algorithm for
file distribution network. In Proceedings of ChinaCom, 2007.

[19] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The Bittorrent P2P
file-sharing system: Measurements and analysis. Proceedings of 4th
International Workshop on Peer-to-Peer Systems, 2005.

[20] D. Qiu, and R. Srikant. Modeling and performance analysis of
BitTorrent-like peer-to-peer networks. Proceedings of ACM Sigcomm,
2004.

[21] S. Sanghavi, B. Hajek and L. Massouliè. Gossiping with multiple
messages. IEEE Transactions on Information Theory, 53(12):4640–
4654, December 2007

[22] I. Stoica, R. Morris, D. Karger, M. Kaashoek and H. Balakrishnan.
A scalable peer-to-peer lookup service for Internet applications. Pro-
ceedings of ACM SIGCOMM, 2001.

[23] X. Yang and G. De Veciana. Service capacity of peer to peer networks
Proceedings of IEEE Infocom, 2004.

[24] Z. Yao, D. Leonard, X. Wang and D. Loguinov. Modeling heteroge-
neous user churn and local resilience of unstructured P2P networks.
In Proceedings of IEEE ICNP, 2006.

[25] X. Zheng, C. Cho and Y. Xia Optimal peer-to-peer techniques for
massive content distribution. In Proceedings of IEEE Infocom, 2008.

FrA4.2

1494

Authorized licensed use limited to: Cornell University. Downloaded on May 13, 2009 at 21:10 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

