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Abstract-£l minimization can be used to recover sufficiently 
sparse unknown signals from compressed linear measurements. 
In fact, exact thresholds on the sparsity (the size of the support 
set), under which with high probability a sparse signal can 
be recovered from i.i.d. Gaussian measurements, have been 
computed and are referred to as "weak thresholds" [4). It was 
also known that there is a tradeoff between the sparsity and the 
£1 minimization recovery stability. In this paper, we give a closed­
form characterization for this tradeoff which we call the scaling 
law for compressive sensing recovery stability. In a nutshell, we 
are able to show that as the sparsity backs off ro (0 < ro < 1) 
from the weak threshold of £1 recovery, the parameter for the 
recovery stability will scale as �. Our result is based on 

v 1-= 
a careful analysis through the Grassmann angle framework for 
the Gaussian measurement matrix. We will further discuss how 
this scaling law helps in analyzing the iterative reweighted £1 
minimization algorithms. If the nonzero elements over the signal 
support follow a amplitude probability density function (pdf) 

fO whose t-th derivative ft(O) i= 0 for some integer t � 0, 
then a certain iterative reweighted £1 minimization algorithm 
can be analytically shown to lift the phase transition thresholds 
(weak thresholds) of the plain £1 minimization algorithm. 

I. INTRODUCTION 

Compressive sensing addresses the problem of recovering 
sparse signals from under-determined systems of linear equa­
tions [18]. In particular, if x is an n x 1 real-numbered vector 
that is known to have at most k nonzero elements where k < n, 
and A is an m x n measurement matrix with k < m < n, then 
for appropriate values of k, m and n, it is possible to efficiently 
recover x from y = Ax [1], [2], [3], [5]. The most well 
recognized powerful recovery algorithm is £ 1 minimization 
which can be formulated as follows: 

min Ilzlll 
Az=Ax 

(1) 

The first result that established the fundamental phase tran­
sitions of signal recovery using £ 1 minimization is due to 
Donoho and Tanner [2], [4], where it was shown that if the 
measurement matrix is i.i.d. Gaussian, for a given ratio of 
8 = �, £ 1 minimization can successfully recover every k­
sparse signal, provided that f.L = � is smaller that a certain 
threshold. This statement is true asymptotically as n ----t 00 and 
with high probability. This threshold guarantees the recovery 
of all sufficiently sparse signals and is therefore referred to 
as a "strong" threshold. It therefore does not depend on the 
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actual distribution of the nonzero entries of the sparse signal 
and thus is a universal result. 

Another notion introduced and computed in [2], [4] is that 
of a weak threshold f.Lw(8) under which signal recovery is 
guaranteed for almost all support sets and almost all sign 
patterns of the sparse signal, with high probability as n ----t 00. 

The weak threshold is the one that can be observed in 
simulations of £ 1 minimization and allows for signal recovery 
beyond the strong threshold. It is also universal in the sense 
that it applies to any amplitude that the nonzero signal entries 
take. 

When the sparsity of the signal x is larger than the 
weak threshold f.L w (8)n, a common stability result for the 
£ 1 minimization is that, for a set K <;;;: {I, 2, . . .  , n} with 
cardinality IKI small enough for A to satisfy the restrict 
isometry condition [3] or the null space robustness property 
[13] [14], the decoding error is bounded by, 

Ilx - xlh ::::: DllxKlh , (2) 

where x is any minimizer to £ 1 minimization, D is a constant, 
K is the complement of the set K and x K is the part of x 
over the set K. 

To date, known bounds on IKI/n, for the restricted isometry 
condition to hold with overwhelming probability, are small 
compared with the weak threshold f.Lw(8) [3]. [9] [14] used 
the Grassmann angle approach to characterize sharp bounds 
on the stability of £ 1 minimization and showed that, for an 
arbitrarily small EO, as long as IKI/n = (1 - Eo)f.Lw(8)n, 
with overwhelming probability as n ----t 00, (2) holds for some 
constant D (D of course depends on IKI/n). However, no 
closed-form formula for D were given. 

In this paper, we give a closed-form characterization for this 
tradeoff which we call the scaling law for compressive sensing 
recovery stability. Namely, we will give a closed-form bound 
for D as a function of IKI/n. It is the first result of such 
kind. This result is obtained from close analysis through the 
Grassmann angle framework for the Gaussian measurement 
matrix. We will further discuss how this scaling law helps in 
analyzing the iterative reweighted £ 1 minimization algorithm. 

Using this scaling law results for the stability and the 
Grassmann angle framework for the weighted £ 1 minimization, 
we prove that a certain iterative reweighted £ 1 algorithm 
indeed has better weak recovery guarantees for particular 
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classes of sparse signals, including sparse Gaussian signals. 
We previously introduced these algorithms in [16], and had 
proven that for a very restricted class of sparse signals they 
outperform standard £ 1 minimization. In this paper, we are 
able to extend this result to a much wider and more reasonable 
class of sparse signals. The key to our result is the fact that 
for these signals, £ 1 minimization has an approximate support 
recovery property which can be exploited via a reweighted 
£1 algorithm, to obtain a provably superior weak threshold. 
More specifically, if the nonzero elements over the signal 
support follow a probability density function (pdt) f(·) whose 
t-th derivative r(O) -=I- 0 for some t 2: 0, then a certain 
iterative reweighted £ 1 minimization algorithm can be ana­
lytically shown to lift the phase transition thresholds (weak 
thresholds) of the plain £ 1 minimization algorithm through 
using the scaling law for the sparse recovery stability. This 
extends our earlier results of weak threshold improvements for 
sparse vectors with nonzero elements following the Gaussian 
distribution, whose pdf is itself nonzero at the origin (namely 
its O-th derivative is nonzero). 

It is worth noting that different variations of reweighted 
£ 1 algorithms have been recently introduced in the literature 
and, have shown experimental improvement over ordinary £ 1 
minimization [15], [7]. In [7] approximately sparse signals 
have been considered, where perfect recovery is never pos­
sible. However, it has been shown that the recovery noise 
can be reduced using an iterative scheme. In [15], a similar 
algorithm is suggested and is empirically shown to outper­
form £1 minimization for exactly sparse signals with non­
flat distributions. Unfortunately, [15] provides no theoretical 
performance guarantee. 

This paper is organized as follows. In Section II and III, 
we introduce the basic concepts and system model. In Section 
IV, we introduce and derive the main result of this paper: the 
scaling law for the compressive sensing recovery stability. In 
the following sections, we will use the scaling law to give new 
analysis results about the iterative reweighted £ 1 minimization 
algorithms. 

II. BASIC DEFINITIONS 

A sparse signal with exactly k nonzero entries is called k­
sparse. For a vector x, Ilxlh denotes the £1 norm. The support 
(set) of x, denoted by supp (x) , is the index set of its nonzero 
coordinates. For a vector x that is not exactly k-sparse, we 
define the k-support of x to be the index set of the largest k 
entries of x in amplitude, and denote it by SUpPk(X). For a 
subset K of the entries of x, x K means the vector formed by 
those entries of x indexed in K. Finally, max Ixl and min Ixl 
mean the absolute value of the maximum and minimum entry 
of x in magnitude, respectively. 

III. SIGNAL MODEL AND PROBLEM DESCRIPTION 

We consider sparse random signals with i.i.d. nonzero en­
tries. In other words we assume that the unknown sparse signal 
is an n x 1 vector x with exactly k nonzero entries, where each 

nonzero entry is independently sampled from a well defined 
distribution. The measurement matrix A is a m x n matrix 
with i.i.d. Gaussian entries with a ratio of dimensions 8 = �. 
Compressed sensing theory guarantees that if M = � is smaller 
than a certain threshold, then every k-sparse signal can be 
recovered using £ 1 minimization. The relationship between 8 
and the maximum threshold of M for which such a guarantee 
exists is called the strong sparsity threshold, and is denoted 
by Ms(8). A more practical performance guarantee is the so­
called weak sparsity threshold, denoted by Mw(8), and has 
the following interpretation. For a fixed value of 8 = � and 
i.i.d. Gaussian matrix A of size m x n, a random k-sparse 
vector x of size n x 1 with a randomly chosen support set and 
a random sign pattern can be recovered from Ax using £ 1 
minimization with high probability, if � < Mw(8). Similar 
recovery thresholds can be obtained by imposing more or 
less restrictions. For example, strong and weak thresholds for 
nonnegative signals have been evaluated in [6]. 

We assume that the support size of x, namely k, is slightly 
larger than the weak threshold of £ 1 minimization. In other 
words, k = (1 + EO)Mw(8) for some EO > o. This means that 
if we use £1 minimization, a randomly chosen Mw(8)n-sparse 
signal will be recovered perfectly with very high probability, 
whereas a randomly selected k-sparse signal will not. We 
would like to show that for a strictly positive EO, the iterative 
reweighted £ 1 algorithm of Section V can indeed recover a 
randomly selected k-sparse signal with high probability, which 
means that it has an improved weak threshold. 

IV. THE SCALING LAW FOR THE COMPRESSIVE SENSING 

STABILITY 

In this section, we will derive the scaling of the £ 1 recovery 
stability as a function of the signal sparsity. More specifically, 
we are interested in characterizing a closed-form relationship 
between C and the sparsity IKI in the following theorem. 

Theorem 1. Let A be a general m x n measurement matrix, 
x be an n-element vector and y = Ax. Denote K as a subset 
of {1, 2, ... , n} such that its cardinality I K I = k and further 
denote K = {1, 2, ... , n} \ K. Let w denote an n x 1 vector. 
Let C > 1 be a fixed number. 

Given a specific set K and suppose that the part of x on 
K, namely XK isfixed VxK, any solution x produced by the 
£1 minimization satisfies 

and 
II(x - x)K111 :S C

2� 111xK111, 

if and only if Vw E IR n such that Aw = 0, we have 
w-IlxK + wKl11 + II ; lit 2: IlxK111. (3) 

In fact, if (3) is satisfied, we will have the stability result 
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In [9], it was established that when the matrix A is sampled 
from an i.i.d. Gaussian ensemble, C = 1, considering a single 
index set K, there exists a constant ratio 0 < /-l w < 1 such that 
if I�I :::; /-lw, then with overwhelming probability as n ---> 00, 

the condition (3) holds for all W E IRn satisfying Aw = O. 
Now if we take a single index set K with cardinality .l!D = n (1 -ro)/-lw, we would like to derive a characterization of C, 
as a function of � = (1 -ro)/-lw, such that the condition 
(3) holds for all w E IRn satisfying Aw = O. The main result 
of this paper is stated in the following theorem. 

Theorem 2. Assume the m x n measurement matrix A is 
sampled from an i. i. d Gaussian ensemble, let K be a single 
index set with � = (1 - ro)/-lw, where /-lw is the weak 
threshold for ideally sparse signals and ro is any real number 
between 0 and 1. We also let x be an n-dimensional signal 
vector with XK being an arbitrary butfixed signal component. 
Then with overwhelming probability, the condition (3) holds 
for all w E IRn satisfying Aw = 0, with respect to the 
parameter C = v'l�W' 

Proof When the measurement matrix A is sampled from 
an i.i.d. Gaussian ensemble, it is known that the probability 
that the condition (3) holds for all w E IRn satisfying Aw = 
o is the Grassmann angle, namely the probability that an 
(n -m )-dimensional uniformly distributed subspace intersects 
a polyhedral cone trivially (intersecting only at the apex of 
the cone). The complementary probability that the condition 
(3) does not hold for all wEIR n satisfying Aw = 0 is 
the complementary Grassmann angle. In our problem, without 
loss of generality, we scale XK (extended to an n-dimensional 
vector supported on K) to a point in the relative interior of a 
(k - 1 )-dimensional face F of the weighted £ 1 ball, 

SP = {y E IRn I IIYKlll + II Y; 111 :::; I}. (4) 

The polyhedral cone we are interested in for the complemen­
tary Grassmann angle is the cone SP -XK, namely the cone 
obtained by setting XK as the apex, and observing SP from 
this apex. 

Building on the works by Santalo [11] and McMullen 
[12] in high dimensional integral geometry and convex poly­
topes, the complementary Grassmann angle for the (k - 1)­
dimensional face F can be explicitly expressed as the sum of 
products of internal angles and external angles [10]: 

(3(F, G)'"((G, SP) , (5) 

where 8 is any nonnegative integer, G is any (m + 1 + 28)­
dimensional face of the SP (�m+1+28(SP) is the set of all such 
faces), (3(',') stands for the internal angle and 'Y(',') stands 
for the external angle. 

The internal angles and external angles are basically defined 
as follows [10][12]: 

• An internal angle (3( Fl, F2) is the fraction of the hyper­
sphere S covered by the cone obtained by observing the 

face F2 from the face Fl. 1 The internal angle (3(Fl' F2) 
is defined to be zero when Fl rJ;. F2 and is defined to be 
one if Fl = F2• 

• An external angle 'Y(F3, F4) is the fraction of the hy­
persphere S covered by the cone of outward normals to 
the hyperplanes supporting the face F4 at the face F3. 
The external angle 'Y(F3, F4) is defined to be zero when 
F3 rJ;. F4 and is defined to be one if F3 = F4. 

When C = 1, we denote the probability P in (5) as Pl. By 
definition, the weak threshold /-lw is the supremum of I�I :::; 
/-lw such that the probability PI in (5) goes to 0 as n ---> 00. 

We need to show for I�I = (1 -ro)/-lw and C = yll�W' (5) 
also goes to 0 as n ---> 00. To that end, we only need to show 
the probability pi that, there exists an w from the null space 
of A such that 

IlxK + wKlll + II �:1 IiI + II w(;211l < IlxKliI (6) 

goes to 0 as n ---> 00, where Coo is a large number which we 
may take as 00 at the end, Kl, K2 and K are disjoint sets 
such that IKI UK I = /-lwn and Kl UK2 = K. 

Then the probability pi will be equal to the probability that 
an (n - m)-dimensional uniformly distributed subspace inter­
sects the polyhedral cone WSP - XK nontrivially (intersecting 
at some other points besides the apex of the cone), where WSP 
is the polytope 

WSP = {y E IRn I llYKlll + II�: IiI + II Y2 IiI:::; I}. (7) 

Then pi is also a complementary Grassmann angle, which 
can be expressed by (10): 

PI=2XL (3(F, G)'"((G, WSP). (8) 

Now we only need to show pi :::; Pl. If we denote l = 
(m + 1 + 28) + 1 and k = (l-ro)/-lwn, in the polytope W SP, 
then there are in total (7�:) 21-k faces G of dimension (l-l) 
such that F � G and (3(F, G) i- o. 

However, we argue that when Coo is very large, only (7�::)21-k such faces G of dimension (l-l) will contribute 
nonzero terms to pi in (8), where kl = /-lwn. In fact, a certain 
(l - I)-dimensional face G supported on the index set L is 
the convex hull of Ciei, where i E L, Ci is the corresponding 
weighting for index i (which is 1 for the set K, Coo for 
the set K 1 and C for the set K 2 ), and ei is the standard 
unit coordinate vector. Now we show that if K 1 rJ;. L, the 
corresponding term in (8) for the face G will be 0 when Coo 
is very large. 

Lemma 1. Suppose that F is a (k - I)-dimensional face of 
WSP supported on the subset K with IK I = k. Then the 
external angle'Y(G, WSP) between an (l-I)-dimensional face 

1 Note the dimension of the hypersphere S here matches the dimension of 
the corresponding cone discussed. Also, the center of the hypersphere is the 
apex of the corresponding cone. All these defaults also apply to the definition 
of the external angles. 

978-1-4244-9848-2/11 $26.00©2011 IEEE 



G supported on the set L(F � G) and the polytope WSP is 0 
when K1 ct L and Coo is large. 

Proof Without loss of generality, assume K = {n -k + 
1, . . .  , n}. Consider the (l - I)-dimensional face 

G - {C n-I+1 C n-k n-k+1 n} - conv n-I+1 X e , ... , n-k X e , e , ... , e 
of WSP. The 2n-1 outward normal vectors of the supporting 
hyperplanes of the facets containing G are given by 

n 
L 

p=l p=n-I+1 p=n-k+1 
Then the outward normal cone c(G, WSP) at the face G is 

the positive hull of these normal vectors. When K 1 ct L, the 
fraction of the surface of the (n - l - 1 )-dimensional sphere 
taken by the cone c(G, WSP) is 0 since the corresponding Cp 
is very large. • 

Now let us look at the internal angle (3(F, G) between the 
(k -1 )-dimensional face F and an (l-1 )-dimensional face G, 
where K 1 is a subset of the support set of G. Notice that the 
only interesting case is when F � G since (3(F, G) -=I=- 0 only 
if F � G. We will see if F � G, the cone c(F, G) formed by 
observing G from F is the direct sum of a (k  -1 )-dimensional 
linear subspace and the positive hull of (l-k) vectors. These 
(l - k) vectors are in the form 

1 1 Vi = (-'k' ... , -'k' 0, ... , Ci, 0, ... 0) , i E L \ K. 

For those vectors Vi with i E K1, Ci = Coo. When Coo is 
very large, the considered cone takes half of the space at each 
i-th coordinate with i E K 1. 

So by the definition of the internal angle, the internal angle 
(3(F, G) is equal to 2k;-k x (3(F, G1),  where G1 is supported 
only on the set L \ K 1. It is known that this internal angle 
(3(F, G1 ) is equal to the fraction of an (l-k1 -1 )-dimensional 
sphere taken by a polyhedral cone formed by (l - k 1) unit 
vectors with inner product H�2 k between each other. In this 
case, the internal angle is given by 

1 Vl-kl-1( H�2 k ' l -k1 - 1) 
(3(F, G) = 2k1-k Vi (SI-k1-1) , (9) 

l-k1-1 
where Vi(Si) denotes the i-th dimensional surface measure on 
the unit sphere Si, while Vi (a', i) denotes the surface measure 
for regular spherical simplex with (i + 1) vertices on the unit 
sphere Si and with inner product as a' between these (i + 1) 
vertices. Thus (9) is equal to B ( �, l - k1) ,  where 

B(a', m') = () ='
2-
1 

..j(m' - l)a' + l7r-m' /2a,-1/2 J(m', ()), 
(10) 

with () = (1 - d)/a' and 

J(m', ()) = _1_ /00 ( roo 
e-Ov2+2ivA dv)m' 

e-A2 d)". (11) 
.;n -00 Jo 

If we take C = v'l�W' then 

1 1 
1 + C2k 1 + k1 ' 

By comparison, (3(F, G) = 2k1
1_k x (3(F, G) is exactly 

the 2kl
1_k (3(F1' G1) term appearing in the expression for the 

Grassmann angle P between the face F 1 supported on the set 
K1 and the polytope SP, where G1 is an ( l- I)-dimensional 
face of SP supported on the set L. 

Similar to the derivation for the internal angle, we can show 
that the external angle "((G, WSP) is also exactly equal to 
"((G1, SP) term appearing in the expression for the Grassmann 
angle P between the face F 1 supported on the set K 1 and the 
polytope SP, where G1 an (l - I)-dimensional face of SP 
supported on the set L. 

Since there are in total only (7�;1" ) 21-k such faces G of 
dimension (l - 1 )  will contribute nonzero terms to P' in (8), 
substituting the results for the internal and external angles, we 
have P = P'. Thus for I!I = (1 - w)/-lw and C = v'Lw' 
with high probability, the condition the condition (3) holds for 
all W E ]Rn satisfying Aw = O. 

• 

V. ITERATIVE WEIGHTED £1 ALGORITHM 

Beginning from this section, we will see how the stability 
result is used in analyzing the iterative reweighted £ 1 min­
imization algorithms. We focus on the following algorithm 
from [16], [17], consisting of two £1 minimization steps: a 
standard one and a weighted one. The input to the algorithm 
is the vector y = Ax, where x is a k-sparse signal with 
k = (1 + EO)/-lw(8)n, and the output is an approximation x* 
to the unknown vector x. We assume that k, or an upper bound 
on it, is known. Also w > 1 is a predetermined weight. 

Algorithm 1. 

1) Solve the £1 minimization problem: 
x = argmin IIzl11 subject to Az = Ax. (12) 

2) Obtain an approximation for the support set of x: find 
the index set L C {I, 2, . . . , n} which corresponds to the 
largest k elements of x in magnitude. 

3) Solve the following weighted £ 1 minimization problem 
and declare the solution as output: 
x* = argmin IlzLlh + w lizEl11 subject to Az = Ax. 

(13) 
The intuition behind the algorithm is as follows. In the first 

step we perform a standard £ 1 minimization. If the sparsity 
of the signal is beyond the weak threshold /-lw(8)n, then £1 
minimization is not capable of recovering the signal. However, 
we use the output of the £ 1 minimization to identify an index 
set, L, which hopefully contains most of the nonzero entries 
of x. We finally perform a weighted £ 1 minimization by 
penalizing those entries of x that are not in L because they 
have a lower chance of being nonzero elements. 

In the next sections we formally prove that the above 
intuition is correct and that, for certain classes of signals, 
Algorithm 1 has a recovery threshold beyond that of standard 
£1 minimization. The idea of the proof is as follows. In Section 
VI, we prove that there is a large overlap between the index 
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set L, found in Step 2 of the algorithm, and the support set of 
the unknown signal x (denoted by K)-see Theorem 3. Then 
in Section VII, we show that the large overlap between K 
and L can result in perfect recovery of x, beyond the standard 
weak threshold, when a weighted f 1 minimization is used in 
Step 3. 

VI. ApPROXIMATE SUPPORT RECOVERY, STEPS 1 AND 2 
OF THE ALGORITHM 

In this section, we carefully study the first two steps of 
Algorithm 1. The unknown signal x is assumed to be a 
Gaussian k-sparse vector with support set K, where k = 

IKI = (1 + Eo)J.tw(8)n, for some EO > 0. The set L, as 
defined in the algorithm, is in fact the k-support set of x. We 
show that for small enough EO, the intersection of L and K is 
very large with high probability, so that L can be counted as 
a good approximation to K. 

In order to lower bound IL n KI, we separate our work 
in two steps. First, we state a general lemma that bounds 
IKnLI as a function of Ilx - xiiI [17]. Then, we mention an 
intrinsic property of f 1 minimization called weak robustness 
that provides an upper bound on the quantity Ilx - xiII. 
Definition 1. For a k-sparse signal x, we define W(x, >.) to 
be the size of the largest subset of nonzero entries of x that 
has a f 1 norm less than or equal to >.. 

W(x, >.) := max{181 I 8 � supp(x), IlxsllI:::; >.} 

Note that W(x, >.) is increasing in >. .  

Lemma 2 .  [17J Let x be a k-sparse vector and x be another 
vector. Also, let K be the support set of x and L be the k­
support set of x. Then 

IK n LI � k - W(x, Ilx - xiiI) (14) 

We now review the notion of weak robustness, which allows 
us to bound Ilx - xiiI , and has the following formal definition 
[9]. 

Definition 2. Let the set 8 C {1, 2, ... ,n} and the subvector 
Xs be fixed A solution x is called weakly robust if, for some 
C > 1 called the robustness factor, and all xs' it holds that 

(15) 

and 
(16) 

The weak robustness notion allows us to bound the error in 
Ilx - xiiI in the following way. If the matrix As , obtained 
by retaining only those columns of A that are indexed by 8, 
has full column rank, then the quantity 

IIwsl11 /1,= max --
Aw=O,w#O IIwsl1 1 

must be finite, and one can write 

(17) 

From [9] and the scaling law discovered in this paper, we 
know that for Gaussian Li.d. measurement matrices A, f 1 
minimization is weakly robust, i.e., there exists a robustness 
factor C > 1 as a function of � < J.t w (8) for which (15) 
and (16) hold. Now let k1 = (1- (1)J.tw(8)n for some small 
E 1 > 0, and K 1 be the k1 -support set of x, namely, the set of 
the largest k1 entries of x in magnitude. Based on equation 
(17) we may write 

Ilx - xiiI :::; 2C�1_+
1 
/1,) IIxK1 11 1 (18) 

For a fixed value of 8, C in (18) is a function of E1 following 
the scaling law discovered in this paper, and becomes arbi­
trarily close to 1 as E1 --t 0. /1, is also a bounded function of 
El and therefore we may replace it with an upper bound /1, * . 
We now have a bound on Ilx - xiII. To explore this inequality 
and understand its asymptotic behavior, we apply a third result, 
which is a certain concentration bound on the order statistics of 
the random variables following certain amplitude distributions. 

Lemma 3. Suppose Xl,X2,'" ,XN are N i. i.d random 
variables whose amplitudes, with a mean value of E(IXI), 
follow thejlrobability density function f(x) for x � 0. Let 
8N = L i=l IXil and let 8M be the sum of the smallest M 
numbers among the lXii ,  for each 1 :::; M :::; N. Then for 
every E > 0, as N --t 00, we have 

8N J1D(liV - E(IXI)I > E) --t 0, 

8M 1 rP-1(*) J1D(1 8N 
- E(IXI) io 

xf(x)dxl > E) --t 0, 

where F(x) is the corresponding cumulative distribution func­
tion for the considered random variable amplitude IXI . 
Without loss of generality, we assume E(IXI) = 1. As a direct 
consequence of Lemma 3 we can write: 

Ilx](111 p-1( <f:<�1) J1D(1 IIxl11 -10 xf(x)dxl > E) --t ° 

for all E > ° as n --t 00. Define 

P-1«0+q) 2C(1 + /1,*) 1 1+<0 ((EO) := inf C xf(x)dx > E €1>0 - 1 0 
Combining (18) with (19) we can get 

(19) 

J1D( Ilx - xiiI - ((EO) < E) --t 1 (20) IIxl11 
for all E > ° as n --t 00. In summary, we have showed that 
IK n LI � k - W(x, Ilx - xiII), and then "weak robustness" 
of f 1 minimization then guarantee that for large n with high 
probability Ilx - xiII :::; ((Eo)llxI1 1 ' These results will further 
lead to the main claim on the support recovery. 
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Theorem 3 (Support Recovery). Let A be an i. i.d Gaussian 
mxnmeasurement matrix with!;[! = 8. Let k = (l+fo)J.£w(8) 
and x be an n x 1 random k-sparse vector whose nonzero 
element amplitude follows the distribution of f(x). Suppose 
that x is the approximation to x given by the £ 1 minimization, 
namely x = argminAz=Axllzllr- Then, for any fO > ° and 
for all f > 0, as n -+ 00, 

JP( Isupp(x) � SUpPk(X) I _ (1 _ F(y*)) > -E) ---> 1, (21) 

where y* is the solution to y in the equation J; xf(x)dx = 

(( fO). 
Moreover, if the integer t ?: ° is the smallest integer for 

which the amplitude distribution f(x) has a nonzero t-th order 
derive at the origin, namely f(t)(O) i- 0, then as fO -+ 0, with 
high probability, 

Isupp(x) n SUPPk(X) I 
= 1 _ O( t�2) k 

EO • (22) 

The proof of Theorem 3 relies on the scaling law for 
recovery stability in this paper and concentration Lemma 3. 
Note that if fO -+ 0, then Theorem 3 implies that IK�LI 
becomes arbitrarily close to 1. We can also see that the support 
recovery is better when the probability distribution function 
of f(x) has a lower order of nonzero derivative. This is 
consistent with the better recovery performance observed for 
such distributions in simulations of the iterative reweighted £ 1 
minimization algorithms. 

VII. PERFECT RECOVERY, STEP 3 OF THE ALGORITHM 

In Section VI we showed that. if f 0 is small, the k-support 
of x, namely L = SUPPk(X), has a significant overlap with 
the true support of x. The scaling law gives a quantitative 
lower bound on the size of this overlap in Theorem 3. In Step 
3 of Algorithm 1, weighted £ 1 minimization is used, where 
the entries in L are assigned a higher weight than those in 
L. In [8], we have been able to analyze the performance of 
such weighted £ 1 minimization algorithms. The idea is that if 
a sparse vector x can be partitioned into two sets L and E, 
where in one set the fraction of non-zeros is much larger than 
in the other set, then (l3) can potentially increase the recovery 
threshold of £ 1 minimization. 

Theorem 4. [8J Let L C {I, 2"" ,n} , w > 1 and the 
fractions h, h E [0, 1] be given. Let "{I = I�I and "(2 = 1-"{1. 
There exists a threshold 8c("(I, "{2, h, h, w) such that with 
high probability, almost all random sparse vectors x with at 
least h "{I n nonzero entries over the set L, and at most h"{2n 
nonzero entries over the set L can be perfectly recovered using 
minAz=Ax II zL 111 +w II zrlll, where A is a 8cn x n matrix with 
i. i. d Gaussian entries. Furthermore, for appropriate w, 

i. e. , standard £1 minimization using a 8cn x n measurement 
matrix with i. i.d Gaussian entries cannot recover such x. 

A software package for computing such thresholds can 
also be found in [19]. We then summarize the threshold 
improvement result in the following theorem, with the detailed 
proofs omitted due to limited space. 

Theorem 5 (Perfect Recovery). Let A be an m x n i. i. d Gaus­
sian matrix with !;[! = 8. if 8c(J.£w(8), 1-J.£w(8), 1, 0, w) < 8, 
then there exist fO > ° and w > ° such that, with high 
probability as n grows to infinity, Algorithm 1 perfectly 
recovers a random (1 + fo)J.£w(8)n-sparse vector with i. i.d 
nonzero entries following an amplitude distribution whose pdf 
has a nonzero derive of some finite order at the origin. 
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