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Abstract—In the network layer, an internet service provider con-
trols the traffic across an autonomous system by load balancing via
traffic engineering and by varying the offered traffic of the users
via feedback signals. In the transport layer, users send traffic into
the network using the TCP protocol, which adjusts offered traffic
according to the received feedback. We investigate how feedback
and current traffic engineering practice interact with congestion
control under the network utility maximization framework. We
show that the current interaction is stable, increases network
utility, but does not necessarily improve the traffic engineering
objective. The mismatch in outcome and incentives prompt us for
a more holistic view using game theory. With suitable modification
of the feedback, we show that the interaction converges to a
socially optimal solution for users running either primal or dual
algorithms. We further show that the results hold even when
traffic engineering is performed at any irregular intervals. More
generally, we show via heterogeneous feedback the same optimality
result for a mix of users running primal and dual algorithms.

I. INTRODUCTION

To load balance traffic across an autonomous system (AS),
an internet service provider (ISP) carries out a procedure called
traffic engineering. First, the ISP measures the offered traffic
into the AS. Next, using the data, the ISP ideally solves the
well-known multi-commodity flow problem [1] for a given
cost metric on link utilization. Once the solution is obtained,
the desired traffic flow pattern is achieved by the setting of
link weights used in the shortest-path computation of link-
state or distance-vector routing algorithms. However, it turns
out that setting the right link-weight is NP-hard for link-
state algorithms [2], and many works in the traffic engineering
literature have focused on solving this issue with a fixed offered
traffic assumption, for instance [3], [4]. Our focus here is not
on the link-weight setting problem but on relaxing the fixed
offered traffic assumption and investigating the interaction of
current traffic engineering practices with elastic traffic.

From the perspective of a layered network architecture, our
work deals with the interaction of transport layer (congestion
control) and network layer (routing). Though we view our
problem by starting from the network layer, it turns out that
the problem could equally well be interpreted from the view
of transport layer under the context of optimal joint congestion
control and routing. While the traffic engineering framework
has been developed with a constant offered traffic assumption,
the congestion control optimization framework, i.e. network
utility maximization (NUM) has been developed assuming the
traffic flow from each user follows a single static path. Relaxing
the static assumption on either framework brings us to the joint
congestion control and routing problem. Regardless, the tone
and main perspective of this paper are of the network layer.

For congestion control, investigations on relaxation of the
fixed routing assumption has been around for quite some time.
The joint congestion control and multipath routing problem
is already present in Kelly’s seminal work [5]. There, rate
variables are defined for all possible paths from source to
destination, and each user has to determine all these rates to
maximize utility. More recent works have shifted the routing
decisions to the nodes. Each edge router either separately
chooses a route to minimize congestion cost [6] or determines,
for each destination, the load to place on all possible paths [7];
or all routers control the per-destination split ratios on outgoing
links [8]. The paper that is closest in essence to ours is [9]
though our stability and optimality results are not limited to
the ring topology and our timescale separation model is more
general. Many other related papers could be found in [10].

Across the aisle, the traffic engineering community has much
fewer cross-layer works. The hardness of the link-weight setting
problem and the lack of a solid analytical framework com-
pared to NUM has limited the cross-layer works, for instance
[11], to be simulation in nature. There is a vast literature on
traffic engineering, however, if we do not limit ourselves to
communication networks. Research on transportation traffic has
been around for decades [12]. Beside the convex optimization
tools [13] employed in NUM, another important theoretical
tool here is game theory [14] where agents are modeled
to behave selfishly. Under the game theoretical framework,
each agent acts independently to choose a minimum-cost path,
given the congestion costs caused by the actions of all other
players. The problem is usually modeled as a non-cooperative
congestion game, which is guaranteed to have a pure-strategy
Nash equilibrium [15]. It is well-known that in general Nash
equilibria are not necessarily socially optimal. How inefficient
any Nash equilibrium can be has been characterized with the
concept of Price of Anarchy in [16]. These works have been
done with a constant offered traffic assumption and extensions
to elastic traffic could be found in [17], [18].

With both frameworks in mind, we model the interaction of
traffic engineering and NUM as a two-stage iterative process
in Section II and explain how feedback, traffic engineering,
and NUM interact with each other. In Section III, we find
that the process converges, improves network utility, but does
not guarantee improvement in the traffic engineering’s ob-
jective. We thus relax the capacity constraint and propose a
modification under a game theory framework, albeit users are
not necessarily selfish but instead act according to NUM. In
Section IV, we formulate a potential game perspective for the
primal algorithm of NUM and show that the primal algorithm
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converges to the socially optimal solution. We next relax
our timescale separation assumption and show that the same
convergence holds even when traffic engineering is performed
at any irregular intervals. We extend to the dual algorithm for
NUM in Section V and show that with proper modification
of the feedback signal, the convergence results also hold here.
In Section VI, we relax the homogeneous user assumption by
allowing heterogeneous users running primal or dual algorithms
and prove the same optimality result. We conclude the paper
in Section VII.

II. MODEL FORMULATION

We consider an autonomous system controlled by an ISP,
whom we refer to as the traffic engineer henceforth. A set of
N users, each representing a particular source-destination pair,
send traffic into the AS. We assume users have infinite backlog
and any user traffic could be split at any ratio across all possible
paths from source to destination. An illustrative figure of the
model is shown at Figure 1.

 

AS 

user 

user user 

traffic 

feedback 
split 

ISP controlled 

User controlled 

Figure 1. User controls input traffic while ISP owns the AS and controls
feedback and traffic split at routers

Before proceeding further, for clarity, we explain the no-
tational conventions adopted throughout the paper. Uppercase
letters denote matrices, e.g. H , Q, R, or sets, e.g. L, N 1, or
constants, e.g. K, or utilities (or costs), e.g. U , Φ. Lowercase
letter i represents user, j or k represents path, l represents link
and other letters such as x, f , q denote vectors. Superscript
denotes element of a vector, e.g. xi or columns of a matrix,
e.g. Hi associated with user i. Similarly, subscript on a vector
or matrix, e.g. fl, qij denotes association with either link l or
path j. A bar, e.g. x̄i, means the variable is an optimal solution.
The bold number 1 is the vector of all ones while el or eij is
a unit vector for the corresponding element.

We model the AS as a graph with a set L of directed links.
The links have finite capacities c = {cl|l ∈ L} and each link
l is associated with a link-cost function Φl (fl) that is convex
and increasing in fl, the traffic flow through link l. Examples

1We will abuse notation by using L and N to denote both sets and their
cardinality.

of Φl (·) are link utilization fl/cl and link delay fl/ (cl − fl)
as given by the M/M/1 formula [19].

Each user i ∈ N is associated with Ki acyclic paths, which
are represented by a L×Ki 0− 1 matrix Hi where

Hi
lj =

{
1, if user i uses link l in path j
0, otherwise

The matrix Hi does not necessarily contain all the possible
paths from source to destination but instead could just be a
subset of the paths. Let K =

∑
iK

i and define the L × K
matrix as

H =
[
H1 . . . HN

]
A split ratio is specified over the Ki paths by the Ki×1 vector
qi where qij represents the fraction of i’s flow on path j such
that

qij ≥ 0, 1T qi = 1

Collect the vectors qi, i = 1, . . . , N into a K × N block
diagonal matrix Q = diag

(
q1, . . . , qN

)
. We represent the set

of all possible traffic split matrices as

Q =
{
Q|Q = diag

(
q1, . . . , qN

)
∈ [0, 1]

K×N
,1T qi = 1

}
The matrix H defines the topology of the network while Q
represents how the traffic of each user is split over the available
paths. Their product is a L×N routing matrix R = HQ with
its Rli entry giving the fraction of i’s traffic at each link l.

The users and the traffic engineer interact in an iterative two-
stage process. First, the traffic engineer, with knowledge of the
offered traffic x =

{
xi|i ∈ N

}
, solves a traffic engineering

problem

(TE) min
Q∈Q

V (HQx)

s.t. HQx = f ≤ c

where f = {fl|l ∈ L} represents the load on all the links.
Examples of the objective function V are maximum utilization,
maxl fl/cl, and for additive cost function,

∑
l Φl (elHQx) =∑

l Φl (fl), in which case we could be minimizing total delay.
Additionally, the traffic engineer sets a congestion price for

all links. The price is represented by a price function φ =
{φl (fl) : l ∈ L} that is related to the link cost function Φ. For
each path used, the edge router of user i receives the sum
of all link prices along the path as feedback. Thus, the price
information received by the edge router is the vector

(
Hi
)T
φ ∈

RKi

. The edge router then calculates the expected congestion
price φTHiqi = (HQei)

T
φ and passes it to the user as a

feedback value. Users update their offered traffic according to
the feedback value.

Solving (TE) gives a new traffic split matrix Q, and users
update their offered traffic as the feedback values have changed.
The update is governed by the NUM framework where users
solve the following problem: Given Q,

(NUM) max
x≥0

∑
i∈N

U i
(
xi
)

s.t. Rx ≤ c
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where U i
(
xi
)

is a nonnegative, increasing, and strictly concave
utility function. The NUM framework comes with two flavors,
primal and dual. Under the primal formulation, the capacity
constraint is relaxed by adding a barrier function to the objec-
tive

(NUM-P) max
x≥0

∑
i∈N

U i
(
xi
)
−
∑
l∈L

Bl
(
eTl Rx

)
By proper choice of a convex barrier function, Bl (·), the
optimal solution of (NUM) could be approximated by solving
(NUM-P) [20]. For single path, i.e. when Q is restricted to be
a 0 − 1 matrix, the primal algorithm has the users and price
function update as follows [21]:

ẋi = κi
(
xi
) [(

U i
)′ (

xi
)
−
(
Rei
)T
φ
]

(1)

φl = B′l (2)

where κi (·) is non-negative, increasing and continuous. For
the dual formulation, (NUM) is solved directly and the dual
algorithm has the users and price function update as follows
[22]:

xi =
(
U i
)′−1 ((

Rei
)T
φ
)

(3)

φ̇l =

{
hl (fl − cl) , φl > 0

hl max {fl − cl, 0} , φl = 0
(4)

where hl is a positive constant.
We assume that the update on Q is instantaneous. We also

assume for now that the users converge to the optimal solution
of (NUM) before the traffic engineer updates Q again. This
timescale separation assumption will be relaxed in the later
section to cover not only the 3 timescale separation models
mentioned in [9], but also allowing Q to be updated at any
irregular intervals. With this assumption, the iterative two-stage
process has the traffic engineer and the users taking turns
solving their respective optimization problems:

Q (t+ 1) = arg min
Q∈Q:HQx(t)≤c

V (HQx(t)) (5)

x (t+ 1) = arg max
x≥0:HQ(t+1)x≤c

∑
i∈N

U i
(
xi
)

(6)

When there are more than one optimal solution to (5), we
adopt the convention that if Q (t) is an optimal solution, then
we choose Q (t+ 1) = Q (t). If not, an optimal solution is
chosen at random. This convention of always choosing the
current solution if optimal holds as well for (6) and in the
later optimization problems.

We pause here to point out the critical differences between
our work in the most general setting and prior literature. Most
importantly, we have relaxed the fixed offered assumption in
traffic engineering and consider an elastic traffic modeled by
(NUM). We stress again that our main perspective lies with the
traffic engineer, though our work has several implications for
the congestion control framework as well. First, we adopt the
view that network infrastructure is owned and controlled by the

traffic engineer. Thus, the traffic engineer has a complete view
and control of the network topology while users could obtain
information about the paths used via feedback but beyond that
have limited to no knowledge of the network topology and
possible paths to destination. This is in direct contrast with
[5] where users could choose which path to use and with [6]
where edge routers act independently of each other. Second,
prior work with globally optimal convergence results, notably
[7], [8], require synchronous updates by the user and traffic
engineer. This is a timescale mismatch as congestion control
typically converges to equilibrium in the order of round-trip
time while routing is generally updated on a longer timescale.
The paper [9] investigates various timescale separation models
but its stability and optimality results are limited to the ring
topology. Here, we complete the stability and globally optimal
convergence proof for the general topology and for the general
timescale model where the traffic engineer could update at any
arbitrary interval.

III. CURRENT INTERACTION AND MODIFICATIONS

We first show that the iterative two-state process is stable in
general.

Theorem 1. The iterative two-stage process (5), (6) converges
to a fixed point.

Proof: The sequence
{∑

i U
i
(
xi (t)

)
, t = 1, 2, . . .

}
con-

verges since it is bounded from above due to capacity con-
straint, and strictly increasing prior to convergence since at
each time t + 1, x (t) is a feasible solution of (6) and
thus

∑
i U

i
(
xi (t+ 1)

)
≥
∑
i U

i
(
xi (t)

)
. If the inequality

holds with equality, then the sequence has converged with
(Q (t+ 1) , x (t)) being a fixed point of equations (5) and
(6). Note that the convention of always choosing the current
solution if optimal prevents the possibility of oscillations.

Remark. While we have allowed the traffic engineer to split
traffic arbitrarily on all possible paths, the proof still holds even
if the traffic engineer is restricted to picking a fixed number
of paths or even just one path for each user. In fact, in the
single-path case, the process is guaranteed to converge in finite
time since there is only a finite number of single-path routing
configurations and the iterative process is guaranteed to pick
a different configuration at each iteration. This is in contrast
to results from [6] where the single-path case is shown to
be unstable. As pointed out earlier, this is because the traffic
engineer controls all routers instead of allowing each router to
act independently of each other.

The proof shows that the two-stage iterative process improves
network utility but the same guarantee does not necessarily hold
for traffic engineering objective. Consider the following simple
example.

Example 1. (No improvement for traffic engineer) Suppose
the objective of (TE) is to minimize maximum utilization.
The optimal solution for (NUM), however, will always have
a bottleneck link, l where f̄l = cl. This implies that the effort
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of the traffic engineer is futile as at the end of each iteration,
there will always be a link with maximum utilization.

Since the network utility
∑
i U

i
(
xi
)

strictly increases after
every iteration prior to convergence, one could view the iterative
process (5), (6) as trying to solve the joint optimization problem

(JOINT) max
x≥0,Q∈Q

∑
i∈N

U i
(
xi
)

s.t. HQx ≤ c

Equation (5) could now be interpreted as an update step that
allows one to search Q for better traffic split ratios. However,
the iterative process is not guaranteed to reach the optimal
solution of (JOINT) regardless of the cost function Φ as
demonstrated in the following example.

 

A B 

C 

D 

c1=1 c
2
=1 

c
3
=1 

c
4
=1 c

5
=1 

Figure 2. A simple network used to illustrate why relaxing capacity constraint
(Example 2) and assuming positive traffic (Example 3) are required

Example 2. (Capacity constraint prevents update of Q) Con-
sider the network shown in Figure 2. The cost function for
each link l is Φl (fl) = f2l /2. There are two users with the
same strictly concave utility function U (·). Initially, the traffic
engineer sets the 1 unit of offered traffic from user 1 to travel
along A → D and splits the 2 units of traffic from user 2: 1
along B → D and 1 along B → C → D. Due to capacity
constraints, regardless of the traffic engineering objective V ,
the optimal solution of (TE) maintains the current traffic split
ratios and thus the iterative process has converged. However,
the optimal solution of (JOINT) is 2U(1.5) > U (1) + U (2)
by concavity of U . The iterative process fails to improve the
solution further as the current solution is trapped due to capacity
constraints.

Our goal now is to modify the iterative process such that
the incentives of both the users and the traffic engineer are
taken into account. Since we have two groups with incentives
that are not necessarily aligned, the framework of game theory
lends itself naturally. We stress that though we borrow the
terminologies and tools of game theory, and we may refer to
users as trying to maximize a certain utility, we do not assume
users are rational and selfish but instead they act according to
the governing algorithm.

If we view the group of users as a single player, then we
can view the iterative process (5), (6) as a two-player game
between the player and the traffic engineer. The player and
the traffic engineer take turns to make a best response to the

opponent’s strategy and we have shown in Theorem 1 that this
best-response dynamics converges to a Nash equilibrium. It is
natural to define the aggregate surplus or the social value of an
offered traffic and traffic split combination (x,Q) as

S (x,Q) =
∑
i∈N

U i
(
xi
)
− V (HQx)

Refining our goal further, we now want to modify the
iterative process such that it has a fixed point that is socially
optimal. We know from Example 2 that a solution may get
trapped due to capacity constraints. This observation leads us
to consider a relaxation of the capacity constraint. To do that,
first we restrict the objective of (TE) to doubly differentiable
and additive cost functions,

∑
l Φl (fl). Next we assume that

for all l, Φl is large when it is near or over capacity to penalize
capacity overshooting. As with the primal formulation (NUM-
P), for the users, the capacity constraint is replaced with Φl
as the barrier function. We thus arrive at the following Gauss-
Seidel system [23]:

Q (t+ 1) = arg min
Q∈Q

∑
l∈L

Φl
(
eTl HQx(t)

)
(7)

x (t+ 1) = arg max
x≥0

∑
i∈N

U i
(
xi
)

−
∑
l∈L

Φl
(
eTl HQ(t+ 1)x

)
(8)

But we are not quite done with the assumptions yet since a
solution may also get trapped at the other extreme where xi =
0.

Example 3. (Phantom user) We reuse the network shown in
Figure 2. There are two users with the same strictly concave
utility function U i

(
xi
)

= −
(
xi
)2

+ 2xi, for xi ≤ 1. The first
user sends traffic along A → D and A → C → D while the
second user sends traffic along C → D. The link-cost function
is linear Φl (fl) = 3fl/2. Initially, user 1 is configured to send
all its traffic along the second path, i.e. q1A→C→D = 1. With
this setup, solving (8) gives x1 = 0, x2 = 1/4. On the next
iteration, the traffic split ratio remains the same by convention.
The Gauss-Seidel system thus converges with a social value of
1/16. However, the optimal social value is 1/8 with q̄1A→D = 1
and x̄1 = x̄2 = 1/4.

We therefore assume that a solution of (8) always gives x̄ >
0. The assumption makes sense in practice because the traffic
engineer would not be able to know the existence of a user if it
is not offering any traffic. This assumption is satisfied with, for
instance, utility functions U satisfying limx→0+ dU/dx = ∞,
e.g. α-fair utility functions [24].

We next prove the optimality of the Gauss-Seidel system.

Theorem 2. The Gauss-Seidel system (7), (8) converges to a
socially optimal fixed point,

(
x̄, Q̄

)
.

Proof: The social value S (x,Q) is increasing after each
update and is bounded and thus the Gauss-Seidel system
converges to a fixed point

(
x̄, Q̄

)
. To show that the fixed point
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is socially optimal, we rely on Karush-Kuhn-Tucker (KKT)
conditions [13]. Both (7) and (8) are convex optimization
problems that satisfy regularity conditions since the constraints
are linear and thus the KKT conditions are necessary and
sufficient. The KKT conditions for (7) state that Q̄ is optimal
if and only if there exists Lagrange multiplier λ such that

(
Heij

)T
Φ′
(
HQ̄x

){= λi

xi , if q̄ij > 0

≥ λi

xi , if q̄ij = 0
(9)

where Φ′
(
HQ̄x

)
=
{

Φ′l
(
eTl HQ̄x

)
, l ∈ L

}
.

The KKT conditions for (8) state that x̄ > 0 is optimal if
and only if (

U i
)′ (

x̄i
)

=
(
HQei

)T
Φ′ (HQx̄) (10)

However, the optimization problem

max
x≥0,Q∈Q

S (x,Q) (11)

is not necessarily convex. To apply the KKT conditions, we
transform it into a convex problem with a change of variables

wij = qijx
i or w = Qx (12)

where wij is now the traffic flow on path j for user i.

max
w≥0

∑
i∈N

U i

∑
j

wij

−∑
l∈L

Φl
(
eTl Hw

)
(13)

The optimization problem is now convex with linear constraints
and thus the KKT conditions are necessary and sufficient. We
denote its Lagrangian as LS (w; θ). At w̄ij = q̄ij x̄

i, since x̄i > 0,
we start with the inverse relationship

xi =
∑
j

wij , qij =
wij∑
k w

i
k

(14)

For w̄ij > 0, choose θij = 0 and apply chain rule

∂LS (w̄, θ)

∂wij
(15)

=
∂xi

∂wij

∂LS
(
Q̄x̄, θ

)
∂xi

+
∑
k

∂qik
∂wij

∂LS
(
Q̄x̄, θ

)
∂qik

(16)

=
(
U i
)′ (

x̄i
)
−
(
HQei

)T
Φ′
(
HQ̄x̄

)
(17)

+
(
1− q̄ij

) [
−
(
Heij

)T
Φ′
(
HQ̄x̄

)]
(18)

−
∑
k 6=j

q̄ik

[
−
(
Heik

)T
Φ′
(
HQ̄x̄

)]
(19)

Equation (10) implies line (17) equals zero, while equation (9)
implies lines (18) and (19) cancel off each other. One could
easily verify that the other KKT conditions are satisfied with
proper choices of θ and hence w̄ is an optimal solution of (13)
implying that

(
x̄, Q̄

)
is the socially optimal solution.

With Theorem 2 in mind, we know we could achieve social
optimality if the offered traffic of the users converges to a
solution of

max
x≥0

∑
i∈N

U i
(
xi
)
−
∑
l∈L

Φl
(
eTl HQx

)
(20)

So far, our results and examples have not touched on the
dynamics of how users vary their offered traffic. We introduce
in the modeling section how the expected congestion prices are
passed to the users as feedback values and how users react to the
feedback values according to either primal or dual algorithm.
For the next two sections, we assume all users are running either
the primal or the dual algorithm. Without altering the existing
algorithms, our goal in these sections is to propose congestion
prices such that the offered traffic of the users converges to a
solution of (20).

IV. PRIMAL ALGORITHM AS A POTENTIAL GAME

We know the primal algorithm (1), (2) is globally asymp-
totically stable and converges to the solution of (20) for the
single path case [21]. The crux of the proof is to show that
the objective function of (20) acts as a Lyapunov function and
is, in essence, similar to the proof technique of Theorem 1.
The proof for the multipath case could easily be generalized
using the same Lyapunov function argument but we will take a
slightly different path by viewing the proof from the perspective
of a potential game [25]. The potential game interpretation is
useful when we relax the timescale assumptions and when we
extrapolate the ideas here to the dual algorithm.

Consider the following game where each user i receives
utility U i

(
xi
)

for an offered traffic of xi but is charged the
sum of link costs of all links used i.e. 1T

(
Hi
)T

Φ (HQx)
where Φ (HQx) =

{
Φl
(
eTl HQx

)
, l ∈ L

}
. Thus, each user i

tries to maximize the total utility:

max
xi≥0

Γi (x) , U i
(
xi
)
− 1T

(
Hi
)T

Φ (HQx)

Lemma 3. For fixed Q, the users are playing an exact potential
game with exact potential function

P (x) =
∑
i∈N

U i
(
xi
)
−
∑
l∈L

Φl
(
eTl HQx

)
Proof: We check by definition that, for all i ∈ N

∂Γi

∂xi
=
(
U i
)′ (

xi
)
−
(
HQei

)T
Φ′ (HQx) =

∂P

∂xi

An exact potential game has the property that any user i that
unilaterally switches from rate xi to yi increases (or decreases)
his utility by the same amount as the potential:

Γi
(
yi, x−i

)
− Γi

(
xi, x−i

)
= P

(
yi, x−i

)
− P

(
xi, x−i

)
(21)

This property implies that it is possible to arrive at a Nash
equilibrium if the users take turns performing its best response
to the current strategy.
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Lemma 4. For fixed Q, the unique Nash equilibrium, xNE
satisfies

xNE = arg max
x≥0

∑
i∈N

U i
(
xi
)
−
∑
l∈L

Φl
(
eTl HQx

)
(22)

Proof: At Nash equilibrium,

xiNE = arg max
xi≥0

U i
(
xi
)
− 1T

(
Hi
)T

Φ (HQx) (23)

The optimization problem on the RHS of (23) is convex, has
linear constraints and the KKT conditions state that for each
user i (

U i
)′ (

xiNE
)

=
(
HQei

)T
Φ′ (HQxNE)

The N conditions together constitute the KKT conditions of
(22). Uniqueness arises from the fact that (20) is strictly
concave.

We now show that the primal algorithm (1) generalizes to
the multipath case.

Lemma 5. If users update their strategies according to gradient
ascent and congestion prices are set to the first derivatives of
link cost:

ẋ = κi
(
xi
) [(

U i
)′ (

xi
)
−
(
HQei

)T
φ
]

(24)

φ = Φ′ (HQx) (25)

then the strategies converge to an optimal solution of (20).

Proof: We show that the potential is always increasing

Ṗ (x) =
∑
i

∂P (x)

∂xi
ẋi

=
∑
i

κi
(
xi
) [(

U i
)′ (

xi
)
−
(
HQei

)T
Φ′ (HQx)

]2
which is always greater than zero when x is not the Nash
equilibrium.

We have shown two ways for the potential game to converge
to the Nash equilibrium, one via best response dynamics and
one via gradient ascent. For best response, only one player is
modifying the strategy while for gradient ascent, all players are
modifying the strategies. From the proofs, it should be clear that
these are not the only two ways where the potential game could
converge to the Nash equilibrium. We simply require dynamics
where the potential is always increasing and where all players
get a chance to update their strategies.

Now, we relax the timescale separation assumption and allow
the traffic engineer to perform updates at any irregular intervals.
We still assume that the update happens instantaneously.

Consider the potential game earlier with N players. We add
in the traffic engineer as an additional player who tries to
maximize its utility:

max
Q∈Q

V (Q, x) ,
∑
l∈L

Φl
(
eTl HQx

)

Lemma 6. The game with N + 1 players is an exact potential
game with exact potential function

P (Q, x) =
∑
i∈N

U i
(
xi
)
−
∑
l∈L

Φl
(
eTl HQx

)
Proof: We check by definition that

∂V

∂qij
= xi

(
Heij

)T
Φ′ (HQx) =

∂P

∂qij

Theorem 7. Suppose the N users update their strategies
according to (24) while the traffic engineer sets congestion
prices according to (25) and performs best response to update
Q at any irregular intervals, then the potential game converges
to the socially optimal solution.

Proof: We have shown that the potential is always in-
creasing when the N users update according to gradient ascent.
When the traffic engineer performs a best response update to Q,
the potential increases instantaneously according to (21). Thus
the potential is always increasing when the game is not at the
Nash equilibrium. The Nash equilibrium is the fixed point of
the Gauss-Seidel system (7), (8) and we have shown that it is
socially optimal.
Remark. In fact, the traffic engineer only needs to find a new
traffic split matrix Q that strictly increases V (Q, x).

V. MODIFYING DUAL ALGORITHM

The dual algorithm shown in equations (3) and (4) have
a capacity-dependent congestion price. Since we have relaxed
the capacity constraint, we have to modify the price function
accordingly. A direct attempt by taking the dual of the primal
formulation does not work out but instead the modification will
arise naturally from a game theory perspective by investigating
the symmetry of equations (1), (2), and (3) of the primal and
dual algorithms.

In the primal formulation, users are treated as players while
the links are non-player entities providing the congestion price
for link usage. The roles and dynamics are swapped for the
dual formulation. Users are now non-player entities providing
the offering traffic according to

xi =
(
U i
)′−1 ((

HQei
)T
φ
)

(26)

Note that this is the best response for the users in the potential
game. Each link l is now a player maximizing the utility

max
φl≥0

βl (φl) , −
1

2
(Φ′l − φl)

2

Note that the links are doing best response in the potential
game.

We are now ready to prove an analogous result of Lemma 5
and Theorem 7 for the dual algorithm.

Lemma 8. If users set offered traffic according to (26), and
links update their strategies according to gradient ascent:

φ̇l = Φ′l − φl (27)
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then the strategies converge to an optimal solution of (20).

Proof: From (26), we obtain the time derivative of(
U i
)′′ (

xi
)
ẋi =

(
HQei

)T
φ̇ (28)

Using (26), (27) and (28), one can show that the potential P
is always increasing as

Ṗ (x) =
∑
i

−

[(
U i
)′ (

xi
)
−
(
HQei

)T
Φ′
]2

(U i)
′′

(xi)
≥ 0

Theorem 9. Suppose the N users update the offered traffic
according to (26), and the traffic engineer sets the L links to
update according to (27) and performs best response update to
Q at any irregular intervals, then the process converges to the
socially optimal solution.

Proof: Analogous to Theorem 7.

We have assumed that all the users adopt the same algorithm
in the last two sections. Our final contribution is to consider
the case when there is a mix of users running primal and dual
algorithms.

VI. HETEROGENEOUS USERS AND FEEDBACK

The result in this section is a straightforward combination
of the results from the prior two sections. Suppose the users
are divided into two non-intersecting subsets: a set Np of users
running primal algorithm and a set ND of users running dual
algorithm. The traffic engineer is assumed to know the type of
algorithm each user is running. A different congestion price and
thus feedback is calculated for each algorithm. For the primal
algorithm, the congestion prices φp update according to (25)
while for the dual, φD update according to (27).

Theorem 10. If users update their offered traffic and links
update the offered traffic and congestion prices according to

ẋi = κi
(
xi
) [(

U i
)′ (

xi
)
−
(
HQei

)T
φP
]
, i ∈ NP

xi =
(
U i
)′−1 ((

HQei
)T
φD
)
, i ∈ ND

φPl = Φ′l, ∀l ∈ L
φ̇Dl = Φ′l − φDl , ∀l ∈ L

while the traffic engineer performs best response update to Q
at any irregular intervals, then the process converges to the
socially optimal solution.

Proof: We show that the potential P is always increasing

Ṗ (x) =
∑
i∈NP

∂P (x)

∂xi
ẋi +

∑
i∈ND

∂P (x)

∂xi
ẋi

As shown in the proofs of Lemma 5 and 8, the sum of the
two terms are always positive except at the optimal solution of
(20). The rest of the proof is analogous to Theorem 7.

VII. CONCLUSION

In this paper, we have shown that it is possible to induce
social optimality by modifying the feedback value while main-
taining all other aspects of the current interaction between
traffic engineering and elastic traffic governed by (NUM). The
optimality result holds even when the traffic engineer updates
at any irregular intervals and the users are heterogeneous. The
key to all the results is a simple idea: induce a user behavior
that always increases the social value. It will be interesting to
see if this idea is applicable for other cross-layer interactions
in the layered network architecture.
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