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Abstract—Current intra-domain routing protocols like OSPF
and IS-IS use link-state routing algorithms with hop-by-hop
forwarding that sacrifice traffic engineering performance for
ease of implementation and management. Though optimal traffic
engineering algorithms exist, they tend to be either not link-
state algorithms or to require source routing – characteristics
that make them difficult to implement. As the focus of this
paper, we introduce HALO, the first optimal link-state routing
algorithm with hop-by-hop forwarding, where link weights can
be calculated locally. Furthermore, our solution can adapt to
changing traffic patterns automatically. The optimality of the
algorithm is proved theoretically and also verified numerically.

I. INTRODUCTION

Finding optimal routes [1] in packet-switched networks has
been of fundamental research and practical interest since the
early 1970s with the advent of ARPANET [2], the predecessor
of the Internet. But today, sub-optimal distributed link-state
routing protocols with hop-by-hop forwarding like OSPF and
IS-IS are the dominant intra-domain routing solutions on the
Internet. These algorithms have become ubiquitous despite
their potentially very large performance loss because of the
explosive growth of the Internet. As the network scaled, it
was clear that the simplicity of these schemes (the main idea
is to centrally assign weights to links and locally calculate
shortest paths) made them easier to implement and manage
compared to the optimal solutions that had been proposed.
Some of the lost performance was recouped through extensive
capital expenditure. For instance, due to the poor resource
utilization resulting from these protocols, many of the “back-
bone” links of the internet are so over-provisioned to support
peak traffic that they run at very low utilizations on average.
Unsurprisingly, the search for an optimal routing algorithm
that has the same ease of management and implementation
as OSPF has continued unabated. In this paper we present
just such an algorithm, HALO (Hop-by-hop Adaptive Link-
state Optimal). To the best of our knowledge, this is the first
optimal link-state hop-by-hop routing algorithm.

Before we proceed, we define a few basic terms followed
by some more background to motivate our study.

Link-state: Routers make routing decisions based on
knowledge of the network topology and the
weights associated with the links.

Hop-by-hop: Each router, based on the destination ad-
dress, controls only the next hop that a
packet takes.

Optimal: The routing algorithm minimizes some cost
function (e.g. minimize total delay) deter-
mined by the network operator. The problem
of guiding network traffic through routing

to minimize a given global cost function is
called traffic engineering (TE).

Additionally, our algorithm has the important benefit of
adaptivity by which we mean that given the link flow rates,
the algorithm does not require the traffic demand matrix as
an input in order to compute link weights or optimal routes.
Specifically, the algorithm seamlessly recognizes and adapts
to changes in the network, both topology changes and traffic
variations, as inferred from the link flow rates – a useful
property for networks with ever changing traffic demand, such
as the Internet.

As noted earlier, our work was motivated by the perfor-
mance loss of OSPF and IS-IS and the resulting inefficien-
cies. In fact, given the offered traffic, finding the optimal
link weights, if they even exist, for OSPF/IS-IS is a well-
known NP-hard problem [3]. Furthermore, it is possible for
even the best weight setting to lead to traffic that deviates
significantly from the optimal traffic distribution [3]. But as
can be expected, designing an optimal protocol while keeping
the simplicity of link-state hop-by-hop protocols comes with
a few challenges.

Firstly, relying only on link-state information means that
no router is aware of the individual communicating pairs
in the network or their requirements and yet have to act
independently such that the TE objective is optimized. This
is a very real restriction as in any large dynamic network
like the Internet, it is not possible to obtain information about
individual communicating pairs. If the link-state requirement is
set aside, optimal distance-vector protocols that rely on locally
transmitted node-states exist [4]. However, the main reason
that a distance-vector protocol is not preferred for intra-domain
routing is because it suffers from scalability issues as well as
decreased robustness like vulnerability to a single rogue router
taking down the network as in the “Internet Routing Black
Hole” incident of 1997 [5].

Secondly, the hop-by-hop forwarding requirement prevents
routers from controlling anything except the next hop that a
packet can take. As a result, a router cannot determine the
entire path that traffic originating at it takes to its destination.
If this requirement is set aside, a projected gradient approach
[6] can be used to yield optimal link-state algorithms which
can be implemented with source routing, where the path a
packet takes through the network is encoded in its entirety at
the source. Unfortunately, source routing is not feasible for
even moderate size networks. Even though such schemes can
be implemented with MPLS [7], optimality comes at the cost
of establishing multiple end-to-end virtual circuits. Moreover,
as the traffic changes, the end-to-end virtual circuits that were



established for a particular traffic pattern become less useful
and performance degrades.

Lastly, our solution has the advantage of being adpative and
if this requirement is set aside, recently significant progress
was made in this direction with PEFT, a link-state protocol
with hop-by-hop forwarding based on centralized weight cal-
culations [8]. Since the link weights are not updated locally,
the routers cannot automatically react to changes in the net-
work state by modifying the link weights, making PEFT not
adaptive. Also, PEFT does not guarantee optimality as claimed
in the paper1.

In this paper we introduce new ideas and reach the first
adaptive link-state optimal routing algorithm with hop-by-hop
forwarding. The rest of the paper is organized as follows. In
Section II we review the different algorithms that have been
proposed for the traffic engineering problem. Next we present
the problem formulation in Section III before presenting and
analyzing our solution in Sections IV and V. Numerical
evaluations are used to verify the performance of the protocol
in Section VI before we conclude the paper with a summary
and future research directions in Section VII.

II. RELATED WORK

Over the years, due to its importance, the TE problem has
attracted a lot of research attention from different research
communities. Below we provide a brief overview of major
related existing results from different communities such as
control, optimization and networking.

Broadly, the existing work can be divided into studies
of heuristic improvements to OSPF [3,9,10] and studies of
optimal routing algorithms. The former work was motivated
by the need to improve the efficiency of OSPF after it had
become the dominant routing protocol on the internet. While
these techniques have been shown to improve the performance
of OSPF by finding better weight settings for the algorithm,
the results are far from optimal. Since we are interested in
an optimal TE algorithm that uses the same information as
OSPF, instead of further exploring the sub-optimal algorithms,
we will focus on reviewing optimal solution techniques.

The optimal traffic distribution is obtained by the solution
of a multicommodity flow problem. Since OSPF and IS-
IS owe their scalability to traffic forwarding done via local
calculations, we will adopt a decentralized approach in our
search for an optimal protocol. The decentralized solution
techniques for this problem that have been proposed so far
can be broadly classified into protocols that are distributed
per node and protocols that are distributed per commodity or
source-destination pair.

The class of decentralized algorithms that are node-based
are distance-vector protocols and include the ones proposed
by Gallager in his classic paper [4], Stern [11] and Agnew
[12]. The idea behind these algorithms was that as long
as a node was aware of the “price” (“average distance”)

1When the optimal routing solution does not use all available paths to the
destination, as is the case in many networks, for example, any network with
a loop, a set of finite optimal weights for PEFT [8] does not exist.

TABLE I: Comparison of Routing Algorithms

Algorithm Link-
state

Hop-by-
hop Optimal Adaptive

OSPF X X × ×
Gallager’s [4] × X X X
Projected
Gradient [6] X × X X

PEFT [8] X X × ×
HALO X X X X

to each destination at each of its neighbors, it had enough
information to make optimal forwarding decisions. From an
optimization standpoint, this is a natural and mathematically
elegant approach since the main ideas follow directly from the
decomposition of the dual of the TE optimization problem.
Decompositions like this, which have been very successful
for problems of this type [13], can be used to yield updating
rules for primal and dual variables (split ratios and node
prices in [4]) that can be shown to converge to optimal
solutions. Similar ideas have also been applied to cross-layer
optimization of networks [14,15].

On the other hand, we have optimal link-state routing
algorithms that are decentralized by source-destination pairs.
Examples of this variety include the flow deviation technique
advocated by Fratta et al [2], projection methods proposed
by Bertsekas and Gafni [6] as well as proximal decomposi-
tion methods [16]. These solutions are based on iteratively
calculating a shortest path at the source for each commodity
and transferring varying amounts of flow from the non-
shortest paths to the shortest path to obtain the optimal traffic
distribution. An important limitation of these algorithms is
that, as noted earlier, they require source routing, i.e., the route
a packet will take through the network has to be completely
encoded at the source.

The preceding overview of how the literature has developed
in this area, clearly reveals the missing link in the search for
an optimal link-state hop-by-hop routing algorithm. In this
paper, we provide this missing link by introducing HALO.
A comparison of several existing solutions and ours can be
seen in Table I.

III. PROBLEM FORMULATION

The optimization problem that is used for traffic engineering
is the Multi-Commodity Flow problem (MCF). For a given di-
rected graph G = (V,E) with node/router set V and edge/link
set E with link capacities cu,v, ∀(u, v) ∈ E, and demands
D(s, t) defined as the rate required for communication from
s to t, the MCF problem can been summarized below.

min
ft
u,v

Φ(f)

s.t.
∑

v:(s,v)∈E

f ts,v −
∑

u:(u,s)∈E

f tu,s = D(s, t), ∀s 6= t



fu,v =
∑
t∈V

f tu,v ≤ cu,v, ∀(u, v)

f tu,v ≥ 0

Here commodities are defined in terms of their final des-
tination t. f tu,v is the flow on link (u, v) corresponding to
commodity t and fu,v is the total flow on link (u, v). The
cost function, Φ, is typically selected to be a convex function
of the link rate vector f = {fu,v}, ∀(u, v) ∈ E. For example,
if we use the M/M/1 delay formula for the cost function,
then Φ(f) =

∑
u,v Φu,v(fu,v) =

∑
u,v fu,v/(cu,v − fu,v) [1].

Throughout the paper, for numerical examples, we will use this
cost function unless specified otherwise. It is also assumed
that Φ′u,v(fu,v) → ∞ when fu,v → cu,v . This captures the
common practice of not allowing links to operate too close to
capacity. In this paper, given a function γ(x(τ)), we will use
γ′ to represent the derivative of γ with respect to x and γ̇ to
represent the time (τ ) derivative of γ.

We also define the price of a link (u, v) as wu,v =
Φ′u,v(fu,v), the price of a path p as

∑
(u,v)∈p wu,v and the

price at a node u to a destination t as,

qtu =
∑

v:(u,v)∈E

αtu,v[wu,v + qtv] (1)

where qtt = 0. The price at a node can be interpreted as the
average price to the destination from that node where the
average is taken over all outgoing edges to the destination
weighted by the split ratios along those edges. If instead the
average is done over all possible paths, Equation (1) can be
stated without recursion as,

qtu =
∑
p∈Pu,t

dp
∏

(i,j)∈p

αti,j (2)

where Pu,t is the set of all paths from u to t and dp =∑
(u,v)∈p wu,v .
A fact about MCF is that its optimal solution generally

results in multi-path routing instead of single-path routing [17].
However, finding the right split ratios for each router for each
commodity is a difficult task. Our starting point is to merge
the link-state feature of protocols that were decentralized
by source-destination pairs with the hop-by-hop forwarding
feature of the node-based decentralization schemes. More
concretely we,
• adjust each router’s split ratios and move traffic from

one outgoing link to another. This only controls the next
hop on a packet’s path leading to hop-by-hop routing.
If instead we controlled path rates we would get source
routing.

• increase the split ratio to the link which is part of the
shortest path even though the average price via the next
hop node may not be the lowest. If instead we forwarded
traffic via the next hop node with the lowest average price
we get Gallager’s approach, which is a distance vector
solution.

• adapt split ratios dynamically and incrementally by de-
creasing along links that belong to non-shortest paths

while increasing along the link that is part of the shortest
path at every router. If instead split ratios are set to
be positive instantaneously only to the links leading to
shortest paths, then we get OSPF with weights, wu,v .

IV. SPECIAL CASES

In order to develop an intuitive understanding of why our
solution takes its current form, it is helpful to consider a few
concrete special cases first. These four cases, each of which
clearly highlights the reason for including a particular factor
in our solution, progressively lead us to the final algorithm,
which we will prove to always work for any general case in
Section V. The calculations in this section also give hints for
the main idea of the proof.

A. Finding the Right Split Dynamically

First let us consider a very simple example illustrated
in Figure 1a. It is worth noting that the KKT optimality
conditions [18] of the MCF problem require that at the optimal
solution the traffic rate is positive only along paths with the
lowest price. In this example, assuming initially wl > ws, a
simple strategy to reach optimality might be to dynamically
shift traffic from the more expensive link to the cheaper link
at some rate δ > 0 till the prices of the two links become
the same. In terms of the change in split ratios at node A this
would be equivalent to decreasing αl and increasing αs at rate
δ/r.

There are two ways to interpret and generalize the intuition
gained from this scenario. Both give the same solution for
this very simple example but in general will lead to different
dynamics (see Figure 2) and possibly even different split ratios.
One interpretation, which forms the basis of the technique
proposed by [4], is that the router shifts traffic headed to
neighbor nodes with higher average price to the neighbor node
with the lowest average price. A different interpretation, which
is the basis of our protocol, is that the router shifts traffic from
links along more expensive paths to the link along the path
with the lowest price. Mathematically, we reach the following
update rule for the split ratios,

α̇tu,v = − δ

rtu
(3)

where (u, v) ∈ E but is not on the shortest path from u
to destination t and rtu is the incoming rate at node u to
destination t.

B. A First Test

However, as a potential counter-example to this interpre-
tation, it is possible to suggest some version of the scenario
described in Figure 1b. Here there is traffic demand of rate r
from router A to router C. The initial splits at router A are
αm along an intermediate price link with price wm and αw
along the more expensive route with price wB +wl, assuming
αl = 1 initially. The relationship between the initial link prices
are assumed to be wl > wm > ws + wB , i.e., link (A,B)
is along the shortest path from A to C, but B also has the
most expensive way to reach C. The concern is that router
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(a) Finding the right split dynamically. Suppose there is a single
demand of rate r trying to get to destination B. Initially, the split
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(b) A first test. Suppose the link weights are as shown and wl >
wm > ws + wB . There is a single demand D(A,C) = r.
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(c) Multiple outgoing paths. Suppose the link weights are as shown
and wl > wm > ws +wB . There is a single demand D(A,C) = r.

𝛼𝑙 

𝛼𝑤   

𝛼𝑠 

Ak 

B 

C 

𝑤𝑚   

𝑤𝑠   

𝑤𝑙   

𝛼𝑚   

𝛼𝑚   

𝛼𝑤   

A1 

𝑤𝐵   

𝑤𝐵   

r 

r 

𝑤𝑚   

(d) Multiple inputs. Suppose the link weights are as shown and
wl > wm > ws + wB . There are k demands D(Ai, C) = r, i =
1, . . . , k.

Fig. 1: Four illustrative examples
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Fig. 2: Trajectories taken by Gallager’s algorithm (dashed line)
and HALO (solid line) to converge to the optimal solution.
Cost values are shown for some contour lines.

A shifting traffic from the intermediate price link to the link
with price wB might result in the cost increasing as router B
currently routes traffic only through the most expensive link
(αl = 1). But because router B decreases αl and increases αs
(in conjunction with the changes at router A), the total cost
does in fact decrease. More precisely, the cost derative can be
calculated as follows,

Φ̇ =− r × δ

r
× wm + r × δ

r
× (wB + wl)

− rB ×
δ

rB
× wl + rB ×

δ

rB
× ws

=− δ(wm − wB − ws) ≤ 0

where rB is the incoming rate to C at B (superscript dropped
for convenience since C is the only destination) and the
inequality follows from the relationship between the prices.

This particular example can also be used to illustrate the
difference between our approach and Gallager’s technique
which arises from the fact that the link leading to the neighbor
with the lowest average price (path A-C with price wm)
may not lead to the cheapest path (path A-B-C with price
wB + ws). Figure 2 shows the trajectories taken by the two
different algorithms to converge to the optimal solution for
this topology. In order to simulate the long link between node
B and node C, an intermediate dummy node D is introduced
that splits the bottom link between B and C into two equal
capacity links. The capacities used were (A,B) = 5, (B,C) =
10, (A,C) = (B,D) = (D,C) = 3. The rate r = 1 and
initially αw = αm = 0.5 and αl = 1. Here we take only one
split ratio at each node because the value of that split ratio
automatically defines the value of the other at each node. Using
Gallager’s algorithm, initially, as can be seen, following the
lowest average price path to the destination (A,C), there is an
increase in the value of αm. Also, as expected from theory, the
trajectory of the algorithm (gradient descent) is perpendicular
to the objective function contour curves. On the other hand,
using HALO, both split ratios are decreased initially. HALO’s
trajectory is usually not perpendicular to the counter curves,
however, it still goes along a descent direction and drives the
total cost down.

C. Multiple Outgoing Paths
The above case study might lead us to ask whether the

simple rule developed thus far (Equation (3)) is sufficient to



guarantee decreasing network cost along any trajectory. In
order to see why it is not, consider the situation presented
in Figure 1c. Now there are k intermediate price links from
router A to router C each of which gets αm/k fraction of the
demand. The relationship between the link prices is the same
as in the previous example. Now the concern is that shifting
traffic in an unrestricted fashion from the intermediate price
links to router B with αl = 1, might result in an increase in
the cost and it is a valid concern as illustrated by the following
calculation.

Φ̇ =− k × r × δ

r
× wm + k × r × δ

r
× (wB + wl)

− rB ×
δ

rB
× wl + rB ×

δ

rB
× ws

=− kδwm + δ(kwB + ws) + (k − 1)δwl

which may be positive for k > 1. But this problem can be
surmounted by modifying the update rule followed by the split
ratios by adding a weighting factor of the split ratio itself.
Mathematically, we have

α̇tu,v = −
αtu,vδ

rtu
(4)

where (u, v) ∈ E but is not on the shortest path from u to
destination t.

With this new rule, the cost derivative can be evaluated as,

Φ̇ =− k × r × δαm
rk
× wm + kr × δαm

rk
× (wB + wl)

− rB ×
δ

rB
× wl + rB ×

δ

rB
× ws

=− δ[αmwm + (1− αm)(wB + wl)] + δ(wB + wl)

− δwl + δws

=− δ[αmwm + (1− αm)(wB + wl)] + δ(wB + ws)

≤0

where the last inequality follows from the fact that the average
price from router A to C, which is αmwm+(1−αm)(wB+wl)
has to be at least as large as the price of the shortest path from
A to C, which is wB + ws.

D. Multiple Inputs

Does Equation (4) ensure that total cost decreases along
its trajectory? Another case worth considering is illustrated in
Figure 1d. This time there are k sources A1, . . . , Ak that have
data to send to router C. Now the concern is that shifting
traffic in an unrestricted manner from all the sources to router
B with αl = 1, could cause the total cost to increase as shown
by the calculations below,

Φ̇ =− k × r × δαm
r
× wm + k × r × δαm

r
× (wB + wl)

− rB ×
δ

rB
× wl + rB ×

δ

rB
× ws

=− kδ[αmwm + (1− αm)(wB + wl)] + (k − 1)δwl

+ δ(kwB + ws)

which may be positive for k > 1. Once again it is possible to
modify the update rule for the split ratios from δαtu,v/r

t
u to

δαtu,v/η
t
ur
t
u. In this case, ηtu = k while for a general network

we will specify how to calculate ηtu in Section V, Algorithm
1. With the new rule, the cost derivative will be the same as
in Section IV-C, and always no more than zero.

Formally, the above discussion leads us to further modify
the update rule in Equation (4) to

α̇tu,v = −
αtu,vδ

ηtur
t
u

(5)

where (u, v) ∈ E but is not on the shortest path from u to
destination t. In the following section we will show that for
any network, this update rule for the split ratios (5) makes
the total cost of the network always decrease, resulting in the
split ratios converging to a set where every element of the
set achieves the global optimum to the MCF problem, and
therefore achieves optimal TE.

V. GENERAL SOLUTION

We first introduce some additional necessary notation. For
a particular destination t at node s we define,

rts =
∑

u:(u,s)∈E

f tu,s +D(s, t)

the inflow rate to a node s destined to t which because of node
flow balance requirements is also the outflow at s to t. We will
also use α without indexing to represent the set of all the split
ratios from all the routers in the network. We have already
noted that at a router u, αtu,v controls the fraction of traffic
to destination t that uses outgoing link (u, v) while satisfying
αtu,v ≥ 0 and

∑
v:(u,v)∈E α

t
u,v = 1.

Next, we define ηtu, the branch cardinality, as the product
of the number of branches encountered in traversing the
shortest path tree rooted at t from t to u. Being a link-state
routing algorithm, each node u has the link-state information
to run Dijkstra’s algorithm to compute the shortest path tree to
destination t. Here additional care is required because every
node has to independently arrive at the same shortest path tree
to ensure that the algorithm proceeds as expected. So at any
stage of Dijkstra’s algorithm, if there is ambiguity as to which
node should be added next, tie-breaking based on node index
is used. The calculation of ηtu proceeds as shown in Algorithm
1. For an illustration of how ηtu is calculated, please refer to
the example following the proof of Theorem 1.

Algorithm 1 Algorithm to calculate ηtu {we,∀e ∈ E}
1: Compute shortest path tree for destination t using Dijk-

stra’s algorithm with tie-breaking based on node index
2: Traverse the tree from t to u
3: Initialize ηtu ← 1
4: At every junction do ηtu ← ηtub where b is the number of

branches from that junction

We are now in a position to describe the adaptive link-state
routing algorithm. For any node u, it controls the evolution of



the destination specific split ratio αtu,v . Suppose that (u, v̄) ∈
E and (u, v̄) is part of the shortest path to t from u. Then
HALO calculates the split ratios as follows.

if rtu > 0, α̇tu,v = −
αtu,vδ

ηtur
t
u

, v 6= v̄ (6)

α̇tu,v̄ = −
∑

v:(u,v)∈E, v 6=v̄

α̇tu,v (7)

else if rtu = 0, αtu,v = 0, v 6= v̄ (8)

αtu,v̄ = 1 (9)

We present the formal description of HALO in Algorithm 2.

Algorithm 2 Forwarding Algorithm at Router u {we,∀e ∈ E}
1: for all t do
2: Calculate ηtu
3: if rtu == 0 then
4: for all v 6= v̄ do
5: αtu,v = 0
6: end for
7: αtu,v̄ = 1
8: else
9: for all v 6= v̄ do

10: α̇tu,v = −α
t
u,vδ

ηtur
t
u

11: end for
12: α̇tu,v̄ = −

∑
v:(u,v)∈E,v 6=v̄ α̇

t
u,v

13: end if
14: end for

To prove the optimality of the above link-state hop-by-hop
algorithm, we will need the following two lemmas. The first
one was derived by Gallager [4], which relates the node prices
to the link weights for each destination t.

Lemma 1.
∑
u∈VD(u, t)qtu =

∑
(u,v)∈E f

t
u,vwu,v

It analytically states the intuitive idea that the total price of
sending traffic to meet the demand in the network, as defined
by the sum of the products of the traffic demand rate and the
node price for each demand node, is equal to the sum over
all links of the price of sending traffic through each link. The
next lemma describes how to calculate the rate of change of
network cost [14].

Lemma 2.∑
(u,v)∈E

ḟ tu,vwu,v =
∑
u∈V

∑
(u,v)∈E

rtuα̇
t
u,v[wu,v + qtv]

The above expression captures the fact that the change in
network cost can either be expressed in terms of the change in
the link flow rates, i.e., how each link affects the network cost
or in terms of the change in the split ratios at each node, i.e.,
how each node affects the network cost. Now we are finally
in a position to prove the main result of the paper which is
summarized in the following theorem.

Theorem 1. In a network, at every node u, for every des-
tination t, let the evolution of the split ratios be defined by

equations (6)− (9). Then starting from any initial conditions
we have,

Convergence: α converges to the largest invariant set
in {α|Φ̇(f) = 0}
Optimality: any element of this set yields an optimal
solution to the MCF problem.

Proof: We will prove the result in three steps. First, we will
show that Φ̇(f) ≤ 0, which is the key step of the whole proof.
Then, we will use this result to invoke LaSalle’s Invariance
Principle for hybrid systems [19] to argue that α converges
to the largest invariant set in {α|Φ̇(f) = 0}. Lastly, we will
establish that any element of this set is an optimal solution to
the MCF problem.

Step 1 (Monotonicity): Note that,

Φ̇(f) =
∑
t∈V

∑
(u,v)∈E

ḟ tu,vwu,v =
∑
t∈V

Φ̇t(f)

where Φ̇t(f) =
∑

(u,v)∈E ḟ
t
u,vwu,v is the rate of change

of the network cost as the flows to destination t change.
Consequently, if we show that Φ̇t(f) ≤ 0 for each destination
t, then we have that Φ̇(f) ≤ 0. From Lemma 2,

Φ̇t(f) =
∑

(u,v)∈E

ḟ tu,vwu,v =
∑
u∈V

∑
(u,v)∈E

rtuα̇
t
u,v[wu,v + qtv]

The key idea behind step 1 is to decompose the change in
cost to a particular destination t, by grouping the terms from
the summation derived in Lemma 2, using the branches of the
shortest path tree rooted at that destination. More precisely,
we define a branch (B) as the set of nodes on the path from
a leaf node on the shortest path tree to the destination node t.
Given the definition, it is easy to see that some intermediate
nodes will be shared among multiple branches. The change
in cost contributed by these nodes is properly divided among
the different branches that pass through these routers in the
following way. Each node u has a corresponding ηtu value
which appears in the denominator of the expression for the
change in cost. The idea is, when grouping terms, for a
particular branch passing through an intermediate node, to only
take a fraction, 1/πB

u , of the change in cost contributed by
the intermediate node, to be summed with that branch so that
πB
u η

t
u for that node u is the same as the branch cardinality of

the leaf router which defines the branch. Consequently, πB
u η

t
u

will be the same for all routers u encountered in a traversal
from the leaf router of the branch to the destination. Given
the definition of ηtu and πB

u , one can check
∑

B
1
πB
u

= 1, so
the total contribution from node u is distributed over different
branches. Formally, we have,∑

u∈V

∑
(u,v)∈E

rtuα̇
t
u,v[wu,v + qtv] =

∑
∀B

∑
u∈B

1

πB
u

∑
(u,v)∈E

rtuα̇
t
u,v[wu,v + qtv]

For a given branch B, with n nodes numbered 1, . . . , n from
the leaf node to the destination, as noted above, 1/πB

u is the



fraction of the change in cost due to node u that it contributes
to the branch summation. For ease of notation, in what follows,
we will use η to represent πB

u η
t
u for every router u that belongs

to the branch B. For any u ∈ {1, 2, . . . , n − 1}, we have the
following important equation.

1

πB
u

∑
(u,v)∈E

rtuα̇
t
u,v[wu,v + qtv] = − δ

η
(qtu − wu,u+1 − qtu+1)

(10)
Note if rtu = 0, following equations (8) and (9), the left hand
side of (10) is zero because α̇tu,v = 0, the right hand side of
(10) is also zero because αtu,u+1 = 1. If rtu > 0, (10) is still
valid because

1

πB
u

∑
(u,v)∈E

rtuα̇
t
u,v[wu,v + qtv]

=− δ

η
(

∑
(u,v)∈E

αtu,v[wu,v + qtv]−
∑

(u,v)∈E

αtu,v[wu,u+1 + qtu+1])

=− δ

η
(qtu − wu,u+1 − qtu+1)

Therefore ∑
u∈B

1

πB
u

∑
(u,v)∈E

rtuα̇
t
u,v[wu,v + qtv]

=

n−1∑
u=1

− δ
η

(qtu − wu,u+1 − qtu+1)

= − δ
η

[qt1 − w1,2 − · · · − wn−1,n]

≤ 0

The last inequality follows from the fact that the average
price from the leaf router (node 1) to the destination (node
n) which can be thought of as an average over paths from
Equation (2) has to be no less than the price of the shortest
path. Note that this relationship holds with equality only when
the node price of the leaf node is the same as the price of the
shortest path which means that all the traffic from every node
in the branch to the destination is along shortest paths to the
destination.

We then have

Φ̇ =
∑
t

Φ̇t(f) =
∑

(u,v)∈E

ḟ tu,vΦ
′(fu,v) ≤ 0 (11)

Step 2 (Convergence): Given the control laws we have
established that Φ̇(f) ≤ 0. In order to show convergence,
we will rely on the language of hybrid automata [19] to
model the dynamics of our system. Specifically, our system is
an example of a non-blocking, deterministic and continuous
hybrid automaton. Consequently, a generalization of LaSalle’s
Invariance Principle to hybrid automata [19] ensures that the
set of split ratios converges to the largest invariant set within
{α|Φ̇(f) = 0}.

Step 3 (Optimality): The only way to have Φ̇(f) = 0 is if
each Φ̇t(f) = 0 which implies that the change in cost along

each branch,∑
u∈B

1

πB
u

∑
(u,v)∈E

such that u∈B

rtuα̇
t
u,v[wu,v + qtv] = 0

for every t. From the preceding analysis, the change in cost
along a branch B is zero only when all the traffic from
the nodes that belong to the branch is being routed to the
destination through shortest paths with respect to the link
prices. Since this is a necessary and sufficient condition for
optimality in MCF [1], the proof is complete.

Next, as an illustrative example to help understand the first
step of the above proof, we consider a sample shortest path
tree and perform the corresponding cost change calculations
explicitly. Consider the shortest path tree of Figure 3. The
number of branches that we divide the tree into is determined
by the number of leaf nodes. In this example, the shortest
path tree rooted at t has 12 leaf routers and consequently we
will divide the summation into 12 branches. Following the
algorithm for the calculation of η, we find, ηti = 1, ηth =
3, ηtg = 9 and ηts = 18. As noted in the proof, the change in
the cost function due to the routers increasing traffic along the
links in the shortest path tree can be calculated using Lemma
2. In order to evaluate it, we further divide the terms in the
summation and group them per branch. Recall from the proof
that for the routers that are downstream to a leaf router in a
branch, only a fraction of the change in the cost contributed
by the downstream router is selected where the fraction is
determined by the need to have the same η for all routers in
the summation for a branch. The contribution to the change
in the cost by the routers for the highlighted branch can be
calculated as follows,∑
u∈B

1

πB
u

∑
(u,v)∈E

rtuα̇
t
u,v[wu,v + qtv]

=− rts
∑

(s,v)∈E

αts,vδ

ηtsr
t
s

[ws,v + qtv] + rts
∑

(s,v)∈E

αts,vδ

ηtsr
t
s

[ws,g + qtg]

− rtg
∑

(g,v)∈E

αtg,vδ

2ηtgr
t
g

[wg,v + qtv] + rtg
∑

(g,v)∈E

αtg,vδ

2ηtgr
t
g

[wg,h + qth]

− rth
∑

(h,v)∈E

αth,vδ

6ηthr
t
h

[wh,v + qtv] + rth
∑

(h,v)∈E

αth,vδ

6ηthr
t
h

[wh,i + qti ]

− rti
∑

(i,v)∈E

αti,vδ

18ηtir
t
i

[wi,v + qtv] + rti
∑

(i,v)∈E

αti,vδ

18ηthr
t
i

[wi,t]

=− δ

ηts
[qts − ws,g − wg,h − wh,i − wi,t] ≤ 0

VI. NUMERICAL EVALUATION

In this section, we consider numerical evaluations of the
performance of HALO from the point of view of optimality
and rate of convergence to the optimal solution. We also
present evidence of the adaptivity of the algorithm as the
traffic changes. The evaluations are primarily performed on
three networks – the benchmark Abilene network (Figure 4),
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Fig. 3: Shortest Path Tree. Only the links in the shortest path
tree for terminal t is shown with the other links in the network
not shown for ease of exposition.

Fig. 4: Abilene Network

a 4 × 4 Mesh network and a two-level hierarchical 50 node
network [3]. The 4× 4 Mesh network is selected to study the
affects of intermediate routing loops on the optimality of the
algorithm as this topology is particularly prone to such loops
while the hierarchical network is selected to mimic larger
networks with high capacity backbone links and lower capacity
local links. An additional test is performed on an even larger
randomly generated 100 node network in order to confirm that
the algorithm converges quickly for large networks (Figure
11). Randomly generated traffic demands are used for the mesh
network and the hierarchical network while for the Abilene
network uniform traffic demand is used. In order to study
the algorithms’ performance, in all three cases, the demand
is scaled up till at least one link in the network is close to
saturation at the optimal solution.

A. Convergence

As expected, the speed of convergence depends on the step-
size. Here, the metric, network load, is defined as the ratio of
the total traffic on the network to its total capacity. In general,
smaller step-sizes guarantee convergence of the algorithm to
the optimal solution at the expense of speed of convergence.
This is demonstrated to be the case in Figure 6. But, as can
be seen in Figure 6a and Figure 6c, larger step-sizes quickly
approach the optimal solution though they can be prone to
oscillations which prevent convergence to optimality. Often,

it is sufficient to come to some neighborhood of the optimal
solution and in such cases, exact convergence ceases to be an
issue and small oscillations around the optimal solution are
acceptable. In such situations, a larger step-size may be used.
It is encouraging to note that in all our test cases, including
for the larger 100 node network (Figure 11) the algorithm
was fairly quick, converging to a small neighborhood of the
optimal solution within a few hundred iterations.

Another factor that affects the rate of convergence of the
algorithm is the load on the network. The maximum network
load for the Abilene network is 24.6%, mesh network is 26.1%
and the hierarchical network is 5.3%. These values indicate
the point at which further scaling up the demand for the given
traffic pattern would exceed the capacity of at least one link
in the network, even with optimal routing. From Figure 5, we
can see that the algorithm takes more iterations to converge
to the optimal solution for more heavily loaded networks.
Promisingly, even in such limiting cases, HALO converges
to the optimal solution on the order of a thousand iterations.
Given that today, link-state advertisements can be broadcast
on the order of milliseconds [20], our evaluations indicate the
possibility of convergence times of less than a second to a
few seconds for the protocol when transmission delay is not
a limiting factor.

B. Performance

In order to verify that the algorithm does in fact achieve
the optimal solution, the optimal solution was calculated for
the test networks by solving the corresponding MCF problem
using cvx [21] under different network load conditions. The
objective value obtained by using HALO matched the optimal
solution for each test case as can be seen from Figures 7a, 7b
and 7c. Also, as expected from theory the intermediate routing
loops produced while determining the optimal solution for the
mesh network did not affect the optimality of the algorithm.

The major advantage that HALO offers is the significant
performance improvement that an optimal solution offers over
sub-optimal techniques like OSPF even when it is aided by
locally optimal weight settings. In Figure 8, we compare the
performance of HALO with OSPF boosted by better weight
settings obtained from the algorithms of the TOTEM toolbox
[22] for demand matrices that placed increasing loads on the
test networks. The local search algorithm used by TOTEM
minimizes a piecewise-linear approximation of our convex
cost function. The power of optimality is demonstrated by the
performance improvements on the order of 1000%.

C. Adaptivity

Another attraction of HALO is that it dynamically adapts to
changes in the traffic on the network. In Figure 9, we plot the
evolution of the optimality gap as the traffic matrix undergoes
changes for the Abilene network under different network load
conditions. In this example after around 300 iterations the
network load is changed by changing 20% of the flows in
the network. As can be seen, the algorithm quickly adapts
and the optimality gap increases very little before beginning
to converge to the new optimal solution. The traffic pattern is
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Fig. 5: (a)Evolution of the optimality gap for the Abilene network as the number of iterations increases with different network
loads (step-size = 0.001) (b) Evolution of the optimality gap for the 4× 4 Mesh network as the number of iterations increases
with different network loads (step-size = 0.01) (c)Evolution of the optimality gap for the Hierarchical 50 node network as the
number of iterations increases with different network loads (step-size = 0.4)
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Fig. 6: (a) Evolution of the optimality gap for the Abilene network as the number of iterations increases with varying step-sizes
(network load = 24.6%) (b) Evolution of the optimality gap for the 4× 4 Mesh network as the number of iterations increases
with varying step-sizes (network load = 22.8%) (c) Evolution of the optimality gap for the Hierarchical 50 node network as
the number of iterations increases with varying step-sizes (network load = 5.3%).
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Fig. 7: (a) Mesh Network Optimal Performance (b)Abilene Network Optimal Performance (c)Hierarchical 50 Node Network
Optimal Performance – Centralized optimal value matched by HALO
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Fig. 8: (a) Abilene Network Algorithm Comparison (b) Mesh Network Algorithm Comparison (c)Hierarchical 50 Node Network
Algorithm Comparison – Relative performance of different algorithms for different network loads
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Fig. 9: Evolution of the optimality gap for the Abilene
Network as the number of iterations increases with varying
demand matrices

0 500 1000 1500 2000 2500 3000 3500 40000

0.2

0.4

0.6

0.8

1

Iteration

α

 

 
Indianapolis−Kansas City
Indianapolis−Atlanta
Indianapolis−Chicago

Fig. 10: Evolution of the split ratios to Chicago, Kansas City
and Atlanta for traffic to LA at Indianapolis on the Abilene
Network

again changed by varying 50% of the flows in the network
after 800 iterations. This time the change in the optimality
gap is greater but the convergence to the new optimal value
is seen to be quicker. The traffic pattern in the network is
changed two more times and as can be observed from the
figure in both cases the algorithm quickly converges to the
new optimal solution.

A closely related concept to the adaptivity of the algorithm
is the evolution of the split ratios at individual routers. Addi-
tionally, it serves as a visualization of HALO in action. We
pick the Indianapolis node for the Abilene network and plot
the evolution of the split ratios to Los Angeles in Figure 10.
For our test traffic, the initial sub-optimal allocation of split
ratios is quickly corrected as HALO reduces traffic sent to
Chicago and increases traffic sent to Kansas City and Atlanta.

VII. SUMMARY

In this paper we developed HALO, the first link-state,
hop-by-hop routing algorithm that optimally solves the traffic
engineering problem for intra-domain routing on the internet.
The algorithm uses exactly the same information as OSPF.
Furthermore, the link weights can be computed locally by
routers and the algorithm automatically reacts to traffic de-
mand changes by adjusting router split ratios. In terms of
future directions, there are still important areas to be explored.
For instance, the convergence rate of the algorithm needs
to be analyzed. Another interesting direction involves using
time averages for the link-states in order to test how well the
algorithm performs without synchronous updates.

REFERENCES

[1] D. Bertsekas and R. Gallager, Data Networks. Prentice Hall, 1992.

10 20 30 40 50 60 70 80 90 100100

101

102

Iteration

O
pt

im
al

ity
 G

ap
 (%

)

 

 
step−−size 0.001
step−−size 0.005
step−−size 0.01

Fig. 11: Evolution of the optimality gap for a randomly
generated 100 node network with varying step-sizes

[2] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method:
An approach to store-and-forward communication network design,”
Networks, vol. 3, no. 2, pp. 97–133, 1973.

[3] B. Fortz and M. Thorup, “Increasing internet capacity using local
search,” Comput. Optim. Appl., vol. 29, no. 1, pp. 13–48, Oct 2004.

[4] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” Communications, IEEE Transactions on, vol. 25, no. 1,
pp. 73 – 85, Jan 1977.

[5] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach, 5/E. New York, NY, USA: Addison-Wesley, 2010.

[6] D. Bertsekas and E. Gafni, “Projected Newton methods and optimization
of multicommodity flows,” Automatic Control, IEEE Transactions on,
vol. 28, no. 12, pp. 1090 – 1096, Dec 1983.

[7] D. Awduche, “MPLS and traffic engineering in IP networks,” Commu-
nications Magazine, IEEE, vol. 37, no. 12, pp. 42 –47, Dec 1999.

[8] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-
hop forwarding can achieve optimal traffic engineering,” Networking,
IEEE/ACM Transactions on, vol. 19, no. 6, pp. 1717 –1730, Dec 2011.

[9] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” Networking,
IEEE/ACM Transactions on, vol. 13, no. 2, pp. 234 – 247, Apr 2005.

[10] S. Srivastava, G. Agrawal, M. Pioro, and D. Medhi, “Determining link
weight system under various objectives for OSPF networks using a
lagrangian relaxation-based approach,” IEEE Trans. on Netw. and Serv.
Manag., vol. 2, no. 1, pp. 9–18, Nov 2005.

[11] T. Stern, “A class of decentralized routing algorithms using relaxation,”
Communications, IEEE Transactions on, vol. 25, no. 10, pp. 1092 –
1102, Oct 1977.

[12] C. E. Agnew, “On quadratic adaptive routing algorithms,” Commun.
ACM, vol. 19, no. 1, pp. 18–22, Jan 1976.

[13] D. Palomar and M. Chiang, “A tutorial on decomposition methods for
network utility maximization,” Selected Areas in Communications, IEEE
Journal on, vol. 24, no. 8, pp. 1439 –1451, Aug 2006.

[14] F. Paganini and E. Mallada, “A unified approach to congestion control
and node-based multipath routing,” IEEE/ACM Trans. Netw., vol. 17,
no. 5, pp. 1413–1426, Oct 2009.

[15] Y. Xi and E. Yeh, “Node-based optimal power control, routing, and
congestion control in wireless networks,” Information Theory, IEEE
Transactions on, vol. 54, no. 9, pp. 4081–4106, Sep 2008.

[16] P. Mahey, A. Ouorou, L. J. LeBlanc, and J. Chifflet, “A new proximal
decomposition algorithm for routing in telecommunication networks,”
Networks, vol. 31, no. 4, pp. 227–238, 1998.

[17] M. Wang, C. W. Tan, W. Xu, and A. Tang, “Cost of not splitting
in routing: characterization and estimation,” IEEE/ACM Trans. Netw.,
vol. 19, no. 6, pp. 1849–1859, Dec 2011.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[19] J. Lygeros, K. Johansson, S. Simic, J. Zhang, and S. Sastry, “Dynamical
properties of hybrid automata,” Automatic Control, IEEE Transactions
on, vol. 48, no. 1, pp. 2–17, Jan 2003.

[20] Cisco Systems Inc., “OSPF Link-State Advertisement (LSA) Throttling,”
http://www.cisco.com/en/US/docs/ios/12 0s/feature/guide/fsolsath.html,
Nov 2012.

[21] CVX Research, Inc., “CVX: Matlab software for disciplined convex
programming, version 2.0 beta,” http://cvxr.com/cvx, Sep 2012.

[22] J. Lepropre, S. Balon, and G. Leduc, “Totem: A toolbox for traffic
engineering methods,” Poster and Demo Session of INFOCOM’06, Apr
2006.


