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Abstract— This paper studies the effect of heterogenous
delays in networks of weakly pulse-coupled identical oscillators.
We develop a new framework to study them by constructing
a non-delayed phase model that is equivalent to the original
one in the continuum limit. Using existing results for non-
delayed phase-coupled oscillators we analyze the delayed system
and show how its stability properties depend on the delay
distribution. In particular, we show that in some scenarios,
heterogeneity, i.e. wider delay distribution, can help reach in-
phase synchronization.

I. INTRODUCTION

The model of coupled oscillators has been widely used in

several disciplines ranging from biology [28], [22], [1], [7],

[29] and chemistry [13], [31] to engineering [9], [27] and

physics [18], [2]. It characterizes local interactions among

oscillators and can generate complex dynamical behavior

including stable and unstable equilibria [4], oscillations [15],

and even chaos [23].

One particularly interesting question is whether the cou-

pled oscillators can synchronize in phase in the long run.

There has been active research work regarding this question

(see for e.g., [19], [16], [20], [21]). However, they typically

assume zero delays among the oscillators and therefore are

not satisfactory for many applications.

In this paper, we develop a new framework to study

weakly pulse-coupled oscillators with delays by constructing

an equivalent non-delayed system that has the same behavior

as the original one in the continuum limit. We then further

use this result to show that heterogeneous delays can help

reach synchronization, which is a bit counterintuitive and

significantly generalizes previous related studies [11], [25],

[8].

The rest of the paper is organized as follows. In Section II,

we briefly introduce the model and state previous pertinent

results. We then study the effect of delays in a network of

two oscillators in Section III-A and build the non-delayed

approximation for a large population of oscillators in Section

III-B. In Section IV we use the new approximation to analyze

stability and provide numerical results to verify what our

theory predicts. Conclusions are presented in Section V.

II. PRELIMINARIES

In the canonical model of pulse-coupled oscillators [11],

each oscillator i is represented as a point θi in the unit circle

S1 that moves with constant speed, i.e.

θ̇i = ω ∀i ∈ N ,

where ω = 2π
T

is the natural frequency of oscillation and N
is the set of all oscillators whose cardinality is N .

An oscillator j ∈ N sends out a pulse whenever it crosses

zero (θj = 0). When oscillator i receives a pulse, it will

change its position from θi to θi + εκ(θi). The function κ

represents how the actions of other oscillators affect i and

the scalar ε > 0 is a measure of the coupling strength.

These jumps can be modeled by Dirac’s delta functions, δ,

satisfying δ(t) = 0 ∀t 6= 0, δ(0) = +∞, and
∫

δ(s)ds = 1.

Using the δ function, the coupled dynamics is represented

by

θ̇i(t) = ω + εω
∑

j∈Ni

κ(θi(t))δ(θj(t− ηij)), (1)

where ηij > 0 is the propagation delay between i and j

(ηij = ηji), and Ni is the set of i’s neighbors. The factor of

ω in the sum is needed to keep the size of the jump within

εκ(θi). This is because θj(t) behaves like ωt when crosses

zero and therefore the jump produced by δ(θj(t)) is of size
∫

δ(θj(t))dt = ω−1.

This pulse-like interaction between oscillators was first

introduced by Peskin [22] in 1975 as a model of the

pacemaker cells of the heart, although the canonic form did

not appear in the literature until 1999 [11]. The coupling

function κ is usually classified based on its sign; if κ > 0,

the coupling is excitatory and if κ < 0, then it is called

inhibitory coupling. This classification is based on models

of biological oscillatory networks, but is not sufficient even

to characterize the system’s qualitative behavior and usually

a first order derivative condition is needed to obtain desired

synchronization.
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Fig. 1. Pulse-coupled oscillators with attractive coupling: After the two
oscillators fire the phases get closer

Here we introduce a different criteria that takes into
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account the qualitative behavior of the system. After one

period, if in the absence of delay the net effect of the mutual

jumps brings a pair of oscillators closer, we call it attractive

coupling. If the oscillators are brought further apart, we call

it repulsive. This can be achieved for instance if κ(θ) ≤ 0
for θ ∈ [0, π) and κ(θ) ≥ 0 for θ ∈ [π, 2π). See Figure 1 for

an illustration of an attractive coupling κ and its effect on

the relative phases. Notice that this new classification only

refers to the net effect that κ produces without delay. When

delay is included, an attractive κ can produce repulsive net

effect. This behavior is further discussed in Section III-A.

When there are only two oscillators without propagation

delay, the behavior of the system is easy to predict. When the

coupling is attractive, unless they start with a difference of

exactly half a period, both oscillators will bring their phases

closer after every period, as in Figure 1, until they eventually

synchronize in-phase, i.e. both phases achieve consensus.

When the coupling is repulsive, exactly the opposite behavior

occurs; the phases will end up as far as possible, i.e. within

a distance of π (anti-phase). However, when the number

of oscillators increases, there are more and more possible

different outcomes besides these two [4].

Thus, predicting whether the system reaches in-phase

synchronization is not an easy task. The problem was solved

for the complete graph case by Mirollo and Strogatz in 1990

[19] by showing that if κ(θ) is strictly increasing (which

resembles attractive coupling), then for almost every initial

condition, the system can synchronize in phase in the long

run.

The analysis in [19] strongly depends on the assumptions

of complete graph and zero delays among oscillators. When

the graph is no longer complete, each oscillator receives a

different firing pattern which makes the proof in [19] no

longer valid. On the other hand, when delays among oscilla-

tors are introduced, which is necessary for many interesting

cases in practice, the analysis becomes intractable. Even for

the case of two oscillators, the number of possibilities to be

considered is large [5], [6].

In this paper, we assume that the coupling strength is

weak, i.e. 1 ≫ ε > 0, such that the effect of the jumps

originated by each neighbor can be approximated by their

average [10]. This gives a natural continuous approximation

of the previous dynamics,

φ̇i = ω + ε
∑

j∈Ni

H(φj − φi − ψij) ∀i ∈ N (2)

where now each neighbor j ∈ Ni changes i’s speed by an

amount depending on their phase difference. The function

H(θ) =
ω

2π
κ(−θ) (3)

is 2π-periodic and inherits the role of κ in the previous

model. The phase lag ψij = ωηij represents the distance

that j can travel along the unit circle in the delay time ηij .

Remark 1 Equation (2) represents a system of continuously

phase-coupled oscillators with phase lags. This model should

not be confused with the model of delayed phase-coupled

oscillators, see e.g. [24], [30], [21]. Although their behaviors
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Fig. 2. Phase-coupled oscillators with attractive and repulsive coupling:
The arrows represent the speed change produced by the other oscillator; if
the pointing direction is counter clockwise, the oscillator speeds up, and
otherwise it slows down.

are similar when the coupling is weak, for strong coupling

their dynamics can vary significantly.

Remark 2 From now on we will concentrate on (2) with the

understanding that any convergence result derived also holds

for the original weakly pulse-coupled model. Therefore, we

will treat both models as representative of the dynamics of a

weakly pulse-coupled network of oscillators and in this sense

the phase lags will also be interpreted as delay. For more

details about this approximation we refer the reader to [10]

and [11].

Using (3) we can translate the attractive/repulsive coupling

classification in terms of H . Thus, a coupling is attractive if

the mutual changes in speed bring the oscillators closer and

repulsive if they are repelled from each other. Figure 2 shows

a typical attractive and repulsive H . Notice that in order to

produce the same effect (either attractive or repulsive) κ and

H should be mirrored.

Once delay is introduced to the system, the problem be-

comes fundamentally harder. The reception of a pulse gives

no useful information about the relative phase difference

∆φij = φj − φi between the two interacting oscillators.

Before, at the exact moment when i received a pulse from j,

φj was zero and the phase difference was estimated locally

by i as ∆φij = −φi. However, now when i receives the

pulse, the difference becomes ∆φij = −φi−ψij . Therefore,

the delay propagation acts as an error introduced to the

phase difference measurement and unless some information

is known about this error, it is not possible to predict

the behavior. Moreover, as will see in the next section,

slight changes in the distribution can produce nonintuitive

behaviors.

III. EFFECT OF DELAY

In this section we show how propagation delays affects the

dynamics of a network of weakly pulse-coupled oscillators.

We will assume complete graph to simplify notation and
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exposition although the results can be extended for a boarder

class of densely connected networks.

A. Two Oscillators

Suppose first that there are only two oscillators, N =
{1, 2}, with coupling function H(φj − φi − ψij) =
K sin(φj − φi − ψij), i.e., the classical Kuramoto model

[14]. Then (2) becomes

φ̇i = ω +K sin(φj − φi − ψ) i, j ∈ {1, 2}, j 6= i. (4)

For K > 0, the coupling is attractive. Hence when ψ = 0,

unless the initial phase difference is π, both oscillators will

bring their phases closer until they synchronize in-phase.

Similarly, if K < 0, the coupling is repulsive and the

oscillators will move towards the anti-phase state. Therefore,

when there is no delay, one would tend to use K > 0 in order

to synchronize in-phase.

Fig. 3. Repulsive coupling without delay vs. Repulsive coupling with delay
of π: The delay can produce an attractive net effect even with a repulsive
H (or equivalently κ).

What is interesting here is the effect of the delay. For

instance, when ψ = π, a simple change of variable φ̄1 = φ1,

φ̄2 = φ2 − π transforms (4) into

˙̄φi = ω +K sin(φ̄j − φ̄i) i, j ∈ {1, 2}, j 6= i. (5)

Then from the previous discussion, by using attractive cou-

pling (K > 0) the system will tend to align φ̄1 with φ̄2.

However, this implies that the phase difference between φ1
and φ2 is π. On the other hand, when repulsive coupling

(K < 0) is used, the φ̄i variables reach the anti-phase con-

figuration, which produces in turn in-phase synchronization

for the original system.

The intuition behind this behavior is that performing

repulsive actions over another oscillator whose phase is

within π from where it is supposed to be has the net effect

of bringing both oscillators closer instead of further apart.

See Figure 3 for an illustration of this effect.

B. Large Number of Oscillators

We now generalize the above intuition to a network

of large number of oscillators. This is a challenging task

since the heterogeneity in the propagation delays makes

impossible to extend previous analysis. We shall build on

existing arguments such as mean field approximation [15]

and Lyapunov stability theory [20], [12] while looking at

the problem from a different perspective.

Consider the case where the coupling between oscillators

is all to all (Ni = N\{i}, ∀i ∈ N ) and the phase

lags ψij are randomly and independently chosen from the

same distribution with probability density g(ψ). By letting

N → +∞ and ε → 0 while keeping εN =: ε̄ constant, (2)

becomes

v(φ, t) := ω + ε̄

∫ π

−π

∫ +∞

0

H(σ − φ− ψ)g(ψ)ρ(σ, t)dψdσ,

(6)

where ρ(φ, t) is a time-variant normalized phase distribution

that keeps track of the fraction of oscillators with phase φ at

time t, and v(φ, t) is the velocity field that expresses the net

force that the whole population applies to a given oscillator

with phase φ at time t. Since the number of oscillators is

preserved at any time, the evolution of ρ(φ, t) is governed

by the continuity equation

∂ρ

∂t
+

∂

∂φ
(ρv) = 0 (7)

with the boundary conditions ρ(0, t) ≡ ρ(2π, t).
Equations (6)-(7) are not analytically solvable in general.

Here we propose a new perspective that is inspired in the

following new observation.

Theorem 1 Mean Field Approximation

Let ψij be independent and identically distributed random

variables with probability density function g(ψ). Then, there

is a non-delayed system of the form

φ̇i = ω + ε
∑

j∈Ni

F (φj − φi), (8)

where

F (θ) = H ∗ g(θ) =

∫ +∞

0

H(θ − ψ)g(ψ)dψ (9)

is the convolution between H and g such that (2) and (8)

have the same continuum limit.

Proof: By the same reasoning of (6) it is easy to see

that the limiting velocity field of (8) is

vF (φ, t) = ω + ε̄

∫ 2π

0

F (σ − φ)ρ(σ, t)dσ

= ω + ε̄

∫ 2π

0

(
∫ +∞

0

H((σ − φ)− ψ)g(ψ)dψ

)

ρ(σ, t)dσ

= ω + ε̄

∫ 2π

0

∫ +∞

0

H(σ − φ− ψ)g(ψ)ρ(σ, t)dψdσ

= v(φ, t)

where in the first step we used (9) and in the third (6). Thus

both systems produce the same velocity field in the limit and

therefore behave identically.

Remark 3 Although (8) is quite different from (2), Theorem

1 states that both systems behave exactly the same in the

continuum limit. Therefore, as N grows, (8) starts to become

a good approximation of (2) and therefore can be analyzed

to understand the behavior of (2), and (1).
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Fig. 4. Effect of delay in coupling shape: The original function H produces
repulsive coupling, whereas the corresponding F is attractive

Figure 4 shows how, as in the case of two oscillators, the

underlying delays (in this case the delay distribution) deter-

mine what type of coupling (attractive or repulsive) produces

synchronization. The original function H produces repulsive

coupling, whereas the corresponding F is attractive. In fact,

as we will soon see, the distribution of delay not only can

qualitatively affect the type of coupling but also can change

the stability of certain phase-locked limit cycles.

IV. STABILITY ANALYSIS AND NUMERICAL RESULTS

In this section we study two examples to illustrate how

this new approximation can provide significant information

about performance and stability of the original system. We

also provide numerical simulations to verify our predictions.

A. Kuramoto Model

We start by studying an example in the literature [26] to

demonstrate how we can use the previous equivalent non-

delayed formulation to provide a better understanding of

systems of weakly pulse-coupled oscillators with delays. We

assume H(θ) = K sin(θ). In this case F (θ) can be easily

calculated:

F (θ) =

∫ +∞

0

K sin(θ − ψ)g(ψ)dψ

= K

∫ +∞

0

ℑ
[

ei(θ−ψ)g(ψ)
]

dψ

= Kℑ

[

eiθ
∫ +∞

0

e−iψg(ψ)dψ

]

= Kℑ
[

eiθCe−iξ
]

= KC sin(θ − ξ)

Here ℑ is the imaginary part of a complex number, i.e. ℑ[a+
ib] = b. The first and second step follow from linearity of

the integral, and the third from defining C > 0 and ξ using

the identity

Ceiξ =

∫ +∞

0

eiψg(ψ)dψ.

This complex number (Ceiξ), usually called “order pa-

rameter”, provides a measure of how the phase-lags are

distributed within the unit circle. It can also be interpreted

as the center of mass of the lags ψij when they are thought

of as points (eiψij ) within the unit circle S1. Thus, when

C ≈ 1, the lags are mostly concentrated around ξ, and when

C ≈ 0, they are distributed such that
∑

ij e
iψij ≈ 0.

In this example, (8) becomes

φ̇i = ω + εKC
∑

j∈Ni

sin(φj − φi − ξ). (10)

Here we see how the distribution of g(ψ) has a direct

effect on the dynamics. For example, when the delays

are heterogeneous enough such that C ≈ 0, the coupling

term disappears and makes synchronization impossible. A

complete study of the system under the context of super-

conducting Josephson arrays was performed in [26] for the

complete graph topology. There the authors characterized the

condition for in-phase synchronization in terms of K and

Ceiξ. More precisely, when KCeiξ is on the right half of the

complex plane (KC cos(ξ) > 0), the system almost always

synchronizes. However, when KCeiξ is on the left half of the

complex plane (KC cos(ξ) < 0), the system moves towards

an incoherent state where all the phases spread around the

unit circle such that its order parameter, i.e. 1
N

∑N

l=1 e
iφl ,

becomes zero.

Another way to interpret the parameter ξ is as if every

signal were delayed by the same amount. Then, the previous

conditions are akin to the ones discussed for two oscillators

with delay, where we showed that if ξ = π (cos(ξ) = −1)

then K < 0 (repulsive coupling) produces synchronization,

whereas when ξ = 0 (cos(ξ) = 1), K > 0 is the one that

synchronizes.
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Fig. 5. Delay distributions and their order parameters Ceiξ

We now provide simulation results to illustrate how (10)

becomes a good approximation of (2) when N is large

enough. We simulate the original repulsive (K < 0) sine-

coupled system with heterogeneous delays and its corre-

sponding approximation (10). Two different delay distribu-

tions, depicted in Figure 5, were selected such that their

corresponding order parameter lie in different half-planes.

The same simulation is repeated for N = 5, 10, 50. Figure

6 shows that when N is small, the phases’ order parameter

of the delayed system (in red/blue) draw a trajectory which

is completely different with respect to its approximation (in

green). However, as N grows, in both cases the trajectories

become closer and closer. Since K < 0, the trajectory of

the system with wider distribution (C cos ξ < 0) drives the

order parameter towards the boundary of the circle, i.e.,

heterogeneous delays lead to homogeneous phase.

B. Effect of Heterogeneous Delays

We now explain a more subtle effect that heterogeneous

delays can produce. Consider the system in (8) where F

after the convolution is odd and continuously differentiable.

It is known that under such conditions, all of the oscillators

eventually end up running at the same speed ω [3]. The
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Fig. 6. Repulsive sine coupling with the heterogeneous delays distributed
according to Fig. 5: As N grows, the trajectories of (10) (in green) become
closer to the original ones (in red and blue).

complication is that the relative phases might not be all

aligned in phase.

Instead, they might form several different types of con-

stellations along the unit circle [4] such that the sum
∑

j∈Ni
F (φj − φi) cancels ∀i. Whether these solutions are

stable or not can be addressed by linearizing around the

equilibria φ∗ of the system

φ̇i =
∑

ij∈Ni

F (φj − φi).

A sufficient condition for the instability [17] of such solu-

tions is the existence of a cut K of the network such that
∑

ij∈K

F ′(φ∗j − φ∗i ) < 0.

One way to ensure synchronization is to use a function F

that guarantees that any other solution, except the in-phase

one, is unstable.

Although the condition is for non-delayed phase-coupled

oscillators, the result of this paper allows us to translate it

for systems of pulse coupled oscillators with delay. Since F

is the convolution of the coupling function H and the delay

distribution function g, we can obtain F ′(φ∗j − φ∗i ) < 0,

even when H ′(φ∗j − φ∗i ) > 0. This usually occurs when the

convolution widens the region with negative slope of F . See

Figure 4 for an illustration of this phenomenon.

Figures 7 and 8 show two simulation setups of 45 os-

cillators pulse-coupled all to all. The initial state is close

to a phase locked configuration formed of three equidistant

clusters of 15 oscillators each. The shape of the coupling

function H and the phase lags (delay) distributions are shown

in a; the corresponding κ used in the simulation can be

inferred using (3). While H (κ) is maintained unchanged

between both simulations, the distribution g does change.

Thus, the corresponding F = H ∗ g also changes as it can

be seen in b; the blue, red, and green dots correspond to

the speed change induced in an oscillator within the blue

cluster by oscillators of each cluster. Since all clusters have

the same number of oscillators, the net effect is zero. In c

the time evolutions of the oscillators’ phases relative to the

phase of an oscillator of the blue cluster are shown. Although
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Fig. 7. Pulse-coupled oscillators with delay: Stable equilibrium
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Fig. 8. Pulse-coupled oscillators with delay: Unstable equilibrium

the initial conditions are exactly the same, the wider delay

distribution on Figure 8 produces negative slope on the red

and green points of b, which destabilizes the clusters and

drives the oscillators toward in-phase synchrony.

Finally, we simulate the same scenario as in Figures 7 and

8 but now changing N and the standard deviation, i.e. the

lags distribution width. Figure 9 shows the computation of

the synchronization probability vs. standard deviation. The

dashed line denotes the minimum value that destabilizes

the equivalent system. As N grows, the distribution shape

becomes closer to a step, which is the expected shape in the

limit.

V. CONCLUSIONS

We have studied networks of weakly pulse-coupled oscil-

lators with delays. In the continuum limit of a large number

of oscillators, we construct an equivalent non-delayed system
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Fig. 9. Pulse-coupled oscillators with delay: Synchronization probability

that has the same dynamical behavior as the original one

with delays. By analyzing this non-delayed system, we are

able to examine the dynamics of the original system and

show how delays affect important system behaviors such as

synchronization. In particular, we predict and demonstrate

that repulsive coupling can produce synchronization when

the delays among oscillators are sufficiently heterogeneous.
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