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ABSTRACT 

Application-aware routing exploits static knowledge of an applica
tion's traffic pattern to improve performance compared to general
purpose routing algorithms. Unfortunately, traditional approaches 
to application-aware routing cannot efficiently handle dynamic 
changes in the traffic pattern limiting its usefulness in practice. In 
this paper, we study application-aware routing under traffic uncer
tainty. Our problem formulation allows an application to statically 
specify an uncertainty set of traffic patterns that each occur with a 
given probability, and our goal is to find a single set of combined 
routes that will enable high-performance across all of these traffic 
patterns. We show how efficient combined routes can be found for 
this problem using convex optimization. These combined routes 
are optimal when the performance for every traffic pattern using 
the combined routes is the same as the performance using routes 
that are specialized for just that traffic pattern. We derive necessary 
and sufficient conditions for when our optimization framework will 
find optimal combined routes. We use theoretical and numerical 
analysis for the important class of permutation traffic patterns to 
quantify how often optimal combined routes exist and to determine 
the performance loss when optimal combined routes are infeasi
ble. Finally, we use a cycle-level simulator that includes realistic 
pipeline latencies, arbitration, and buffered flow-control to study 
the latency and throughput of combined routes compared to spe
cialized routes and routes generated using general-purpose routing 
algorithms. The theoretical analysis, numerical analysis, and simu
lation results in this paper provide a first step towards more flexible 
application-aware routing. 

Categories and Subject Descriptors 

C.3 [Perormance or Systems]; C.2.2 [Computer-Communication 
Networks]: Network Protocols-routing protocols 

General Terms 

Algorithms, Theory 
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1. INTRODUCTION 

Most routing algorithms proposed for on-chip networks are 
general-purpose algorithms, since they are designed to perform 
well over a wide-range of applications. They are either completely 
oblivious to the application's traffic pattern (e.g., dimension or
dered routing, ROMM [11], O l TURN [13]) or they dynamically 
adapt to an application's traffic pattern through indirect local in
formation about the network's global performance (e.g., minimal 
adaptive routing [7], GOAL [17]). If the application's traffic pat
tern is known statically, then application-aware routing can poten
tially achieve better performance compared to general-purpose al
gorithms. In on-chip networks, application-aware routes are usually 
determined by either solving a mixed-integer linear program to gen
erate single-path routes [9], or by solving the optimal-routing multi
commodity flow problem [18] following earlier work done for gen
eral networks [2, 5]. We call this the optimal specialized routing 
problem since the goal is to find the optimal routes for a specific 
traffic pattern. These routes are then used to configure the on-chip 
network before executing the application. Single-path routes can 
use source-routing or table-based routing, while multi-path routes 
require table-based routing and per-router split-flow management. 
Multi-path routes offer increased network performance but also 
require more complicated hardware. Although application-aware 
multi-path routes are more common in wide-area-networks, they 
are an interesting research direction for on-chip networks and are 
the focus of this paper. 

Unfortunately, application-aware routing cannot efficiently han
dle dynamic changes in the traffic pattern, and this is a serious limi
tation for modem workloads which often include many application 
phases [14,15]. Each application phase exhibits significantly dif
ferent behavior than other phases, and thus each application phase 
is characterized by a unique network traffic pattern. Application 
phases can last for thousands to millions of cycles. In this work, 
we assume that the phase traffic patterns are known statically, and 
that the sequence of application phases is either known statically or 
is determined dynamically at runtime. In other words, we have an 
uncertainty set of traffic patterns (one per application phase) each 
of which can occur with a given probability. The traffic patterns 
in the uncertainty set and the corresponding probabilities of occur
rence are usually obtained through static analysis or by profiling the 
application of interest. 

Given the uncertainty set, one approach to application-aware 
routing is to find the optimal network routes for each application 
phase, and then reconfigure the network at runtime before each 
phase. However, the cost of detecting application phases and re
configuring the network can be high. We define the combined op
timal routing problem as finding a single set of routes to be used 
across all application phases that results in the same performance or 
close to the same performance as if we used specialized routes for 
each application phase. Naive approaches to this problem include 



heuristically combining the optimal specialized routes for each ap
plication phase into a single set of routes, or combining the traffic 
patterns for all application phases into a single traffic pattern and 
solving a unified optimal-routing multi-commodity flow problem. 
We will show that neither of these naive approaches is optimal. In
stead, we formulate the problem as a convex optimization problem 
( Section 2), and we use theoretical analysis ( Section 3), numerical 
analysis ( Section 4), and simulation results ( Section 5) to illustrate 
that this formulation produces optimal solutions when possible and 
produces nearly-optimal solutions when the optimal solutions are 
infeasible. 

2. OPTIMAL ROUTING UNDER 

TRAFFIC UNCERTAINTY 

To put the problem that we are trying to solve in context and to in
troduce the notation used in the paper, we first describe the optimal 
routing problem for a single traffic pattern and its well-understood 
formulation as a convex optimization problem. We then discuss the 
more general combined optimal routing problem and illustrate how 
it can also be formulated as a similar convex optimization problem. 

2.1 Specialized Optimal Routing Problem 

An on-chip network interconnects terminals through a set of 
routers and unidirectional point-to-point channels (links). For this 
work, we focus on direct networks where there is one router per 
terminal, and we call the combination of a router and a terminal a 
node. Traffic patterns can be modeled by the communication be
tween the different nodes. We denote the number of nodes in the 
network as N and the number of links as L. The capacities of the 
links are represented by C E IRL. First, we define a few terms that 
will help us with the mathematical formulation of the problem. 

Traffic Matrix/Pattern (D) - The traffic matrix D E IRNxN speci-
fies the traffic requirements of the application. Each entry D(s,d) 
represents the desired rate of data transfer from node s to node d 
and each such source-destination pair is said to constitute a net
work flow. We suppose that there are F non-zero flows in each 
traffic matrix, and we label the flow from s to d as the tuple (s,d). 

Incidence Matrix (A) - The flow constraints imposed by the topol
ogy of the network are captured by its incidence matrix A E IRNxL 
which is defined as follows, { + I, if link j is directed to node i 

A(i, j) = -I, if link j is directed away from node i 
0, otherwise. 

Link Rates (Y) - Y E IRLxF represents the rate on each link due 
to each flow in the traffic matrix. It is easy to see that solving 
for the link rates for each flow specifies the route the flow takes 
through the network. We also define y = L�= I Y j as the vector 
of the total rate on each link required by the traffic matrix where 
Y j represents the link rates corresponding to the flow j. 

Cost Function (I) - We will use the following cost function. 

L y(l) 
f(y) = l� C(/) - y(/) 

(I) 

With this formula, the cost function becomes the average num
ber of packets in the system based on the hypothesis that each 

queue behaves as an M/MII queue of packets. Although this as
sumption is violated in real networks, the cost function described 
above provides a useful measure of performance in practice, be
cause it expresses qualitatively the idea that congestion arises 
when the total rate on a link approaches its capacity as pointed 
out in [I]. Other measures of congestion include the maximum 
link utilization, but we do not consider them since a computa
tional study has shown that the choice of the objective function 
between maximum link utilization and average number of pack
ets in the network does not significantly impact the performance 
when used for routing optimization [19]. 

As noted earlier, we call the optimal routing problem for a single 
traffic matrix the specialized optimal routing problem, and it can be 
formulated as follows, 

minimize f(y) 
y 

subject to AY =75, 

F 
L'yj SC, 

(2) 

j=1 
Y 2: 0. 

where the matrix 75 E IRNxF is obtained from the traffic matrix D 
as follows, { +D(s,d), if 1= d for the flow (s,d) 

75(l,sd) = -D(s,d), if 1= s for the flow (s,d) 
0, otherwise. 

The above formulation is a classic convex optimization problem 
and therefore can be solved efficiently to find the specialized opti
mal routes for the traffic matrix D. 

2.2 Combined Optimal Routing Problem 

Specialized routes are tuned for a single traffic pattern, but real 
applications often include a sequence of application phases each 
with their own traffic pattern. In other words, we have an uncer
tainty set IIJJ = {DI, . . .  , DM} of M traffic patterns that occur with 
probabilities PI , . . .  , PM. As noted earlier, we define the combined 
optimal routing problem as follows: find a single set of routes that 
enables the same performance or close to the same performance on 
each traffic pattern as if we used specialized routes for each traffic 
pattern. If the combined routes achieve the same performance as 
the specialized routes on each traffic pattern we call them optimal 
combined routes. Combined routes will enable us to configure the 
on-chip network once, and achieve optimal or near-optimal perfor
mance during all application phases. Fig. 1 illustrates the combined 

(a) (b) (c) 

Figure 1: Specialized and Combined Routes for for Traffic Ma
trices DA and DB - DA (i, j) = DB(i, j) = ° except for DA (0, 3) = 
DA(0,2) = DB(O, I) = DB(I,2) = 1. 



�Dl 
3 2 

(a) 

�:O'A/C"\ �\ �:IQ\ �\ 
i) \A/e ) 

" I � .......... ___ ... I 

3 2 3 2 

(c) (d) 

Figure 2: Specialized and Combined Routes for Traffic Matri
ces DA and Dc - DA(i,j) = Dc(i,j) = ° except for DA(0,3) = 

DA(0,2) = Dc(0,2) = Dc(2, 1) = I. 
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Figure 3: Specialized and Combined Routes for Traffic Matri
ces DA and DD - DA (i, j) = Dc(i, j) = ° except for DA (0, 3 ) = 

DA(0,2) = DD(I,3) = DD(I,2) = I. 

optimal routing problem for a four-node ring network and two traf
fic patterns, DA and DB, each with two flows. Note that the example 
(and the other examples in this section) use single-path routing to 
simplify the discussion, but the illustrated concepts are common 
across both optimal single-path and mUlti-path routing. Fig. I a and 
Fig. I b illustrate optimal specialized routes for D A and DB respec
tively, and Fig. Ic illustrates combined routes for the uncertainty 
set containing DA and DB assuming each traffic pattern occurs with 
equal probability. Note that since the two traffic patterns have no 
flows in common, the optimal combined routes are simply the com
bination of the specialized routes for each traffic pattern. We can 
configure the four routers once with the routes show in Fig. Ic 
and we will achieve optimal performance during both application 
phases. 

Given this example, a naive approach to the combined optimal 
routing problem is to simply solve the specialized optimal routing 
problem for each traffic matrix in the uncertainty set and then merge 
the resulting routes to create the combined routes. Unfortunately, 
this approach does not robustly handle flows that are shared across 
multiple traffic matrices. For example, Fig. 2a and Fig. 2b show 
the optimal specialized routes for two traffic patterns, DA and Dc. 
The specialized route for flow (0,2) is different for the two traffic 
patterns, and thus it is unclear which one to choose when combin
ing the specialized routes. In Fig. 2c, we choose the specialized 
route from the solution to DA, while in Fig. 2d, we choose the 
specialized route from the solution to Dc. The former results in 
optimal combined routes, while the latter will result in reduced per
formance when executing traffic pattern DA since the link between 
node ° to 3 is more heavily loaded. In larger network topologies 
with more complicated traffic patterns, it is not clear how to effec
tively combine optimal specialized routes. The key problem with 
this approach is that it considers the traffic matrices in the uncer
tainty set in isolation without considering their interaction when 
combining routes. 

Another naive approach is to weight each element in each traffic 
matrix in the uncertainty set by the probability of that traffic matrix 
occurring and sum the corresponding elements across all traffic ma
trices. We can then solve the specialized optimal routing problem 

for this combined traffic matrix. Unfortunately, some solutions for 
the combined traffic matrix result in non-optimal combined routes. 
For example, Fig. 3a and Fig. 3b show the specialized routes for two 
traffic patterns, DA and DD. There are no shared flows, so combin
ing DA and DD into a single traffic matrix is straightforward. Fig. 3c 
and Fig. 3d show two possible solutions to the specialized optimal 
routing problem for the combined traffic matrix. The former results 
in optimal combined routes, while the latter will result in reduced 
performance when executing traffic pattern DA as well as DD since 
the links connecting node ° to node 3 and node 1 to node 2 re
spectively will be more heavily loaded. The key problem with this 
approach is that a single combined traffic matrix implies that flows 
from all traffic patterns in an uncertainty set happen simultaneously, 
but our problem formalation only uses a single traffic pattern during 
each application phase. 

These examples illustrate that the key challenge in solving the 
combined optimal routing problem is creating a unified optimiza
tion framework that can determine both the specialized routes for 
each traffic pattern and the way these specialized routes interact 
to determine optimal combined routes. This is true for both single
path or mUlti-path routes. Our approach is to design an optimization 
problem that minimizes the expected cost function across all traffic 
matrices in the uncertainty set. In addition, the combined routes 
have to satisfy the requirements of every traffic matrix in the un
certainty set simultaneously. This means that if there is a flow that 
is shared across multiple traffic matrices, then the route computed 
for it should be the same for each of those traffic matrices. It is not 
immediately clear whether we can capture this intuitive constraint 
in terms of a convex constraint that will let us set up a convex opti
mization problem. Fortunately, the following theorem says that we 
can do precisely that. 

Theorem 1. Suppose that [)] and [)2 both have a flow (s,d) and 
(s d) (s d) that Y] ' and Y2' are the corresponding link rates. Then the 

route taken by the flow (s,d) , as specified by the link rates, is 
the same for both traffic patterns if and only if yi',d) / D] (s, d) = 

yi',d) /D2(S,d) where Di(S,d) represents the demand from s to d 
for traffic pattern Di. 

Proof Intuitively, the route for a flow (s,d) can be uniquely rep
resented by how the flow splits at the intermediate nodes between 
the source and the destination. These split ratios indicate the route 
that one unit of traffic will take through the network from source 
to destination. We know that link rates can be uniquely determined 
from these node-based split ratios [5]. Since a route can be uniquely 
specified by node-based split ratios, it is easy to see that if the routes 
are the same between sand d for both [)] and [)2 then the normal
ized rates on each link of the network will also be the same, i.e., 

y(s,d)/D (s d) = y(s,d)/D (s d) ] ] ,  2 2 , · 
Now suppose that yi',d) /D] (s,d) = yis,d) /D2(S,d). This im

plies that the normalized inflow into each node of the network and 
the normalized outgoing rates from each node are the same for both 
traffic patterns. So the split ratios at each node are the same for 
the flow between sand d for both [)] and [)2. Since at each node, 
the split ratios corresponding to a flow completely define the route 
taken by the flow through the network, we can conclude that the 
route taken by flow (s,d) is the same for both traffic patterns. 0 

Now we can define the optimal routing problem when there is 
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Figure 4: Specialized and Combined Routes for Traffic Matri
ces DA and DE - DA(i,j) = DE(i,j) = 0 except for DA(0,3) = 
DA (0,2) = DE(0,2) = DE(l ,2) = 1. 

uncertainty in the traffic pattern as follows, 

M 
minimize L p;!Cn) 
{Y, ,Y2, ... ,YM} ;=1 

subject to FY; = D;, i = 1,2, ... ,M 

F: 
[J/ �C,i = 1,2, ... ,M 
j=1 

Y; 2: O,i = 1,2, ... ,M 

y;(s,d) ID;(s,d) = y)"d) IDj(s,d) 

if flow (s,d) is in both D; and Dj . 

(3) 

Solving the above optimization problem is guaranteed to find the 
optimal combined routes if they exist. Suppose that there exists 
optimal combined routes for an uncertainty set [J) = {DI , . . .  , DM} 
and that the solution to Eq. 3 does not correspond to these routes. 
We can then show that a contradiction results, since selecting the 
optimal combined routes will further decrease the cost function in 
Eq. 3 as the f(Y;) corresponding to each D; is minimized by the 
optimal combined routes by definition. 

But there are still cases where it is simply not possible to find 
optimal combined routes. Fig. 4a and Fig. 4b illustrate the opti
mal specialized routes for two traffic matrices, DA and DE . Fig. 4c 
and Fig. 4d illustrate two solutions that are similar in spirit to what 
might be found using Eq. 3 (remember that for simplicity the ex
amples in this section are for single-path routing, but our analysis 
is for general multi-path routing). Unfortunately, neither solution 
is optimal since both solutions result in more heavily loaded links 
compared to the optimal specialized routes. In this case, recon
figuring the network before each application phase would result in 
higher performance than using a single set of combined routes but 
perhaps this will not be necessary if the combined routes are close 
to optimal. The rest of the paper uses theoretical analysis, numer
ical analysis, and simulations to answer three key questions: (I) 
When are optimal combined routes feasible? (2) How often is this 
condition satisfied for different uncertainty set sizes? and (3) When 
optimal combined routes are not feasible, what is the performance 
loss compared to the optimal specialized routes? 

3. THEORETICAL ANALYSIS 

The effectiveness of the combined optimal routing framework is 
best characterized by how much performance we have to sacrifice 
for the additional flexibility that the framework offers. In this sec
tion, we first derive when we can find optimal combined routes, and 
we then study permutation traffic in more detail. 

3.1 Necessary and Sufficient Conditions 

for Optimality 

We present the necessary and sufficient condition obtained from 
the equilibrium conditions of Eq. 3 in the next theorem albeit with 
a simpler proof for ease of exposition. Identifying the particular 
cases when can achieve optimal combined routes and identifying 
the probabilities of their occurrence is an area that we are continu
ing to explore. 

Theorem 2. Suppose that VI,"" V M are the combined routes ob
tained from Eq. 3 and yt, Y2' , . . .  , YM are the optimal routes corre
sponding to the traffic patterns DI ,D2,'" ,DM· Then fCy; ) = f(i;) 
(i = I, ... ,M) ifand only ify;(s,d) ID;(s,d) = y}',d) * I Dj(s,d) (i,j = 
1, ... ,M) where D;(s,d) > 0 and Dj(s,d) > 0 represents the de
mand from s to d for traffic patterns D; and Dj respectively. 

Proof Clearly if y/"d) * ID;(s,d) = y)"d) * IDj(s,d) (i,j 
I, ... ,M) where D;(s,d) > 0 and Dj(s,d) > 0 then the condition 
required to be satisfied by the shared flows in Eq. 3 is satisfied and 
consequently Y/ (i = I, ... , M) is a solution to Eq. 3 indicating that 
fCy;) =f(i;) (i = I, ... ,M). 

Next suppose that f(y; ) = f(i;) (i = I, ... ,M). Clearly V;(i = 
I, ... ,M) are optimal for the traffic matrices DI, D2,"" DM respec
tively, i.e., V; = Y/ (i = 1, ... ,M). Also since V;(i = I, ... ,M) is 

a solution to Eq. 3 we know that the condition V;s,d) I D;(s, d) = 
V)',d) I Dj(s,d) (i,j = 1, ... ,M) where D;(s,d) > 0 and Dj(s,d) > 
o is satisfied for the shared flows between the pairs of traffic 

matrices D; and Dj and so we conclude that y/"d) * ID;(s,d) = 
y}',d)* IDj(s,d) (i,j = I, ... ,M). D 

In words, the above result states that we can find optimal com
bined routes for a given uncertainty set, if and only if for any shared 
flow there exists optimal routes obtained by solving Eq. 2 that are 
the same for all the traffic matrices in the uncertainty set that con
tain that flow. 

But this condition as stated is difficult to verify in practice and 
we would like to find verifiable conditions. For instance, from the 
structure of Eq. 3, it is clear that if there are no shared flows between 
the D;s then the problem decouples into M independent optimal 
routing problems and the routes obtained by solving Eq. 3 will be 
individually optimal for each element of [J). This gives us an easy to 
check sufficient condition for when solutions to Eq. 3 are optimal 
combined routes. 

3.2 Permutation Traffic Matrices 

The analysis in the previous section applies to all traffic patterns, 
but in this section we narrow our focus to just permutation traffic 
matrices. In these traffic patterns, each row and each column has 
only one non-zero entry. For a network with N nodes there are N! 
possible permutation traffic matrices. First, for the sake of simplic
ity, suppose that the uncertainty set [J) consists of two permutation 
traffic matrices. The next theorem tells us how likely it is that these 
two traffic matrices do not have any shared flows. 

Proposition 1. The number of traffic patterns that do not share a 
flow with a given permutation traffic pattern for a network that has 
N nodes is given by PN = N! - L�(/ (�)p; where Po = I. Fur
thermore, we see that limN--+=PNIN! = lie or that as N -+ 00 the 
probability of selecting a pair of permutation traffic matrices which 
do not share flows tends to lie. 



Proof We first note that for the purpose of determining if there 
are shared flows between two traffic matrices, the rates required 
by the flows do not matter. So we index flows simply by a 1 if a 
flow exists and a 0 otherwise. Any permutation matrix can be con
verted to any other permutation matrix by left multiplying it with 
a suitable permutation matrix. We note that a permutation traffic 
pattern A will share a flow with another permutation traffic pattern 
B only if the permutation matrix that transforms A's permutation 
matrix into the permutation matrix of B has non-zero diagonal en
tries. By eliminating all permutation matrices with non-zero di
agonal entries from the set of permutation matrices leaves us with 
the transformations that will yield traffic patterns that do not share a 
flow with a given permutation traffic pattern. Consequently we have 
PN = N! -E�r/ (�)Pi. Here we set Po = 1 for brevity in notation. 

The second part of the theorem is similar to the famous "Hat 
Check Problem" studied by Bernoulli and Montmort although we 
provide a different solution. We have, 

E (":)p; =N! 
i=O I 

* E (":) kii! =N! 
i=O I 
N 

* Ekd(N -i)! = 1 
i=O 

Using induction we can show that ki = E�=o (-l)i O!. First we 
note that for N = 0, ko = 1. Then applying the induction hypothesis 
to E�o kif (N -i)! yields 

N i (-l)i 
ra!'o j!(N-i)! 
N k (-l)i = E E ·'(k .)' k=oi=O J. -] . 

N 
= E Ok/k! 

k=O 
=1 

Since ki = E�=o ( -l)i / j!, we have limi-+= ki = 1/ e completing 
the proof. 0 

As one might expect this probability decreases as the number of 
traffic matrices in IDJ increases. Another interesting restriction is 
obtained when we study what the maximum size of the set IDJ can 
be if we consider only permutation traffic patterns that do not share 
flows. 

Proposition 2. The cardinality oflDJ is N ifwe restrict attention to 
permutation traffic patterns that do not share flows. 

Proof If the traffic patterns do not share flows, by the pigeon hole 
principle we can conclude that the cardinality of IDJ can be at most 
N. To see that it is indeed N, we observe that row rotating an NxN 
identity matrix yields a set of N permutation matrices with corre
sponding traffic patterns that do not share flows. Multiplying any 
given permutation matrix by this set yields a set of permutation ma
trices corresponding to traffic patterns that do not share flows. 0 

% of % of % of % of non-opt 

all opt non-opt with given num 

with with with max shared flows 

M r =l shared r < 1.05 r 1 2 3 4 5+ 

2 65 62 100 1.004 29 57 14 0 0 
3 20 72 100 1.009 29 18 12 18 23 
4 10 100 87 1.073 0 o 16 5 79 
5 3 100 82 1.090 0 0 0 0 100 
6 0 78 1.150 0 0 0 0 100 

Table 1: Results of Numerical Analysis - Columns list the size of 
the uncertainty sets (M); percentage of all uncertainty sets with loss 
factor (I) of one (Le., optimal combined routes are feasible); per
centage of optimal combined routes for which there is at least one 
shared flow; percentage of non-optimal combined routes with a loss 
factor less than 1.05; maximum loss factor over all uncertainty sets; 
percentage of non-optimal combined routes with the given number 
of shared flows. 

For uncertainty sets comprising well-structured permutation traf
fic patterns, with the above results we are able to characterize to 
some extent when we have optimal combined routes. However, as 
pointed out earlier, even in this case it is challenging to determine 
every situation in which we can find optimal combined routes and 
if there is loss in optimality to quantify the loss. Consequently, we 
rely on numerical experiments to help us further characterize the 
performance of the combined optimal routing framework. 

4. NUMERICAL ANALYSIS 

In this section, we empirically answer, as the size of the uncer
tainty set increases, how often we can find optimal combined routes 
and if optimal combined routes do not exist, what is the loss factor. 
The loss factor (r) is the factor by which the average number of 
packets with combined optimal routes differ from that with optimal 
specialized routes. In other words, r = E�1 pi/Cfi)/E�1 pi/(ri). 
Once again, we restrict attention to permutation traffic patterns in 
order to obtain a more complete characterization of the performance 
of the combined optimal routing framework on this important class 
of traffic patterns. 

We performed our evaluations over uncertainty sets with two to 
six traffic matrices on a 6x6 two-dimensional mesh. For each set 
size, we randomly generated 500 uncertainty sets and solved the 
corresponding specialized and combined optimal routing problems 
with the objective being to minimize the average number of pack
ets in the network. Note that these numerical experiments involve 
solving multiple convex optimization problems with several hun
dred thousand variables. Even though the optimization problems 
were solved efficiently using cvx [6], the calculations for each un
certainty set took on the order of hours to complete and the com
plete numerical analysis required many thousands of hours of com
putation. The results from the numerical analysis are summarized 
in Table 1. 

The first metric that we studied was the empirical probability 
of being able to find optimal combined routes. In order to go be
yond the analytical results of the previous section in quantifying the 
performance of the combined optimal routing framework, we also 
studied the probability of finding optimal combined routes when 
the traffic matrices in the uncertainty set shared flows. But as the 
size of the uncertainty set was increased, the empirical probability 
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Figure 5: Latency vs. Offered Bandwidth for Optimal Com
bined Routes - Theoretical and numerical analysis predicts the 
combined routes should be able to acehive the same throughput as 
the specialized routes. 

of finding optimal combined routes decreased as we would expect. 
Encouragingly, for most of the uncertainty sets that were generated, 
combined optimal routes performed to within 5% of the optimal 
specialized routes as can be seen. 

This observation naturally led to the next question which was 
when we did lose optimality, how bad was the loss? For uncer
tainty set sizes 2 and 3, at least in our sample sets, very low loss in 
optimality was observed. However, for larger uncertainty set sizes, 
fairly high values of r were observed in the worst case. But even 
in these cases, we expect that the combined optimal routes will per
form better than the general-purpose routing algorithms as the next 
section will illustrate. For the uncertainty sets with non-optimal 
combined routes, we also studied the percentages of occurrence of 
different numbers of shared flows. The idea was to study the cor
relation between the number of shared flows and the probability of 
an uncertainty set having an undesirably high value for r. 

5. SIMULATION RESULTS 

The simulator that we used was DAR SIM [10], a cycle-level on
chip network simulator. All the simulations were performed on a 
6x6 two-dimensional mesh network. The simulator was given a 
warm-up period of 20,000 cycles after which performance statis
tics were collected over 100,000 cycles in order to ensure the accu
racy of the results. The primary performance criteria that we mea
sured were throughput and latency. The data rates are expressed in 
flits/cycle and each packet is divided into 8 flits. Also the simula
tor was configured so that each physical channel was divided into 6 
virtual channels with 8 flits of buffering each. The capacity of the 
physical channel was set to be I flit/cycle. In the simulator, virtual 
channels are pre-allocated to the different flows once the routes are 
computed so that deadlock is avoided according to the static virtual 
channel allocation scheme described in [16]. 

The aim of the simulations was to get an idea of how factors 
like buffering and flow control influenced the performance of the 
optimal routes. We conducted our study with two uncertainty sets 
of size two where one had optimal combined routes and the other 
did not. In order to compare the performance of the optimal rout
ing scheme with the general-purpose routing algorithms, we also 
studied how ROMM, 01 TURN, and DOR performed for the traffic 
matrices in the uncertainty sets. As expected, from the latency
throughput curves in Fig. 5, the optimal combined routes match 
the peak throughput achieved by the optimal specialized routes for 

(a) (b) 

Figure 6: Latency vs. Offered Bandwidth for Sub-Optimal 
Combined Routes - Theoretical analysis shows that optimal com
bined routes are infeasible, but numerical analysis predicts that the 
combined routes should still perform close to the specialized routes. 

both traffic matrices in the uncertainty set while outperforming the 
general-purpose routing algorithms. 

More interesting results can be observed from the uncertainty set 
with non-optimal combined routes. From the previous section we 
expect that for uncertainty set size two, the combined routes should 
perform very close to the optimal specialized routes. Even factoring 
in the affects of non-idealities introduced by the simulator, we see 
from Fig. 6 that the specialized and combined routes are very close 
to each other in performance. Once again, it can be observed that 
the application-aware schemes yield better performance than the 
general-purpose algorithms. 

Of course it would be interesting to continue exploring the space 
of permutation matrices and study how the non-ideal characteristics 
of on-chip networks affect the performance of combined optimal 
routing on larger uncertainty sets where adversarial traffic matrices 
can result in larger loss factors. The simulation and numerical re
sults suggest this and many other directions of continued research 
to give us a better understanding of the properties of the combined 
optimal routing framework which appears to be a promising first 
step towards introducing optimal routing with a certain degree of 
flexibility to networks on-chip. 

6. RELATED WORK 

In the context of on-chip networks, application-aware optimal 
single-path routing for a single traffic pattern was explored in [3,9]. 
But the focus on single path routes made the optimal routing prob
lem NP-hard and consequently inefficient to solve. On the other 
hand, optimal mUlti-path routing for a single traffic pattern was 
explored even earlier [18]. Unlike the optimal single-path rout
ing problem, the optimal mUlti-path routing problem is convex and 
therefore can be solved efficiently to determine optimal routes. Our 
work computes optimal mUlti-path routes as well, but differs from 
the previous work in that we are computing the routes for an uncer
tainty set of traffic patterns. 

Another approach to application-aware routing can be found 
in [12] where the idea is to map the application's communication 
graph to the network in such a way as to avoid cycles in the channel 
dependency graph. Then minimal adaptive deadlock-free routing 
is performed on the acyclic application-aware channel dependency 
graph. However, here knowledge of the application is just used to 
avoid deadlock by a suitable mapping of the traffic requirements to 
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the network. It is not used to try and optimize the performance of 
the routing algorithm with respect to any metric. 

The problem of dealing with traffic uncertainty when formulat
ing the optimal routing problem has only begun to receive attention 
over the last few years. Algorithms like COPE [20] approach the 
problem by trying to minimize the worst case performance of the 
routing scheme within an uncertainty set. The problem of finding 
optimal routes by minimizing the expected cost over a set of traffic 
patterns has been studied previously in the context of intra-domain 
routing in the Internet [21]. However, the focus was on setting up 
the problem and extending the results of [5] to develop a distributed 
solution method. Our work goes further by providing conditions for 
the existence of optimal combined routes, empirically studying the 
probability that these conditions are met, and quantifying the loss 
in optimality when optimal combined routes do not exist. 

7. CONCLUSIONS 

The paper presents a first step towards more flexible application
aware routing in on-chip networks. In order to get around the fact 
that specialized optimal routing is not viable for traffic patterns 
other than the one that it was designed for, we introduce combined 
optimal routing that can handle uncertainties in the traffic patterns 
that might be produced in the on-chip network. The performance 
of the schemes and their advantages are characterized analytically, 
numerically, and through simulations. Importantly, we derive nec
essary and sufficient conditions for the combined routes to have 
no loss in optimality. Numerical experiments with randomly gen
erated uncertainty sets of permutation traffic matrices provide em
pirical evidence that combined optimal routing can perform very 
close to specialized optimal routing. The simulation results ob
tained using sample points from these randomly generated uncer
tainty sets show that this observation from numerical experiments 
holds even with realistic pipeline latencies, arbitration, and buffered 
flow-control. Overall, the initial results indicate that the combined 
optimal routing framework is a promising technique that adds flex
ibility to application-aware optimal routing. 

There are a number of future directions that we plan to pursue in 
order to further our understanding of the structure of the combined 
routing problem and address practical implementation issues. For 
instance, we would like to better quantify how likely optimal com
bined routes exist for more complex traffic patterns. We are also 
currently exploring how to bound the loss in optimality in the com
bined routing problem. The simulation results imply that the loss 
is typically small, but analytical results will provide a better under
standing given that simulations alone cannot the sweep the entire 
parameter space. 

There also exist practical implementation issues that need fur
ther investigation. For example, mUlti-path routes can potentially 
cause out-or-order delivery of flits and require buffers to re-order 
them. It is also necessary to have a good deadlock scheme in order 
to fully exploit the performance advantages of optimal routing. In 
the paper, we used static allocation of virtual channels in order to 
avoid deadlock [16]. We plan to further study different deadlock 
avoidance schemes such as resource ordering [8] or escape chan
nels [4], and their performance implications. Also, we believe that 
it is important to couple the optimal routing schemes with a suit
able flow control scheme in order to fully exploit their performance 
advantages. Consequently, identifying a good flow control scheme 
is of particular interest to us. Finally, in order to be able to use the 
routes generated by the techniques described in the paper, we need 
a router that is capable of splitting flows. Designing and evaluating 

the router and ways to encode the routes efficiently are two other 
directions for future research. 
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