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Abstract—When heterogeneous congestion control protocols
that react to different pricing signals share the same network,
the current theory based on utility maximization fails to predict
the network behavior. The pricing signals can be different types
of signals such as packet loss, queueing delay, etc, or different
values of the same type of signal such as different ECN marking
values based on the same actual link congestion level. Unlike in a
homogeneous network, the bandwidth allocation now depends on
router parameters and flow arrival patterns. It can be non-unique,
suboptimal and unstable. In Tang et al. (“Equilibrium of heteroge-
neous congestion control: Existence and uniqueness,” IEEE/ACM
Trans. Netw., vol. 15, no. 4, pp. 824–837, Aug. 2007), existence and
uniqueness of equilibrium of heterogeneous protocols are investi-
gated. This paper extends the study with two objectives: analyzing
the optimality and stability of such networks and designing control
schemes to improve those properties. First, we demonstrate the
intricate behavior of a heterogeneous network through simula-
tions and present a framework to help understand its equilibrium
properties. Second, we propose a simple source-based algorithm
to decouple bandwidth allocation from router parameters and
flow arrival patterns by only updating a linear parameter in the
sources’ algorithms on a slow timescale. It steers a network to
the unique optimal equilibrium. The scheme can be deployed
incrementally as the existing protocol needs no change and only
new protocols need to adopt the slow timescale adaptation.

Index Terms—Congestion control, heterogeneous protocols, op-
timal allocation, stability.

I. INTRODUCTION

C ONGESTION control in Transmission Control Protocol
(TCP), first introduced in [11], has enabled the explosive

growth of the Internet. The currently predominant implemen-
tation, referred to as TCP Reno in this paper, uses packet loss
as the congestion signal to dynamically adapt its transmission
rate, or more precisely, its window size.1 It has worked remark-
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1All our experiments and simulations use NewReno with SACK. These are
enhanced versions of the original Tahoe and Reno, but we will refer them gener-
ically as TCP Reno.

ably well in the past, but its limitations in wireless networks
and in networks with large bandwidth-delay product have moti-
vated various proposals, some of which use different congestion
signals. For example, in addition to loss based protocols such as
HighSpeed TCP [9], STCP [19] and BIC TCP [42], schemes that
use queueing delay include the earlier proposals CARD [13],
DUAL [39] and Vegas [3], and the recent proposal FAST [40].
Schemes that use one-bit congestion signal include ECN [28],
and those that use multibit feedback include XCP [15], MaxNet
[41], and RCP [6]. Indeed, the Linux operating system already
allows users to choose from a variety of congestion control al-
gorithms since the kernel version 2.6.13, including TCP-Illinois
[22] that uses both packet loss and delay as congestion sig-
nals. Recently, compound TCP [33] which also uses multiple
congestion signals is deployed in Windows Vista and Window
Server 2008 TCP stack [25]. Furthermore, if explicit feedback
is deployed, it will become possible to feed back different sig-
nals to different users to implement new applications and ser-
vices. Note that in this case, the heterogeneous signals can all
be loss-based – different users receiving different explicit values
based on the same actual link loss rate – or all delay-based, or a
mix. Clearly, going forward, our network will become more het-
erogeneous in which protocols that react to different congestion
signals interact. Yet, our understanding of such a heterogeneous
network is rudimentary. For example, a heterogeneous network,
as shown in an early companion paper [36], may have multiple
equilibrium points, and they cannot all be stable unless the equi-
librium is globally unique.

In a homogeneous network, even though the sources may con-
trol their rates using different algorithms, they all adapt to the
same congestion signal, e.g., all react to packet loss rate, as in
the various variants of Reno and TFRC [8], or all to queueing
delay, as in Vegas and FAST. For homogeneous networks, be-
sides various detailed studies (see e.g., [27], [30]), there is al-
ready a well-developed theory, based on network utility max-
imization, e.g., [17], [21], [23], [24], [26], [43], that can help
understand and engineer network behaviors. In particular, it is
known that a homogeneous network of general topology always
has a unique equilibrium (operating point). It maximizes aggre-
gate utility, and the fairness associated with it can be well pre-
dicted and controlled. More importantly, the bandwidth alloca-
tion depends only on the congestion control algorithms (equiv-
alently, its underlying utility functions) but not on network pa-
rameters (e.g., buffer sizes) or flow arrival patterns, and hence
can be designed through the choice of end-to-end TCP algo-
rithms.

In contrast, we demonstrate in Section II of this paper that
the bandwidth allocation among heterogenous flows can depend
on both network parameters and flow arrival patterns. It means
that in general we cannot predict, nor control, the bandwidth
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allocation purely through the design of end-to-end congestion
control algorithms for heterogeneous networks. This implies,
for example, the standard “TCP friendly” concept is not well
defined anymore. To fully understand heterogeneous networks
and develop ways to address these issues, we review our basic
model in Section III. By identifying an optimization problem
associated with any given equilibrium point, we discuss effi-
ciency in Section IV-A and fairness in Section IV-B. Study of
stability then follows in Section V. Finally, we propose a gen-
eral scheme to steer an arbitrary heterogeneous network to the
unique equilibrium that maximizes the standard weighted ag-
gregate utility by updating a linear scaler in the sources’ algo-
rithms on a slow timescale (Section VI). The scheme requires
only local end-to-end information but does assume all flows
have access to a common price, which is generally true in prac-
tice since the common price can be what the incumbent dom-
inate protocol uses. It can be deployed incrementally as the
existing protocol needs no change and only the new protocols
need to adopt the slow timescale adaption. Packet-level (ns-2)
simulation results using TCP Reno and FAST are presented in
Section VII and Linux experiments on a realistic testbed are re-
ported in Appendix-C to further discuss some issues that are ig-
nored in the mathematical model. We conclude in Section VIII.

We summarize here the main results that we have derived
about heterogeneous congestion control in [36] and this paper.

• Existence of equilibrium: Theorem 2 in [36];
• Uniqueness of equilibrium.

— Local uniqueness: Theorem 3 in [36];
— Global uniqueness: Theorems 7 and 12 in [36].

• Optimality of equilibrium
— Efficiency: Theorems 1 and Corollary 3 in this paper;
— Fairness: Theorems 4 and 5 in this paper.

• Stability of equilibrium:
— Local stability: Theorem 6 in this paper;
— Special results: Theorems 12 and 13 in this paper.

• Control of heterogeneous networks: Theorem 11, Algo-
rithms 1 and 2 in this paper.

II. TWO MOTIVATING EXAMPLES

In this section, we describe two simulations to illustrate some
particular throughput behavior in heterogenous networks. All
simulations use TCP Reno, which uses packet loss as congestion
signal, and FAST TCP, which uses queueing delay as congestion
signal.

The first experiment (Example 1a) shows that when a Reno
flow shares a single bottleneck link with a FAST flow, the rela-
tive bandwidth allocation depends critically on the link param-
eter (buffer size): the Reno flow achieves higher bandwidth than
FAST when the buffer size is large and smaller bandwidth when
it is small. This implies that one cannot control the fairness be-
tween Reno and FAST through just the design of end-to-end
congestion control algorithms, since fairness is now linked to
network parameters, unlike in the case of homogeneous net-
works.

The second experiment (Example 2a) shows that even on a
(multilink) network with fixed parameters, one cannot control
the fairness between Reno and FAST because the relative allo-
cation can change dramatically depending on which flow starts
first!

Fig. 1. Single link example.

Fig. 2. FAST versus Reno with a buffer size of 400 packets. (a) A sample tra-
jectory. (b) Average behavior.

A. Example 1a: Dependence of Bandwidth Allocation on
Network Buffer Size

FAST [40] is a high speed TCP variant that uses delay as
its main control signal. Periodically, a FAST flow adjusts its
congestion window according to

(1)

In equilibrium, each FAST flow achieves a throughput
, where is the equilibrium queueing delay observed by

flow . Hence, is the number of packets that each FAST flow
maintains in the bottleneck links along its path.

In this example, one FAST flow and one Reno flow share
a single bottleneck link with capacity of 8.3 packets per ms
(equivalent to 100 Mbps with maximum packet size) and round-
trip propagation delay 50 ms. The topology is shown in Fig. 1.
The FAST flow fixes its parameter at 50 packets.

In all of the ns-2 simulations in this paper, heavy-tail noise
traffic is introduced at each link at an average rate of 10% of the
link capacity.2Fig. 2 shows the result with a bottleneck buffer
size packets. In this case, FAST gets an average of 2.1
packets per ms while Reno gets 5.4 packets per ms. Fig. 3 shows
the result with packets. Since the bottleneck buffer size
is smaller, the average queue is also smaller. Therefore FAST
gets a higher throughput of 3.4 packets per ms and Reno gets a
much lower throughput of 0.6 packet per ms. In this case, the
loss rate is fairly high and the aggregate throughput is much
lower (53.6% utilization) than the bottleneck capacity due to
many timeout events.

In summary, contrary to the case of homogeneous network,
bandwidth sharing between Reno and FAST depends on net-
work parameters in a heterogeneous network.

2We usually present one sample figure on the left and the summary figure on
the right. The sample figure shows the rate trajectory in one simulation run. The
rate value is measured every 2 s. The summary figure presents the rate trajectory
averaged over 20 simulation runs with different random seeds. Each point in the
summary figure represents the average throughput over a period of one minute.
The error bars are also shown in the summary figure.
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Fig. 3. FAST versus Reno with a buffer size of 80 packets. (a) A sample tra-
jectory. (b) Average behavior.

Fig. 4. Multiple equilibria scenario.

B. Example 2a: Dependence of Bandwidth Allocation on Flow
Arrival Pattern

The topology of this example is shown in Fig. 4. We use
RED algorithm [7] and packet marking instead of dropping. The
marking probability of RED is a function of queue length

(2)

where , and are RED parameters. Links 1–2 and 3–4
are both configured with 9.1 packets per ms capacity (equiv-
alent to 111 Mbps), 30 ms one-way propagation delay, and a
buffer of 1500 packets. Their RED parameters are

. Link 2–3 has a capacity of 13.8 packets per
ms (166 Mbps) with 30 ms one-way propagation delay and a
buffer size of 1500 packets. Its RED parameters are set to (0,
1500, 10).

There are eight Reno flows on path 1-2-3-4, utilizing all three
links, with one-way propagation delay of 90 ms. There are two
FAST flows on each of paths 1-2-3 and 2-3-4. Both of them
have one-way propagation delay of 60 ms. All FAST flows use
a common .

In our simulations, one set of flows (Reno or FAST) starts at
time zero, and the other set of flows starts at the 100th second.
We presents the throughput achieved by one of the FAST flows
and one of the Reno flows. Each point in the summary figures
represents the average rate over 5 min. Fig. 5 shows the scenario
in which FAST flows start first. Initially, FAST flows occupy
most of the buffers in link 2-3. With the steep RED dropping
slope in link 2-3, the Reno flows experience heavy loss and have
very small throughput when they join the network. Fig. 6 shows
the scenario in which Reno flows start first. Initially, Reno flows
maintain large queues in link 1-2 and link 3-4. FAST flows ex-
perience large queueing delays and are never able to fully utilize
link 2-3.

Fig. 5. Bandwidth shares of Reno and FAST when FAST starts first. (a) A
sample trajectory. (b) Average behavior.

Fig. 6. Bandwidth shares of Reno and FAST when Reno starts first. (a) A
sample trajectory. (b) Average behavior.

In short, bandwidth sharing in heterogeneous networks may
depend on which type of TCP starts first and becomes unpre-
dictable.

III. MODEL

Notations and Assumptions

Consider a network consisting of a set of links, indexed
by , with fixed finite capacities . We sometimes
abuse notation and use to denote both the number of links
and the set of links. Each link has a price as
its congestion measure. There are different congestion con-
trol protocols indexed by superscript , and sources using
protocol , indexed by where and

. The set of links used by source is denoted by
, and the total number of sources by .

The routing matrix for type sources is defined
by if source uses link , and 0, otherwise. The
overall routing matrix is denoted by

Even though different classes of sources react to different
prices, e.g., Reno to packet loss probability and Vegas/FAST to
queueing delay, the prices are related. We model this relation-
ship through a price mapping function that maps a common
“intrinsic” price (e.g., queue length) at a link to different prices
(e.g., loss probability and queueing delay) observed by different
sources. Formally, every link has a price . A type source
reacts to the “effective price” in its path, where is
a price mapping function that can depend on both the link and
the protocol type. The exact form of depends on the AQM
(Active Queue Management) algorithm used at the link; see
(2) for links with RED. Let
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and . The aggregate prices for
source is defined as

(3)

Let and
be vectors of aggregate prices. Then and

.
Let be a vector with the rate of source as its th

entry, and be the vector of :

Source has a utility function3 that is strictly con-
cave increasing in its rate . Let

.
With the above notation, we refer to as a net-

work, where (in general) denotes the (column) vector
. The following basic assumptions are adopted, as in

[36] that studies the existence and uniqueness of equilibrium
for heterogeneous protocols.

A1: Utility functions are strictly concave increasing,
and twice continuously differentiable in their domains.
Price mapping functions are continuously differen-
tiable and strictly increasing with .
A2: For any , there exists a number such that if

for link , then

for all with

These are mild assumptions. Concavity and monotonicity of
utility functions are often assumed in network pricing for elastic
traffic. The assumption on means that sources to observe the
fluctuation as link congestion ( ) rises and falls, as they must in
order to control congestion. Assumption A2 says that when
is high enough, then every source going through link has a rate
less than , modeling the basic intuition in congestion control.

A. Network Model

As usual, we use and

to denote the vector-valued
functions composed of . Since , we often abuse
notation and write . Define the aggregate
source rates at links as

(4)

We consider the “dual algorithm” [17], [23]4 where sources
select transmission rates that maximize their utility minus band-

3Most TCP variants proposed or deployed can be shown to implicitly maxi-
mize some strictly concave increasing utility functions [24]. Here we take this
reverse-engineering view and use utility function to represent the exact form of
congestion protocol.

4Delay is omitted for simplicity.

width cost, and network links adjust bandwidth prices according
to the utilization of the links

(5)

Remark: There are different fluid models in the literature. For
example, the “primal algorithm” has dynamics at sources while
the congestion signal at links depends on the instantaneous ar-
rival rate or even both arrival rate and queue state. One is ref-
ereed to e.g., [5], [18], [21], [31] for related discussion and jus-
tification. The main issues of heterogeneous congestion control
(multiple equilibria, optimality loss and asymmetric Jacobian
which may lead to instability as one will see in Sections IV and
V) remain the same for both the primal and dual models. In other
words, the difficulty due to heterogeneity is the same for various
dynamical models. For example, if there are two marking func-
tions and at the same link

as in the primal model, then these functions serve the role
of functions defined above and aggregate rate becomes the
intrinsic measure of congestion as defined before. The results
and techniques developed in this paper should be useful for an-
alyzing other models.

Under the assumptions in this paper, for
all the prices that we consider, and hence we can ignore the
projection and assume, without loss of generality, that

(6)

Equation (6) is nothing but the “response function” of TCP
which determines source rate based on its observed end-to-end
congestion signal.

In equilibrium, the aggregate rate at each link is no more than
the link capacity, and they are equal if the link price is strictly
positive. Formally, we call an equilibrium price (or a network
equilibrium or an equilibrium) if it satisfies (from (3), (6), (4))

(7)

where is a diagonal matrix.
When all sources react to the same price, then the equilibrium

described by (3), (4), (6) and (7) is the unique solution of the
following utility maximization problem defined in [17] and its
Lagrange dual [23]:

(8)

(9)

where we have omitted the superscript . The strict con-
cavity of guarantees the existence and uniqueness of the op-
timal solution of (8)–(9) as well as the global convergence of
the dual algorithm.

For heterogeneous case, the utility maximization problem no
longer underlies the equilibrium described by (3), (4), (6) and
(7). The current theory cannot be directly applied and substantial
difficulties had to be overcome when exploring even some basic
questions such as existence and uniqueness of equilibrium [36].
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IV. OPTIMALITY

As we have shown in [36], for heterogeneous congestion con-
trol networks, equilibrium cannot be characterized by (8)–(9)
anymore. In this section, we further investigate the deviation of
optimality in terms of both efficiency and fairness. This anal-
ysis provides insights on networks with heterogeneous conges-
tion signals, for example, how to define interprotocol fairness.
It also motivates the algorithm design in Section VI.

A. Efficiency

We first make the following key observation, which motivates
other results on optimality and algorithm development.

Theorem 1: Given an equilibrium , there exists a positive
vector , such that the equilibrium rate vector is the
unique solution of following problem:

(10)

subject to (11)

Proof: The KKT (Karush–Kuhn–Tucker) optimality con-
ditions for (10)–(11) are

for all (12)

(13)

(14)

where the are the primal-dual variables. We now claim
these conditions are satisfied with equilibrium rates and prices

by choosing

(15)

To see this, note (13) and (14) are conditions for equilibrium.
After substituting (15) into (12), we have

(16)

That is consistent with (3) and (6) that are used to define equi-
librium.

Unlike the homogenous case where the equilibrium maxi-
mizes aggregate utility , in the heterogeneous case,
an equilibrium maximizes a weighted aggregate utility

, where the weight depends on the equilibrium it-
self. Theorem 1 characterizes this underlying convex optimiza-
tion problem that an equilibrium solves. It further motivates the
algorithm in Section VI. Since this optimization problem itself
depends on the equilibrium, it cannot be used to find equilibrium
directly, nor does it guarantee existence and uniqueness proper-
ties as in the single-protocol case [36].

As stated by the celebrated first fundamental theorem of
welfare economics, assuming a homogeneous price signal, any
competitive equilibrium is Pareto efficient. As a direct corollary

of Theorem 1, the same holds for networks with heterogeneous
price signals.

Corollary 2: All equilibrium points are Pareto efficient.
Pareto efficiency can be viewed as a necessary requirement

for an efficient allocation. An equilibrium is optimal if it is
Pareto efficient and maximizes (possibly weighted) aggregate
utility. As shown in (8)–(9), for the homogeneous case, the equi-
librium is indeed optimal. For the heterogeneous case, Theorem
1 implies a bound on the loss in optimality, as the following
corollary states.

Corollary 3: Assume all utility functions are nonnegative,
i.e., . Suppose the optimal aggregate utility is and

is the achieved aggregate utility at an equilibrium ( ) of a
network with heterogeneous protocols. Then

(17)

where and are any lower and upper bounds of 5,
i.e., .

Proof: Assume is one of the solutions of (10)–(11), then

(18)

On the other hand

(19)

Combining the two equalities above, we get
It has been well known that price can serve as the “invis-

ible hand” to coordinate competing users and realize optimal re-
source allocation. That however requires two basic assumptions.
The first assumption is that users are all price takers. If instead
they are noncooperative game players, there will be efficiency
loss. Such “price of anarchy” was recently bounded from above
for both routing [29] and congestion control [14]. The second
assumption is the homogeneity of price, which does not hold
in networks with heterogeneous congestion control signals. Our
result above quantifies the “price of heterogeneity” in conges-
tion control.

B. Fairness

In this subsection, we study fairness in networks shared by
heterogeneous congestion control protocols. Two questions we
address are: how the flows within each protocol share among
themselves (intraprotocol fairness) and how these protocols
share bandwidth in equilibrium (interprotocol fairness). The
results here generalize the corresponding theorems in [35].

1) Intraprotocol Fairness: As indicated by (8)–(9), when
a network is shared only by flows using the same congestion
signal, the utility functions describe how the flows share band-
width among themselves. When flows using different conges-
tion signals share the same network, this feature is still preserved
“locally” within each protocol.

5Both � and � can be bounded using �� . For example, for a network
with both loss based and delay based protocols and assuming RED is used, the
slopes of RED at different links can be used to compute � and � .
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Theorem 4: Given an equilibrium , let be
the total bandwidth consumed by flows using protocol at each
link. The corresponding flow rates are the unique solution of

subject to (20)

Proof: Since is an equilibrium, from (3) to
(7), we have

for

This, together with (from the definition of )

forms the necessary and sufficient condition for and to be
optimal for (20) and its dual, respectively.

Note that in Theorem 4, the “effective capacities” are not
preassigned. They are the outcome of competition among flows
using different congestion prices and are related to interprotocol
fairness, which we now discuss.

2) Interprotocol Fairness: Even though flows using different
congestion signals individually solve a utility maximization
problem to determine their intraprotocol fairness, they in
general do not jointly solve any predefined convex utility
maximization problem. Here we provide a feasibility result,
which says any reasonable interprotocol fairness is achievable
by linearly scaling congestion control algorithms.

Assume flow ( , ) has a parameter with which it chooses
its rate in the following way:

(21)

Our main result here says that for a network with proto-
cols, given any desirable bandwidth allocation across protocols,
there exists a vector such that one of the resulting equilibria
achieves the given bandwidth partition. Before stating the the-
orem, we first characterize the feasible set of predefined band-
width allocation.

Assume that except for , flow has parameter .
Or equivalently, we can define . The equilibrium rates

clearly depend on parameter . For , let
be the unique rate vector of flows using protocol if there

were no other protocols in the network, i.e., solves the
following problem:

subject to

Let be the unique rates of type flows if network capacity
were and no other protocols are in the net-
work, i.e., solves the following problem:

subject to

Let .
includes all possible rates of flows using protocol if they

were given strict priority over other flows or if others were given
strict priority over them, and all rates in between. In this sense

contains the entire spectrum of interprotocol fairness among
different protocols. The next result says that every point in this
spectrum is achievable by an appropriate choice of parameter .

Let denote the set of equilibrium rates of flows when the
protocol parameter is . Clearly, equilibrium is characterized by
(3), (4), (7) and (21).

Theorem 5: For every link , assume there is at least one type
flow that only uses that link. Given any , there exists

an such that .
Proof: Given any , the capacity for all type flows

is . Since (for all coordinates), we
have , which is greater than or equal
to 0. Hence the following utility maximization problem solved
by flows of type is feasible:

subject to

Let be the associated Lagrange multiplier vector. By the as-
sumption that every link has at least one single-link type flow,

we know for all . Choose .

It can be checked that all equations that characterize an equilib-
rium (3), (4), (7) and (21) are satisfied.

In general, one can view Theorem 1 as defining fairness of
flows using heterogeneous protocols and can conclude that
price mapping functions (router parameters) affect fairness
(supported by Example 1a). Clearly, if one can choose price
mapping functions, one can achieve any predefined fairness.
More interestingly, Theorem 5 implies that given any reason-
able fairness among flows using different congestion signals,
in terms of a desirable rate allocation , there exists a pro-
tocol parameter vector that can achieve it without changing
parameters inside the network. In Section VI, we will discuss
distributed algorithms to compute a particular , which will
result in the optimal bandwidth allocation.

V. STABILITY

For general dynamical systems, a globally unique equilib-
rium point may not even be locally stable [16], [32]. In this sec-
tion, we focus on the stability of heterogeneous congestion con-
trol protocols, which dictates whether an equilibrium can mani-
fest itself experimentally or not [35]. For general networks, it
is shown that once the “degree of heterogeneity” is properly
bounded, the equilibrium is not only unique as shown in [36]
but also locally stable. Stronger results for some special cases
can be found in the Appendix-A.

We now state the general result on local stability. It essentially
says that if the similarity condition on price mapping functions
that guarantees uniqueness [36] is satisfied, the unique equilib-
rium is also locally stable. In particular, if for any all are the
same, then (22) is satisfied and the equilibrium is locally stable.
This certainly agrees with our knowledge on the homogeneous
case.

We call a vector a permutation if each is
distinct and takes value in . Treating as a mapping
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, we let denote its unique in-
verse permutation. For any vector , denotes the per-
mutation of under , i.e., . If
is a permutation, then is also a permutation and we often
write instead. Let denote the identity permu-
tation. Then . Finally, denote by .

Theorem 6: If for any vector and any per-
mutations in

(22)

then the equilibrium of a regular network is locally stable.
Proof: For a real matrix , if all its principle minors are

positive, is called a -matrix [34]. If , , then
is called an -matrix. Clearly, if a -matrix is symmetric,

then it is positive definite and hence stable. However, the Ja-
cobian matrix in our problem is not symmetric when multiple
protocols exist, which is the main difficulty in proving stability.
Before getting into the main proof, we state three lemmas. One
is referred to [1] for other related results.

Lemma 7: If is a -matrix and also an -matrix, then all
its eigenvalues have positive real parts.

Let be the column vector .
Lemma 8: If is an -matrix and all its eigenvalues have

positive real parts, then there is an ,
for all , such that . In other words, is strictly

diagonally dominant.
For a matrix , we define its comparison matrix

by setting , and if . Clearly
is an -matrix. The following lemma points out a simple

yet important fact that relates diagonal dominance property of
with positive diagonal entries and that of .
Lemma 9: Suppose all diagonal entries of are positive. If

there is a an , for all , such that
, then , i.e., is also strictly

diagonally dominant.
We now state the proof of Theorem 6. We need to show all

eigenvalues of have positive real parts, where is the Jaco-
bian of equilibrium equations ( ) evaluated at equi-
librium. It is enough to show is strictly diagonally domi-
nant and by Lemma 9 we only need to show is strictly
diagonally dominant since all diagonal entries of are posi-
tive (each link has at least one flow using it). Using Lemma 8,
it suffices to show that is positive stable, which then
can be reduced to check whether is a -matrix by
Lemma 7. By similar arguments in [36], it is enough to show

, which will be done in the remainder of the
proof.

Following [36], let denote an -bit binary sequence that
represents the path consisting of exactly those links for which
the th entries of are 1, i.e., . Let

be the set of paths that contain both links and . Let
if and only if be the set of type

sources on path , possibly empty. Let

(23)

where is zero if is empty. Denote by the indicator
function that is 1 if the assertion is true and 0 otherwise. Define

(24)

(25)

For any permutation , Define and
. We then have

(26)

where the last summation in (26) is over the vector
index that takes value in the set

. denotes
the identity permutation, and “ ” is a shorthand for
“ ” and

(27)

Then let be the largest subset of the set of all possible
’s that is permutationally distinct, i.e., no vector in is

a permutation of another vector in . We then have

(28)

(29)

where

and is the largest subset of the set of all permutations
that generates distinct .

We now use (29) to derive a sufficient condition under which
are nonnegative for all permutationally distinct .

The main idea is to show that for every negative term in the
summation in (29), either it can be exactly canceled by a positive
term, or we can find two positive terms whose sum has a larger
or equal magnitude under the given condition. Theorem 6 is
then directly implied by the following Lemma, whose proof is
provided in the Appendix-B.

Lemma 10: Suppose for any and permuta-
tions in , we have for a regular network

Then, for all , .

VI. SLOW TIMESCALE UPDATE

A. Motivation

As pointed out in Corollary 2, all equilibria are Pareto effi-
cient. However, based on analysis in Section IV, large efficiency
loss may occur and no guarantee on fairness can be provided.
This motivates us to turn from analysis to design, and develop
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a readily implementable control mechanism that “drives” any
network with heterogeneous congestion control protocols to a
target operating point with a fair and efficient bandwidth alloca-
tion. Our target equilibrium is the maximizer of some weighted
aggregate utility. The first step is to set up the existence and
uniqueness of such a solution.

Theorem 11: For any given network , for any
positive vector , there exists a unique positive vector such
that, if every source scales their own prices by , i.e.,

(30)

then, at equilibrium , solves

(31)

subject to (32)

Moreover,

Proof: We claim that the optimality conditions of (31) and
(32) are the same as equations that characterize the equilibrium
of the above system [ see (3), (30), (4) and (7)]. Capacity con-
straints, nonnegativity, and complementary slackness are obvi-
ously the same. We only need to check the relation between rates
and prices at equilibrium. Those are

(33)

and

(34)

Combining them, we get

(35)

which is the relation between and specified by the optimality
conditions of problem (31)–(32). On the other hand, given and

that satisfy (35), one can always define by (34), and (33) will
also be satisfied.

Parameter enables us to control fairness and to achieve any
desired fair bandwidth allocation. Moreover, Theorem 11 sug-
gests Algorithm 1 as a two-timescale scheme to control the op-
erating point of networks with heterogenous congestion control
protocols. The essential idea in Algorithm 1 is that by reacting
to the same price [ ] on slow timescale, it is guaranteed to
reach the optimal equilibrium in the long run. Yet the algorithm
allows sources to react to their own effective prices
on fast timescale. This flexibility on timescales is important in
practice when, for example, the link prices are loss probability
that are hard to reliably estimate on the fast timescale. The slow

Fig. 7. A three-link network with three equilibria.

timescale algorithm only updates a linear scaler ( ), which is
readily implementable, e.g., this corresponds to updating a pa-
rameter in FAST; see Section VII. In general, one can always
choose for a particular , say . Then .
This is desirable for incremental deployment as only new pro-
tocols need to adapt while the current Reno ( ) does not.

Algorithm 1 Two timescale control scheme

1) Every source chooses its rate by

2) Every source updates its by

where is the stepsize for flow and is large
enough so that the fast timescale dynamics among and

can reach steady state.

B. Numerical Examples

Throughout this section, we provide some numerical results
to further validate the effectiveness of Algorithm 1. For sim-
plicity we choose , i.e., we attempt to maximize the ag-
gregate utility.

1) Example 3: With Multiple Equilibria: We use the
following example that has multiple equilibria [36]. The net-
work is shown in Fig. 7 with three unit-capacity links,

. There are three different protocols with the corresponding
routing matrices

The price mapping functions are linear: where

Utility functions of sources are

if
if

with appropriately chosen positive constants and [36].
These utility functions can be viewed as a weighted version of
the -fairness utility functions proposed in [26]. Parameters
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Fig. 8. Case 1: � ��� with different � . (a) stepsize � � ���. (b) stepsize
� � ���.

Fig. 9. Case 2: � ��� with different � . (a) stepsize � � ���. (b) stepsize
� � ���.

are updated every 20 time units. We show that starting from dif-
ferent initial conditions, although the system reaches different
equilibria after the first iteration, it nevertheless finally reaches
the unique optimal equilibrium with .

2) Case 1: We start with initial point
. After the first iteration, the network goes to an

equilibrium ( , ). Price with
different stepsize is shown in Fig. 8.

3) Case 2: We choose another initial point
, As shown in Fig. 9. After the first iteration,

the system reaches another equilibrium, and
. However, finally, the system still reaches the same

steady state as in Fig. 8.
4) Example 4: With Asynchronous Update: In this ex-

ample, the network has five links and 15 flows. Algorithm 1 is
tested in an asynchronous environment. We assume that every
five time units, flows can update their and they do so with
certain probability. Hence every five time units, only a portion
of flows update their . We set link capacities uniformly be-
tween 1 to 10, price mapping functions are and

, where is chosen between 0.5 to 5 with uniform
distribution. Flows 1 to 5 use links 1 to 5 correspondingly while
a random routing matrix with entries 0 or 1 with equal proba-
bility is used to define routes for other flows. Finally each flow
chooses to use price 1 or 2 with equal probability.

All of the 1000 trials converge to the right operating point.
Some typical convergence patterns are shown in Fig. 10 where
the five curves correspond to the value of the five links. It
shows clearly that although asynchronism causes longer conver-
gence time, the system still converges to the target equilibrium.

Fig. 10. ����with different probability of updating. (a) Update with probability
0.6. (b) Update with probability 0.3.

VII. SIMULATION RESULT: RENO AND FAST

In this section, we apply Algorithm 1 to the case of Reno
and FAST coexisting in the same network to resolve the issues
illustrated in Section II. It demonstrates how the algorithm can
be deployed incrementally where the existing protocol (Reno in
this case) needs no change and only the new protocols (FAST in
this case) need to adopt slow timescale adaptation for the whole
network to converge to the unique equilibrium that maximizes
(weighted) aggregate utility. Experiments in this section were
conducted in ns-2; Appendix-C will present further results in a
real testbed.

We take Reno’s loss probability as the link price, i.e.,
for Reno. Algorithm 1 then reduces to an

adaptation scheme for FAST that uses only end-to-end local
information that is available to each flow. This algorithm,
displayed as Algorithm 2, tunes the value of according
to the signals of queue delay and loss on a large timescale.
The basic idea is that FAST should adjust its aggressiveness
(parameter ) to the proper level by looking at the ratio of
end-to-end queueing delay and end-to-end loss. Therefore
FAST also reacts to loss in a slow timescale.

Algorithm 2 adaptation algorithm

1) Every update interval (2 min by default), calculate:

is the initial value; and are average queueing
delay and average packet loss rate over the interval;
is a parameter with the same unit of . It determines
the relative fairness between delay-based and loss-based
protocols. Then

if
if

where determines the responsiveness and is 0.1 by
default.

2) Every window update interval (20 ms by default), run
FAST algorithm (1).

We apply Algorithm 2 to the examples illustrated in
Section II.
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Fig. 11. FAST versus Reno, with buffer size of 400 packets: (a) a sample and
(b) an average behavior.

Fig. 12. FAST versus Reno, with buffer size of 80 packets: (a) a sample and
(b) an average behavior.

TABLE I
RATIO OF RENO’S RATE AND FAST’S RATE

A. Example 1b: Independence of Bandwidth Allocation on
Buffer Size

We repeat the simulations in Example 1a with Algorithm 2,
with set to 125 s6. Figs. 11 and 12 should be compared to
Figs. 2 and 3, respectively.

With Algorithm 2, FAST achieves 3.4 packets per ms with
buffer size of 400 and 3.2 packets per ms with buffer size of
80, while Reno gets 4.2 and 4.1 packets per ms, respectively.
The fairness is greatly improved and essentially independent of
buffer size now. This is summarized in Table I by listing the ratio
of Reno’s bandwidth to FAST’s. We also note that the utilization
of the link for increases significantly from 53.6% to
97.7%. This point will be further discussed in Example 5 in
Appendix-C.

The trajectories of with different buffer sizes are presented
in Fig. 13. It is clear that although FAST starts with in
both cases, it finally ends up with a much larger in the scenario
where , as it experiences much higher equilibrium
queueing delay with the large buffer.

B. Example 2b: Independence of Bandwidth Allocation on
Flow Arrival Pattern

We repeat the simulations in Example 2a with Algorithm 2,
with set to 1,820 s. Figs. 14 and 15 show the effect of adap-
tation in the multiple-bottleneck case and should be compared
with Figs. 5 and 6 respectively. Theorem 11 guarantees a unique

6The parameter � determines the equilibrium bandwidth share. Formally, it
is stated in (31)–(32). Here � is chosen so that Reno and FAST get equal rates.

Fig. 13. � trajectory of example 1b: (a) a sample and (b) an average behavior.

Fig. 14. FAST starts first: (a) a sample and (b) an average behavior.

Fig. 15. Reno starts first: (a) a sample and (b) an average behavior.

equilibrium when we adapt according to Algorithm 2. In this
particular case, this single equilibrium is around the point where
each Reno flow gets a throughput of 0.6 packets per ms and each
FAST flow gets 1.5 packets per ms. At this single equilibrium,
link 1 and link 3 are the bottleneck links. In Fig. 14, FAST flows
start at time zero and link 2 becomes the bottleneck. When Reno
flows join at the 100th second, the ratio of queue delay and loss
at link 2 is much higher than the target value. The FAST flows
hence reduce their values gradually and the set of bottleneck
links switches from link 2 to links 1 and 3 around the 2000th
second. After that, FAST flows and Reno flows converge to the
unique equilibrium.

The trajectory of is presented in Fig. 16. Although the
values converge to the same equilibrium value with different
starting sequence, the trajectories are very different: When the
Reno flows start first, the value of gradually increases from the
initial value of 50 to the equilibrium value of around 96. How-
ever, when FAST flows start first, the value of first decreases,
and then increases to the equilibrium value.

Queue trajectories of the links help better understand this
process. Fig. 17 presents the queue trajectories of the two cases.
When the system converges, the value is around 96 and the
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Fig. 16. � trajectory of example 2b: (a) a sample and (b) an average behavior.

Fig. 17. Trajectories of queues of example 2b: (a) Reno flows start first and (b)
FAST flows start first.

bottleneck links are link 1-2 and link 3-4. If Reno flows start
first, the initial bottleneck set is the same as the bottleneck set
in equilibrium. With the correct bottleneck set, the adaptation
algorithm adjusts the value to reach a fair share defined by
the parameter as in Example 1. If FAST flows start first, the
initial bottleneck is link 2-3, with which there is no that
solves the optimization problem defined in Theorem 1. Hence,
the adaptation algorithm keeps decreasing the value of due
to the small delay-to-loss ratio in link 2-3 until the bottleneck
link set switches to be link 1-2 and link 3-4. The adaptation
algorithm then works as the scenario when Reno flows start first
and finds the right equilibrium point.

We note that the bottleneck switching point has the value
with which the two stable equilibria are very close to each other.
Without the adaptation algorithm, the equilibrium bottleneck
set can vary due to random noise, even with the same setup and
same starting order. To intuitively illustrate this transition point,
Fig. 18 presents two individual results of the same scenario of
Example 2a, with FAST flows starting first with fixed value,
and with different random seeds in the simulation. Although in
both cases FAST flows start first, Reno flows may or may not
take over link 1-2 and link 3-4, depending on the randomness of
the noise traffic when Reno flows join.

VIII. CONCLUSION

Congestion control has been extensively studied for networks
running a single protocol. However, when sources sharing the
same network react to different congestion signals, the existing
duality model no longer explains the behavior of bandwidth al-
location. The existence and uniqueness properties of equilib-
rium in heterogeneous protocol case are examined in [36]. In
this paper, we study optimality and stability properties. In partic-
ular, it is shown that equilibrium is still Pareto efficient, but there

Fig. 18. Trajectories of queues of example 2a, with � fixed at 8.2 and using
different random seeds (FAST flows start first): (a) result 1 and (b) result 2.

is efficiency loss. On fairness, intraprotocol fairness is still de-
termined by utility maximization problem, while interprotocol
fairness is the part which we do not have control on. However,
we can achieve any desired interprotocol fairness by properly
choosing protocol parameters. Motivated by the analytical re-
sults, we further propose a distributed scheme to steer the whole
network to the unique optimal equilibrium. The scheme only
needs to update a linear scaler in the source algorithm on a slow
timescale. It can be deployed incrementally as the existing pro-
tocol needs no change and only the new protocols need to adapt
on the slow timescale.

There are several interesting directions in this relatively open
area. For example, more efforts are still needed to fully clarify
the global dynamics of the two timescale system. The main tech-
nical difficulty here is that the fast timescale system may have
multiple equilibria and therefore the usual two timescale argu-
ment (e.g., singular perturbation) is not applicable. Our current
model assumes each protocol only reacts to one particular price
on the fast timescale, even when they have access to multiple
types of prices. It would be interesting to generalize the anal-
ysis where a protocol can react to a combination of price types,
as new protocols such as TCP Westwood [4], CTCP [33] and
TCP-Illoinois [22] do. Preliminary steps along this direction can
be found in [37]. Finally, the current results should be extended
from static to dynamic setting where flows come and go [2],
[20].

APPENDIX

A. Stability: Special Cases

Theorem 12: For a network with , if there is only one
equilibrium, it is also locally stable.

Proof: We want to prove all eigenvalues of lie in the left
half plane. By the index theorem, we have for the
unique equilibrium.

When equals 1 or 2, it is obvious as for
. Let us consider the case with . Suppose

is the characteristic equation for . Then
is the trace of , is sum of all 2 2 principle minors of

and ).
The Routh array for the equation is
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Applying Routh stability criterion [10], we need all quantities in
the left column to be positive to guarantee all roots lie in the left
half plane. Clearly . Global uniqueness implies .
Hence we only need to check . We have

The first inequality follows from for . The
second one follows from for . One is
referred to [36] for detail properties of . Therefore

As reviewed in Section III-B, when there is only one kind of
price, global stability is proved by using the objective function
of the dual of the system problem as a Lyapunov function. For
heterogeneous protocols, we have the following.

Theorem 13: For a network with , the equilibrium is
globally asymptotically stable.

Proof Sketch: Assume the equilibrium price is . When
, consider the simple quadratic Lyapunov function

When , consider

B. Proof of Lemma 10

Proof: Fix any . Each term in (29) is indexed by
a pair . Fix also a permutation in (29). Suppose there is
only one permutation for which the term indexed by has
a negative sign given by

. This term is then . Since the summation
over ranges over all permutations, we can find a positive term,
indexed by with , that exactly cancels this neg-
ative term. This is because is always 1 and

, yielding the term . Hence we have
shown that, given , if there is only one that yields a negative
term, then it is always canceled by another positive term indexed
by with .

Given a , suppose now there are two permutations for
which

and (36)

and

(37)

Each of and yields a negative term
in the summation in (29). Notice that (36) says that, for all

, paths contains link pairs and .

Hence also pass through link pairs , and
, i.e.,

(38)

(39)

Equation (38) implies that there is a positive term in the sum-
mation in (29) indexed by with :

It cancels the negative term in the summation indexed
by .

To deal with the negative term indexed by ,
note that (39) implies that there are two nonzero terms in the
summation, indexed by and ,
that we now argue are positive. Indeed the term indexed by

is . We fur-
ther have

(40)

Hence

The last equality follows from (37). Similarly, the term with
index is . The hypothesis of the lemma
implies that

Hence, given , if there are two negative terms in the sum-
mation in (29) indexed by and , then we can always
find three positive terms, indexed by, , and

, so that the sum of these five terms are nonnega-
tive.

If there are more than two negative terms, take any addi-
tional negative term, indexed by, say, . The same argument
shows that it will be compensated by the two (unique) positive
terms indexed by and . This com-
pletes the proof.

C. WAN-in-Lab Experiments

In this section, we present two experimental results to il-
lustrate the behavior of Algorithm 2 in new scenarios: when
the bottleneck buffer is small and when all flows are FAST.
The experiments were conducted on a realistic testbed, Cal-
tech’s WAN-in-Lab, which is a wide area network consisting
of 2400 km of long haul optical fiber, a reconfigurable array
of Cisco 7609 routers and ONS 15454 high speed switches,
servers, clients, interconnected via OC-48, GbE and 10GbE
links, using a Calient MEMS optical switch. considering some
previously ignored scenarios (e.g., small buffer size, only FAST
flows). We test our algorithm with a single bottleneck link with
1 Gbps capacity.

Example 5: Small Buffer Size: As we have seen in Ex-
ample 1a and Example 1b, Algorithm 2 can significantly
increase link utilization when buffer size is not too larger

Authorized licensed use limited to: Cornell University. Downloaded on June 23,2010 at 02:43:57 UTC from IEEE Xplore.  Restrictions apply. 



856 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 3, JUNE 2010

Fig. 19. Bandwidth partition between Reno and FAST: (a) without Algorithm 2
and (b) with Algorithm 2.

Fig. 20. Bandwidth sharing among FAST flows.

than . In this experiment, we have . Without Algo-
rithm 2, every FAST flow tries to maintain packets in the
queues along its path leading to high packet loss rate and poor
throughput for both Reno and FAST. With Algorithm 2, is
automatically adjusted to a proper value with respect to the
network parameter .

One FAST and one Reno compete for bandwidth at a
bottleneck link of 1 Gbps (80 packets/ms) capacity. The
buffer capacity is 480 packets. The initial is set to be

. The results are summarized in Fig. 19.
As the left part of the figure shows, both Reno and FAST get
very low throughput due to the high packet loss rate (FAST:
135 Mbps; Reno: 22 Mbps). However, using Algorithm 2,
FAST decreases its as it sees high loss and finally both flows
get high throughput (FAST: 593 Mbps; Reno: 246 Mbps). The
utilization is increased significantly from 15.7% to 83.9%.

Example 6: Only Fast Flows: Although the slow timescale
update shows desirable properties in various tests we have dis-
cussed so far, there is a problem we have not touched, namely
the case when there are only FAST flows in a network. As FAST
is designed to achieve a steady state with no loss, flows will
keep increasing their according to Algorithm 2 until the buffer
is filled and loss is generated. This is undesirable and we pro-
pose to turn off the slow timescale update when a FAST flow
has not seen any loss for a certain amount of time (ten sec-
onds by default). We conduct a test using three FAST flows
all with initial sharing the common 1 Gbps
link. The throughput trajectories are shown in Fig. 20. We can
see that after a period of adjustment, all flows are stabilized.

The steady state throughputs are 128 Mbps, 234 Mbps, and
566 Mbps, which result in a high utilization of 92.8% even
though the initial sum of (600 packets) exceeds the buffer
capacity (480 packets). However, this introduces potential fair-
ness problem as we cannot make sure the individual values are
equal when the update algorithm stops. For example, instead of
achieving perfect fairness with a Jain index [12] of 1, we have
0.733 in this experiment.
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