
1862 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

HALO: Hop-by-Hop Adaptive Link-State
Optimal Routing

Nithin Michael, Student Member, IEEE, and Ao Tang, Senior Member, IEEE

Abstract—WepresentHALO, the first link-state routing solution
with hop-by-hop packet forwarding that minimizes the cost of car-
rying traffic through packet-switched networks. At each node ,
for every other node , the algorithm independently and iteratively
updates the fraction of traffic destined to that leaves on each
of its outgoing links. At each iteration, the updates are calculated
based on the shortest path to each destination as determined by
the marginal costs of the network's links. The marginal link costs
used to find the shortest paths are in turn obtained from link-state
updates that are flooded through the network after each iteration.
For stationary input traffic, we prove that HALO converges to the
routing assignment that minimizes the cost of the network. Fur-
thermore, we observe that our technique is adaptive, automatically
converging to the new optimal routing assignment for quasi-static
network changes.We also report numerical and experimental eval-
uations to confirm our theoretical predictions, explore additional
aspects of the solution, and outline a proof-of-concept implemen-
tation of HALO.
Index Terms—IP networks, load balancing, network manage-

ment, optimal routing.

I. INTRODUCTION

O PTIMAL routing, i.e., finding routing assignments
that minimize the cost of sending traffic through

packet-switched networks, has been of fundamental research
and practical interest since the early 1970s with the advent
of ARPANET [3], the predecessor of the Internet. Yet today,
we find that the different optimal routing algorithms devel-
oped over the last 40 years are seldom implemented. Instead,
distributed link-state routing protocols like OSPF/IS-IS that
support hop-by-hop packet forwarding are the dominant in-
tradomain routing solutions on the Internet.
The driving force behind the widespread adoption of

link-state, hop-by-hop algorithms has been their simplicity—the
main idea is to centrally assign weights to links based on input
traffic statistics, flood the link weights through the network,
and then locally forward packets to destinations along shortest
paths computed from the link weights. As our communication
networks have grown rapidly in size and complexity, this

Manuscript received July 21, 2013; revised May 29, 2014; accepted July
17, 2014; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor A.
Markopoulou. Date of publication September 10, 2014; date of current version
December 15, 2015. A preliminary version of this paper appears in the Pro-
ceedings of the IEEE International Conference on Network Protocols (ICNP),
Göttingen, Germany, October 7–10, 2013.
The authors are with the Department of Electrical and Computer Engineering,

Cornell University, Ithaca, NY 14853 USA (e-mail: nm373@cornell.edu;
atang@ece.cornell.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2014.2349905

simplicity has helped OSPF eclipse extant optimal routing
techniques that are harder to implement.
However, the obvious tradeoff has been lost performance.

For instance, due to the poor resource utilization resulting from
OSPF, network administrators are forced to overprovision their
networks to handle peak traffic. As a result, on average, most
network links run at just 30%–40% utilization. To make mat-
ters worse, there seems to be no way around this tradeoff. In
fact, given the offered traffic, finding the optimal link weights
for OSPF, if they exist, has been shown to be NP-hard [4]. Fur-
thermore, it is possible for even the best weight setting to lead
to routing that deviates significantly from the optimal routing
assignment [4].
Our goal in this paper is to eliminate this tradeoff between

optimality and ease of implementation in routing. The result
is Hop-by-hop Adaptive Link-state Optimal (HALO), a routing
solution that retains the simplicity of link-state, hop-by-hop pro-
tocols while iteratively converging to the optimal routing as-
signment. To the best of our knowledge, this is the first optimal
link-state hop-by-hop routing solution.
Not surprisingly, there are multiple challenges to overcome

when designing such a solution. Before getting into them,
we define the following important recurring terms for ease of
exposition.
Hop-by-hop: Each router, based on the destination address,

controls only the next hop that a packet takes.
Adaptive: The algorithm does not require the traffic

demand matrix as an explicit input in order
to compute link weights. Specifically, the
algorithm seamlessly recognizes and adapts
to changes in the network, both topology
changes and traffic variations, as inferred
from the network states like link flow rates.

Link-state: Each router receives the state of all the
network's links through periodically flooded
link-state updates and makes routing decisions
based on the link states.

Optimal: The routing algorithm minimizes some
cost function (e.g., minimize total delay)
determined by the network operator. The
problem of guiding network traffic through
routing to minimize a given global cost
function is called traffic engineering (TE).

The first design challenge stems from coordinating routers
only using link states. This means that no router is aware of
all the individual communicating pairs in the network or their
traffic requirements. However, they still have to act indepen-
dently such that the network cost is minimized. This is a very

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



MICHAEL AND TANG: HALO: HOP-BY-HOP ADAPTIVE LINK-STATE OPTIMAL ROUTING 1863

real restriction in any large dynamic network like the Internet,
where it is not possible to obtain information about each com-
municating pair. If the link-state requirement is set aside, op-
timal distance-vector routing protocols have already been devel-
oped [2]. The idea there is to iteratively converge to the optimal
routing assignment by sharing estimates of average distances to
destinations among neighbors. However, distance-vector pro-
tocols have not caught on for intradomain routing because of
scalability issues due to their slow convergence and robustness
issues like vulnerability to a single rogue router taking down
the network as in the “Internet Routing Black Hole” incident of
1997 [5].
The hop-by-hop forwarding requirement presents the next

challenge. As a result, a router cannot determine the entire path
that traffic originating at it takes to its destination. Without
this requirement, a projected gradient approach [6] can be
used to yield optimal iterative link-state algorithms that can
be implemented with source routing, where the path a packet
takes through the network is encoded in its entirety at the
source. However, the need for source routing means that these
techniques are not practical given the size of modern networks.
Another challenge arises because the optimal routing assign-

ment changes with the input traffic and the network. There are
two aspects to this problem. The first aspect is that the algo-
rithm needs sufficient time between network and traffic changes
to calculate and assign optimal routes. This requirement is typ-
ically captured by the quasi-static model of routing problems
described by Gallager [2]. The second aspect is that the algo-
rithm should smoothly adapt the routes to changes when they do
occur. Thus, ideally, the algorithm should avoid global inputs
that require additional computation when performing routing
updates. However, the algorithm also needs some way to track
the network state to compute efficient routes. Link rates fill
this gap because they are widely available and easily accessible
in modern networks. The first aspect is modeled by studying
a static network with static input traffic in between changes
in the network. If the second stipulation is set aside, recently,
significant progress was made in this direction with PEFT, a
link-state protocol with hop-by-hop forwarding based on cen-
tralized weight calculations [7]. However, since the link weights
are calculated in a centralized manner with the traffic matrix as
an explicit input, PEFT is not adaptive. Nor does it always guar-
antee optimality as claimed in the paper.1
The rest of the paper is organized as follows. In Section II, we

review several different solutions that have been proposed for
the traffic engineering problem. Next, we formulate the quasi-
static traffic engineering problem in Section III and gain new
insights from it in Section IV. This intuition forms the basis for
HALO and the proof of its optimality presented in Section V.
Section VI discusses additional aspects of HALO, particularly
those related to implementation. Numerical evaluations are used
to verify our predictions and to move from our continuous-
time model to a discrete-time implementation in Section VII.
Section VIII presents the proof-of-concept testbed implementa-

1When the optimal routing solution does not use all available paths to the
destination, as is the case in many networks (for example, any network with at
least a loop), a set of finite optimal weights for PEFT does not exist.

tion of HALO, which is also used to physically verify our pre-
dictions. Finally, we conclude the paper with a summary and
future research directions in Section IX.

II. RELATED WORK

Over the years, due to its importance, traffic engineering has
attracted a lot of research attention. We provide a brief overview
of major related results from different communities such as con-
trol, optimization, and networking. Broadly, the existing work
can be divided into OSPF-TE, MPLS-TE, traffic demand ag-
nostic/oblivious routing protocol design, and optimal routing
algorithms.
The work on OSPF [4], [8], [9] has concentrated on using

good heuristics to improve the centralized link weight calcula-
tions. Although these techniques have been shown to improve
the algorithm's performance significantly by finding better
weight settings, the results are still far from optimal.
Typically, these and other centralized traffic engineering tech-

niques also require reliable estimates or measurements of the
input traffic statistics in the form of a traffic matrix. While ex-
cellent work has been done in traffic matrix estimation from link
loads, even the best results have errors on the order of 20% [10],
which can lead to bad traffic engineering. Another approach is to
directly measure the traffic to every destination at every router.
While it is possible to globally aggregate the measurements into
a traffic matrix that can be fed to a traffic engineering algorithm,
it is more straightforward to use local measurements locally.
Also, usually it is smoother and quicker to respond to changes
locally when they do occur. Thus, we are advocating a shift to
relying directly on link loads and local traffic measurements in-
stead of computing a traffic matrix for traffic engineering.
A good way to avoid traffic matrices and a popular way to

implement traffic engineering today is MPLS-TE [11], [12].
The idea is to compute end-to-end tunnels for traffic demands
with the available network bandwidth being assigned to new
traffic demands using techniques like Constrained Shortest Path
First. However, here, the performance gained over OSPF comes
at the cost of establishing multiple end-to-end virtual circuits.
Moreover, as the traffic changes, the end-to-end virtual circuits
that were established for a particular traffic pattern become less
useful, and performance degrades.
Oblivious routing has also been proposed as a way around

using traffic matrices for traffic engineering. The idea is to
come up with a routing assignment that performs well irre-
spective of the traffic demand by comparing the “oblivious
performance ratio” of the routing, i.e., the worst-case perfor-
mance of the routing for a given network over all possible
demands. Breakthrough work in this area includes papers by
Applegate and Cohen [13] that developed a linear programming
method to determine the best oblivious routing solution for the
special case of minimizing maximum channel utilization and
Kodialam et al. [14] that focused on maximizing throughput
for the special case of two-phase routing. However, oblivious
routing solutions do not adapt well to changes in the network
topology and, by not tailoring the routing to the traffic demand,
still incur significant performance losses.



1864 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

TABLE I
COMPARISON OF ROUTING ALGORITHMS

On the other hand, we have the optimal distance-vector and
source routing protocols discussed earlier. Despite their imple-
mentation problems, these iterative algorithms deliver on per-
formance without a traffic matrix by relying on knowledge of
the link flow rates.
Distance-vector protocols include the ones proposed by Gal-

lager in his classic paper [2], Stern [15], and Agnew [16]. From
an optimization standpoint, they are natural and mathematically
elegant algorithms since the main ideas follow directly from the
decomposition of the dual of the traffic engineering optimiza-
tion problem. Decompositions like this, which have been very
successful for problems of this type [17], can be used to yield up-
dating rules for primal and dual variables (split ratios and node
prices in [2]) that can be shown to converge to optimal solu-
tions. Similar node-based ideas have also been applied to the
cross-layer optimization of networks [18], [19].
The source routing protocols include the flow deviation tech-

nique advocated by Fratta et al. [3], projection methods pro-
posed by Bertsekas and Gafni [6], as well as proximal decom-
position methods [20]. These algorithms are based on iteratively
calculating a shortest path at the source for each destination
and transferring varying amounts of flow from the nonshortest
paths to the shortest path till the optimal routing assignment is
reached. It is worth noting here that although MPLS allows the
source to control the path a packet takes through the network, it
may not be practical for these protocols. Their iterative nature
means that a large number of label switched paths might need
to be computed and set up while they converge even though
several of these paths will become redundant when the traffic
changes.
The preceding literature review clearly reveals an important

missing link—an optimal link-state hop-by-hop routing algo-
rithm. In this paper, we provide this missing link by introducing
HALO. A comparison of representative existing solutions and
ours can be seen in Table I.

III. PROBLEM FORMULATION

Under the quasi-static model, the traffic engineering problem
can be cast as a Multi-Commodity Flow (MCF) problem in be-
tween topology and input traffic changes.Wemodel the network
as a directed graph with node/router set and edge/
link set with link capacities . The rate re-
quired for communication from to is represented by .
The commodities are defined in terms of their final destination .
We use to represent the flow on link corresponding to

commodity and for the total flow on link . The net-
work cost function, , is typically selected to be a convex func-
tion of the link rate vector . For ex-
ample, if we use the M/M/1 delay formula for the cost function,
then [21].
Throughout the paper, for numerical examples, we will use this
cost function unless specified otherwise. It is also assumed that

when . This captures the common
practice of not allowing links to operate too close to capacity. In
this paper, given a function , we will use to represent
the derivative of with respect to and to represent the time

derivative of . Using this notation, the MCF problem can
be stated as

s.t.

A useful observation about the above problem is that there is
a one-to-one correspondence between and the split ratios
at a router , , which is the fraction of traffic destined to
terminal that router forwards to neighbor [2]. This obser-
vation will prove useful later as we try to derive an iterative pro-
cedure to solve the MCF problem. By definition, the split ratios
satisfy, and
. In our analysis, we will also need the price of a link ,

, the price of a path , ,
and the price from to

(1)

where . We can interpret as the average price to
from where the average is taken over all outgoing edges of
weighted by the split ratios along those edges. If instead the

average is done over all possible paths, (1) can be stated without
recursion as

(2)

where is the set of all paths from to . For convenience,
we also define the total rate of communication from to

A fact about MCF is that its optimal solution generally results in
multipath routing instead of single-path routing [22]. However,
finding the right split ratios for each router for each commodity
is a difficult task. Our starting point is to merge the link-state
feature of the source-routing protocols with the hop-by-hop for-
warding feature of the distance-vector schemes. Another char-
acteristic that we borrow is the iterative nature of these algo-
rithms. Here, each iteration is defined by the flooding of ex-
isting link states through the network followed by every router



MICHAEL AND TANG: HALO: HOP-BY-HOP ADAPTIVE LINK-STATE OPTIMAL ROUTING 1865

updating its split ratios, which modifies the link states for the
next iteration. In what follows, we measure time in units of it-
erations. With this idea in mind, in the time between network
changes when the topology and the input traffic is static, we do
the following.
• Iteratively adjust each router's split ratios and move traffic
from one outgoing link to another. This only controls the
next hop on a packet's path leading to hop-by-hop routing.
If instead we controlled path rates, we would get source
routing.

• Increase the split ratio to the link that is part of the shortest
path at each iteration even though the average price via the
next-hop router may not be the lowest. If instead we for-
warded traffic via the next-hop router with the lowest av-
erage price, we get Gallager's approach, which is a distance
vector solution.

• Adapt split ratios dynamically and incrementally by de-
creasing along links that belong to nonshortest paths while
increasing along the link that is part of the shortest path
at every router. If instead split ratios are set to be positive
instantaneously only to the links leading to shortest paths,
then we get OSPF with weights, .

IV. SPECIAL CASES
In order to develop an intuitive understanding of why our

solution takes the form that it does, it is helpful to consider a
few concrete special cases first. These four cases, each of which
clearly highlights the reason for including a particular factor in
our solution, progressively lead us to the final algorithm. In each
example, our algorithm design will exploit the fact that the KKT
optimality conditions [23] of the MCF problem require that at
the optimal solution the traffic rate is positive only along paths
with the lowest price. The overall idea behind these examples
is to design an algorithm that reduces the network cost at each
iteration by moving to a routing assignment that satisfies this
condition. In Section V, we will extend these ideas and show
that the final algorithm that iteratively reduces the network cost
will also always lead to the optimal routing assignment.

A. Finding the Right Split Dynamically
First, let us consider a very simple example illustrated in

Fig. 1(a). Here, there is traffic demand of rate with the choice
of two links, and , to go from to . Assuming initially

, a simple strategy to reach optimality will be to dynam-
ically shift traffic at some rate from the more expensive
link to the cheaper link till the prices of the two links become
the same. At node , this would be equivalent to decreasing
and increasing at rate .
There are two ways to interpret and generalize the intuition

gained from this scenario. Both give the same solution for
this very simple example, but in general will lead to different
dynamics (see Fig. 2) and possibly different split ratios [see
Fig. 11(a)]. One interpretation, which underpins the dis-
tance-vector algorithms, is that the router should shift traffic
away from neighbors with higher average price to the neighbor
with the lowest average price. A different interpretation, which
is the basis of our protocol, is that the router should shift traffic
from links along more expensive paths to the link along the

Fig. 1. Four illustrative examples. (a) Finding the right split dynamically. Sup-
pose there is a single demand of rate to destination . Initially, the split ratios
at are along the more expensive (“longer”) link with price
and along the cheaper (“shorter”) link with price . (b) First
test. Suppose the link weights are as shown and . There
is a single demand . (c) Multiple outgoing paths. Suppose the link
weights are as shown and . There is a single demand

. (d) Multiple inputs. Suppose the link weights are as shown and
. There are demands .



1866 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Fig. 2. Trajectories taken by Gallager's algorithm (dashed line) and HALO
(solid line) to converge to the optimal solution. Cost values are shown for some
contour lines.

path with the lowest price. Mathematically, we reach the fol-
lowing update rule for the split ratios:

(3)

where but is not on the shortest path from to .

B. First Test
However, as a potential counterexample to this interpretation,

it is possible to suggest some version of the scenario described
in Fig. 1(b). Here, there is traffic demand of rate from router
to router . The initial splits at router are along an inter-
mediate price link with price and along the more ex-
pensive route with price , assuming initially.
The relationship between the initial link prices are assumed to be

, i.e., link is along the shortest path
from to , but also has the most expensive way to reach
. The concern is that router shifting traffic from the inter-

mediate price link to the link with price might result in the
cost increasing as router initially routes traffic only through
the most expensive link . However, because router
decreases and increases (in conjunction with the changes
at router ), the total cost does in fact decrease. More precisely,
the cost derivative can be calculated as follows:

where is the incoming rate to at (superscript dropped for
convenience since is the only destination) and the inequality
follows from the relationship between the prices.
This particular example can also be used to illustrate the dif-

ference between our approach and Gallager's technique, which
arises from the fact that the link leading to the neighbor with the
lowest average price (path A-C with price ) may not lead to
the cheapest path (path A-B-Cwith price ). Fig. 2 shows
the trajectories taken by the two different algorithms to con-
verge to the optimal solution for this topology. In order to sim-
ulate the long link between nodes and , an intermediate
dummy node is introduced that splits the bottom link between

and into two identical links. The capacities used were
.

The rate , and initially and . Here,

we take only one split ratio at each node because the value of
that split ratio automatically defines the value of the other at
each node. Initially, as can be seen, Gallager's algorithm, fol-
lowing the lowest average price path to the destination ,
increases the value of . Also, as expected from theory, the
trajectory of the algorithm (gradient descent) is perpendicular to
the objective function contour curves. On the other hand, using
HALO, both split ratios are decreased simultaneously. It turns
out that HALO's trajectory is usually not perpendicular to the
contour curves. However, it still goes along a descent direction
and drives the total cost down.

C. Multiple Outgoing Paths
The above case study might lead us to ask whether the simple

rule developed thus far (3) is sufficient to guarantee decreasing
network cost along its trajectory. In order to see why it is not,
consider the situation presented in Fig. 1(c). Now there are
intermediate price links from router to router each of which
gets fraction of the demand. The relationship between
the link prices is the same as in the previous example. Now the
concern is that shifting traffic in an unrestricted fashion from the
intermediate price links to router with might result in
an increase in the cost, and it is a valid concern as illustrated by
the following calculation:

which may be positive for . However, this problem can
be surmounted by modifying the update rule followed by the
split ratios by adding a weighting factor of the split ratio itself.
Mathematically, we have

(4)

where but is not on the shortest path from to .
With this new rule, the cost derivative can be evaluated as

where the last inequality follows from the fact that the average
price from router to , which is ,
has to be at least as large as the price of the shortest path from
to , which is .

D. Multiple Inputs
Does (4) ensure that total cost decreases along its trajectory?

Another case worth considering is illustrated in Fig. 1(d). This
time there are sources that each have data rate
to send to router . Now the concern is that shifting traffic in an
unrestricted manner from all the sources to router with



MICHAEL AND TANG: HALO: HOP-BY-HOP ADAPTIVE LINK-STATE OPTIMAL ROUTING 1867

could cause the total cost to increase as shown by the following
calculations:

which may be positive for . Formally, the above discus-
sion leads us to further modify the update rule in (4) by intro-
ducing a new factor denoted by

(5)

where but is not on the shortest path from to .
For now, using leads to the same cost derivative as in
Section IV-C, which is always no more than zero. In Section V,
we will show how to calculate in general and that for any
network, this update rule for the split ratios (5) makes the total
cost of the network always decrease, resulting in the split ratios
converging to a set where every element of the set achieves the
global optimum to the MCF problem, and therefore achieves
optimal traffic engineering.

V. GENERAL SOLUTION

We begin by defining , the branch cardinality, as the
product of the number of branches encountered in traversing
the shortest path tree rooted at from to . It makes sure that
routers on the tree that are farther away from the destination
shift traffic to the shortest path more conservatively than routers
that are closer to the destination. At every iteration due to
link-state flooding, each node has the link-state information
to run Dijkstra's algorithm to compute the shortest path tree to
destination . Here, additional care is required because every
node has to locally arrive at the same shortest path tree to
ensure that the algorithm proceeds as expected. Therefore, at
any stage, while running Dijkstra's algorithm locally, if there is
ambiguity as to which node should be added next, tie-breaking
based on node index is used. In other words, if at any iteration
there are multiple shortest paths to choose from, tie-breaking is
used to ensure that all routers arrive at the same shortest path
tree. The calculation of proceeds as shown in Algorithm 1.
For an illustration of how is calculated, please refer to the
example following the proof of Theorem 1.

Algorithm 1: Algorithm to calculate

1: Compute shortest path tree for destination using
Dijkstra's algorithm with tie-breaking based on node
index.

2: Traverse the tree from to .
3: Initialize .
4: At every junction do where is the number of

branches from that junction.

We are now in a position to describe HALO. At each router ,
it controls the evolution of . Let

be on the shortest path from to . Then, HALO
updates the split ratios as follows:

If (6)

(7)

else if (8)
(9)

To prove the optimality of the above link-state hop-by-hop
algorithm, we will need the following two lemmas. The first
one, originally derived by Gallager [2], relates the node prices
to the link weights for each destination .
Lemma 1: .
It analytically states the intuitive idea that the total price of

sending traffic to meet the demand in the network, as defined
by the sum of the products of the traffic demand rate and the
node price for each source node, is equal to the sum over all
links of the price of sending traffic through each link. The next
lemma describes how to calculate the rate of change of network
cost [18].
Lemma 2:

The above expression captures the fact that the change in net-
work cost can either be expressed in terms of the change in the
link flow rates, i.e., how each link affects the network cost or in
terms of the change in the split ratios at each node, i.e., how each
node affects the network cost. Now we are finally in a position
to prove the main result of the paper, which is summarized in
the following theorem.
Theorem 1: In a network, at every node , for every des-

tination , let the evolution of the split ratios be defined by
(6)–(9). Then, starting from any initial conditions, we have the
following.

Convergence: converges to the largest invariant set in
.

Optimality: Any element of this set yields an optimal solu-
tion to the MCF problem.
Proof: We will prove the result in three steps. First, we

will show that using HALO, , i.e., the network cost
decreases at each iteration. This is the key step of the whole
proof. Then, we will use this result to invoke LaSalle's Invari-
ance Principle for hybrid systems [24], i.e., systems that exhibit
both discrete and continuous changes, to argue that converges
to the largest invariant set in . Lastly, we will
establish that any element of this set is an optimal solution to
the MCF problem.
Step 1 (Monotonicity): Note that



1868 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

where is the rate of change of
the network cost as the flows to destination change at each
iteration. Consequently, if we show that for each
destination , then we have that . From Lemma 2

The crux of Step 1 is to decompose the change in cost to each
after each iteration into separate components, each of which

we can show to be at most 0. The idea is to group the terms from
the summation derived in Lemma 2, using the “branches” of the
shortest path tree rooted at .
More precisely, we define a branch as the set of nodes on

the path from a leaf node on the shortest path tree to the destina-
tion node . Given the definition, it is easy to see that some inter-
mediate nodes will be shared among multiple branches. Thus,
the change in cost contributed by these nodes has to be appro-
priately divided among the different branches that pass through
them.
We use the branch cardinality of the nodes to help us do this.

Basically, when grouping terms, for a particular branch passing
through an intermediate node , we only take a fraction, ,
of the change in cost contributed by , to be summed with that
branch. For a given branch and intermediate node , we cal-
culate by requiring to be the same as the branch cardi-
nality of the leaf router that defines . Consequently, will
be the same for all . One can check , which
confirms that the total contribution from node is distributed
over the different branches that pass through it. Formally, we
have

We continue the proof by restricting attention to an arbitrary
branch , with nodes numbered from the leaf node
to the destination and showing that, at each iteration, the change
in cost for this branch is at most 0. For ease of notation, in what
follows, we will use to represent . Then, for
any , we have the following important
equation:

(10)
Note if , following (8) and (9), the left-hand side of (10)
is zero because . The right-hand side of (10) is also
zero because . If , (10) is still valid because

Therefore

The last inequality follows from the fact that the average price
from the leaf router (node 1) to the destination (node ) that can
be thought of as an average over paths from (2) has to be no less
than the price of the shortest path. Note that this relationship
holds with equality only when the node price of the leaf node
is the same as the price of the shortest path, which means that
all the traffic from every node in the branch to the destination is
along shortest paths to the destination.
Having established that for any branch the change in cost is at

most zero, we can say that the change in cost for the shortest path
tree that is composed of multiple such branches is at most zero
as well. The total change in cost is just the sum of the changes
in cost over all destinations which will also be negative. That is,
we then have

(11)

Step 2 (Convergence): Given the control laws, we have es-
tablished that . In order to show convergence, we will
rely on the language of hybrid automata [24] to model the dy-
namics of our system. Specifically, our system is an example of
a nonblocking, deterministic, and continuous hybrid automaton.
Consequently, a generalization of LaSalle's Invariance Principle
to hybrid automata [24] can be invoked to show that the set
of split ratios converges to the largest invariant set within

.
Step 3 (Optimality): The only way to have is if

each , which implies that the change in cost along
each branch

for every . From the preceding analysis, the change in cost
along a branch is zero only when all the traffic from the
nodes that belong to the branch is being routed to the desti-
nation through shortest paths with respect to the link prices.
Since this is a necessary and sufficient condition for optimality
in MCF [21], the proof is complete.
Next, as an illustrative example to help understand the first

step of the above proof, we consider a sample shortest path
tree and perform the corresponding cost change calculations ex-
plicitly. Consider the shortest path tree of Fig. 3. The number
of branches that we divide the tree into is determined by the
number of leaf nodes. In this example, the shortest path tree
rooted at has 12 leaf routers, and consequently we will divide
the summation into 12 branches. Following the algorithm for the



MICHAEL AND TANG: HALO: HOP-BY-HOP ADAPTIVE LINK-STATE OPTIMAL ROUTING 1869

Fig. 3. Shortest path tree. Only the links in the shortest path tree for terminal
is shown, with the other links in the network not shown for ease of exposition.

calculation of , we find , , , and .
As noted in the proof, the change in the cost function over an
iteration can be calculated using Lemma 2. In order to evaluate
it, we further divide the terms in the summation and group them
per branch. Recall from the proof that for the routers that are
downstream to a leaf router in a branch, only a fraction of the
change in the cost contributed by the downstream router is se-
lected where the fraction is determined by the need to have the
same for all routers in the summation for a branch. The contri-
bution to the change in the cost by the routers for the highlighted
branch can be calculated as follows:

VI. HALO IMPLEMENTATION

So far, we have described HALO and proved its convergence
and optimality based on a fluid model. We have also assumed
that “time” is measured in units of iterations, where each
iteration itself requires link states to be flooded throughout the
network, routers to update their split ratios, and traffic to con-
verge to the new link rates. In this section, we discuss how to
translate these assumptions into a practical implementation.

A. Discrete Implementation
Typically, once the analysis of the fluid model is available,

with a small enough step-size, similar results should hold in
a discrete implementation as well. Actually, in our model, be-
cause we measure time in terms of iterations of the algorithm,
the physical time it takes to execute an iteration does not affect
our results. What is important, however, is that in between it-
erations, the split ratio updates have to be made with a small
enough step-size. This means that, in practice, our calculations
are valid if the routers are synchronized and wait long enough
between updates to see the changes reflected in the link rates.
Our description of HALO does not include a stopping crite-

rion. Instead, in the fluid model, we rely on LaSalle's Invari-
ance Principle for hybrid systems to prove that the dynamics
converge to the optimal routing assignment. In order to approx-
imate this result, diminishing step-sizes are required as we ap-
proach the optimal routing assignment. Barring that, our evalu-
ations in Section VII show that with a small enough but constant
step-size, the routes stabilize close to the optimal routing assign-
ment. HALO also exhibits hybrid dynamics where sometimes,
using a small enough step-size is not sufficient [25]. Fortunately,
once again, our extensive numerical and experimental evalua-
tions in Sections VII and VIII indicate that this is not the case
and that the algorithm does in fact converge to the optimal so-
lution even in a discrete implementation.

B. High-Frequency Link-State Updates
The physical time needed to complete an iteration directly im-

pacts the actual time that the algorithm takes to find the optimal
solution. In fact, the need to converge to the optimal routing
assignment before the traffic changes means that routers are re-
stricted in how long they have for each iteration. Fortunately, in
many networks, it does not take very long to flood link states
across them or to update the routes according to our calcula-
tions. Typically, end-to-end latencies range from hundreds of
microseconds for data center networks [26] to tens of millisec-
onds for wide-area networks spanning the continental US. Com-
bined with the fact that, depending on the step-size, several iter-
ations might be needed to converge to the optimal solution, this
means that HALO requires high-frequency link-state updates.
The exact frequency depends on the number of iterations needed
by HALO to find the optimal solution. Analytically bounding
the required number of iterations remains open. Instead, we use
the evaluations in Section VII to help us gauge the time HALO
takes to converge for reasonable step-sizes and find that for our
test cases, a couple of hundred iterations is sufficient to reach
the optimal routing assignment. Also, in modern networks, the
communication overhead of the updates is negligible. This is
because, at each iteration, there are link-state updates that
need to traverse edges, and the length of each message is at
most a couple of hundred bytes.
Lastly, it is important to note that, traditionally, high fre-

quency link-state updates have been avoided as they can
cause existing routing algorithms to produce route oscillations.
HALO, and the other iterative algorithms discussed earlier,
avoid this problem by being conservative about the fraction of
traffic they shift at each iteration. Specifically, when there are
thousands of flows, route flapping can be avoided by shifting



1870 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

different flows at each iteration to approximate the calculated
split ratios. Thus, given enough flows, most flows can have
enough time to complete before they are shifted again.

C. Splitting Traffic
In the fluid model, we assume that we can arbitrarily split

traffic to reach the optimal routing solution. By appropriately se-
lecting the step-sizes used to update the split ratios, in practice,
we can approximate the fluid model pretty closely. However,
this introduces undesirable packet-reordering to the network un-
less we are careful not to split individual flows. In practice, in
a network with tens of thousands to hundreds of thousands of
flows, we can still approximate the split ratios that we calcu-
late by using them to divide the incoming flows among different
output ports while keeping individual flows together.

D. Interaction With Single-Path Routing
Initial implementations of HALO might see it coexist

with single-path routing schemes like OSPF. Assuming pro-
tocol-specific link weights, the routes change much less
frequently at the OSPF routers compared to the HALO routers.
This notion of time–scale separation means that the subset
of routers running HALO executes the algorithm in between
slower route changes due to OSPF. Hence, the “single-path”
routers have a pruning effect on the network from the perspec-
tive of the HALO routers, i.e., the outgoing links that are not
used by them are effectively not a part of the network topology.
The HALO routers base their calculations on this reduced
network to reach the optimal routing assignment for it, i.e., in-
creasing the routers implementing HALO essentially increases
the search space for finding a better routing assignment. See
Section VII-E for numerical evidence.

VII. NUMERICAL EVALUATION
In this section, we study numerical evaluations of the per-

formance of HALO from the point of view of optimality and
rate of convergence to the optimal solution. We also present ev-
idence of the adaptivity of the algorithm as the traffic changes
as well as studies of the performance of HALO in asynchronous
environments and its interaction with single-path routing pro-
tocols. The evaluations are primarily performed on three net-
work topologies—the benchmark Abilene network (Fig. 4), a
4 4 Mesh network, and a two-level hierarchical 50 node net-
work [4]. The 4 4Mesh network is selected to study the effects
of intermediate routing loops on the optimality of the algorithm
as this topology is particularly prone to such loops, while the
hierarchical network is selected to mimic larger networks with
high-capacity backbone links and lower-capacity local links. An
additional test is performed on an even larger randomly gener-
ated 100-node network in order to confirm that the algorithm
converges quickly for larger networks [Fig. 9(c)]. Randomly
generated traffic demands are used for the mesh network and
the hierarchical network, while for the Abilene network, uni-
form traffic demand is used. In order to study the algorithms'
performance, in all three cases, the demand is scaled up until
at least one link in the network is close to saturation at the op-
timal solution. In our evaluations, we capture network demand
through the average link utilization resulting from routing the
input traffic.

Fig. 4. Abilene network.

A. Convergence
As expected, the speed of convergence depends on the step-

size. In general, smaller step-sizes guarantee convergence of the
algorithm to the optimal solution at the expense of speed of con-
vergence. This is demonstrated to be the case in Fig. 5. However,
as can be seen in Fig. 5(a) and (c), larger step-sizes quickly ap-
proach the optimal solution although they can be prone to oscil-
lations that prevent convergence to optimality. Often, it is suffi-
cient to come to some neighborhood of the optimal solution, and
in such cases, exact convergence ceases to be an issue as small
oscillations around the optimal solution are acceptable. In such
situations, a larger step-size may be used. It is encouraging to
note that in all our test cases, including for the larger 100-node
network [Fig. 9(c)], the algorithm was fairly quick, converging
to a small neighborhood of the optimal solution within a few
hundred iterations. In general, from our evaluations we observe
that the rate of convergence is faster farther away from the so-
lution and slower as the routes approach the optimal solution.
Another factor that affects the rate of convergence of the algo-

rithm is the load on the network. By increasing the input traffic
rate, we pushed the average link utilization for the Abilene net-
work to 59.5%, for the mesh network to 65.4% and for the hi-
erarchical network to 27.2%. These values indicate the point at
which further scaling up the demand for the given traffic pattern
would exceed the capacity of at least one link in the network,
even with optimal routing. From Fig. 6, we can see that the algo-
rithm takes more iterations to converge to the optimal solution
for more heavily loaded networks. Promisingly, even in such
limiting cases, HALO converges to the optimal solution on the
order of a thousand iterations. Given that today, link-state adver-
tisements can be broadcast on the order of milliseconds [27], our
evaluations indicate the possibility of convergence times of less
than a second to a few seconds for the protocol on networks
where transmission/propagation delay of the link-state adver-
tisements is not a limiting factor.

B. Performance
In order to verify that the algorithm does in fact achieve the

optimal solution, the optimal solution was calculated for the
test networks by solving the corresponding MCF problem using
cvx [28] for different network loads. The objective value ob-
tained by using HALO matched the optimal solution for each
test case as can be seen from Fig. 7(a)–(c). Also, as expected
from theory, the intermediate routing loops produced while de-
termining the optimal solution for the mesh network did not af-
fect the optimality of the algorithm.



MICHAEL AND TANG: HALO: HOP-BY-HOP ADAPTIVE LINK-STATE OPTIMAL ROUTING 1871

Fig. 5. (a) Evolution of the optimality gap for the Abilene network as the number of iterations increases with varying step-sizes
. (b) Evolution of the optimality gap for the 4 4Mesh network as the number of iterations increases with varying step-sizes
. (c) Evolution of the optimality gap for the Hierarchical 50-node network as the number of iterations increases with varying step-sizes

.

Fig. 6. (a) Evolution of the optimality gap for the Abilene network as the number of iterations increases with different network loads .
(b) Evolution of the optimality gap for the 4 4Mesh network as the number of iterations increases with different network loads . (c) Evolution
of the optimality gap for the Hierarchical 50-node network as the number of iterations increases with different network loads .

Fig. 7. (a) Abilene network optimal performance. (b) 4 4 Mesh network optimal performance. (c) Hierarchical 50-node network optimal performance. Central-
ized optimal value matched by HALO.

Fig. 8. (a) Abilene network algorithm comparison. (b) 4 4 Mesh network algorithm comparison. (c) Hierarchical 50-node network algorithm comparison.
Relative performance of different algorithms for different network loads

The major advantage that HALO offers is the significant
performance improvement that an optimal solution offers over
techniques like OSPF-TE. In Fig. 8, we compare the perfor-
mance of HALO to OSPF boosted by better weight settings
obtained from the algorithms of the TOTEM toolbox [29] for
demand matrices that placed increasing loads on the test net-
works. The local search algorithm used by TOTEM minimizes
a piecewise-linear approximation of our convex cost function.

The power of optimality is demonstrated by the performance
improvements on the order of 1000% as the load on the network
increases.

C. Adaptivity
Another attraction of HALO is that it dynamically adapts to

changes in the traffic on the network. In Fig. 9(a), we plot the
evolution of the optimality gap as the traffic matrix undergoes



1872 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Fig. 9. (a) Evolution of the optimality gap for the Abilene Network as the number of iterations increases with varying demand matrices. (b) Evolution of the split
ratios to Chicago, Kansas City, and Atlanta for traffic destined to LA at the Indianapolis node on the Abilene network. (c) Evolution of the optimality gap for a
randomly generated 100-node network with varying step-sizes.

Fig. 10. (a) Asynchronous link-state updates. Iterations required to converge increase with increasing delay . (b) Asynchronous execution.
Iterations required to converge increase with increasing difference in rate of execution . (c) Partial implementation. Results of partially
implementing HALO on the Abilene network. Increasing number of nodes running HALO improves performance.

changes for the Abilene network under different network load
conditions. In this example, after around 300 iterations, the net-
work load is changed by changing 20% of the flows in the net-
work. As can be seen, the algorithm quickly adapts, and the op-
timality gap increases very little before beginning to converge
to the new optimal solution. The traffic pattern is again changed
by varying 50% of the flows in the network after 800 iterations.
This time, the change in the optimality gap is greater, but the
convergence to the new optimal value is seen to be quicker. The
traffic pattern in the network is changed two more times, and
as can be observed from the figure, in both cases the algorithm
quickly converges to thep new optimal solution.
A closely related concept to the adaptivity of the algorithm is

the evolution of the split ratios at individual routers. Addition-
ally, it serves as a visualization of HALO in action. We pick the
Indianapolis node for the Abilene network and plot the evolu-
tion of the split ratios to Los Angeles in Fig. 9(b). For our test
traffic, the initial suboptimal allocation of split ratios is quickly
corrected as HALO reduces traffic sent to Chicago and increases
traffic sent to Kansas City and Atlanta.

D. Asynchronous Implementation
In dynamic network environments, random delays can af-

fect the time it takes for link-state information to reach every
node in the network as required by the algorithm. Note that
without synchronized link-state updates, facets of HALO like
calculating the shortest path tree and are affected. There are
two ways to approach this problem. The first is to allow enough
time between successive iterations of the algorithm so that every
node has access to the most up-to-date link-state information.
The second is to let the nodes execute HALO despite asyn-
chronous link-state updates. It is also possible for asynchronous
behavior to arise despite synchronized link-state updates due to
some subset of the nodes executing the algorithm faster than the

other nodes.We separately tested the performance of HALO, for
asynchronous link-state updates and asynchronous executions,
using uniform traffic on the Abilene network. The results of our
evaluation, studying both type of asynchronous behavior, are
presented in Fig. 10(a) and (b).
In both cases, in order to simulate asynchronous behavior,

the nodes in the network were numbered and divided into two
groups. For asynchronous link-state updates, at every iteration,
the even-numbered nodes received link states without any delay,
while the odd-numbered nodes received link states from the
even-numbered nodes after a fixed delay. Consequently, at each
execution of the algorithm, the two sets of nodes had different
views of the network link states. The fixed delay was then varied
to generate the results reported in Fig. 10(a). For asynchronous
execution of HALO, the odd-numbered nodes were forced to ex-
ecute the algorithm slower than the even-numbered nodes. The
difference in the rate of execution was varied in order to obtain
the results reported in Fig. 10(b). Note that different step-sizes
had to be used to prevent oscillations in the two cases.
As can be seen, HALO still converged to within 1% of the

optimal solution, which was used as a stopping criterion for our
evaluation. Additionally, it is interesting to note that there is a
steady increase in the number of iterations required by HALO
as the delay in propagating the link states or the difference in
the rate of executing HALO increases. While the results of this
particular experiment are promising, more research is required
to establish whether the observations noted above are a more
general property of HALO.

E. Coexistence With Single-Path Protocol
We also used numerical evaluations to study how HALO

works in conjunction with a single-path routing protocol.
The same setup as described in Section VI is studied using
a randomly generated traffic pattern on the Abilene network.



MICHAEL AND TANG: HALO: HOP-BY-HOP ADAPTIVE LINK-STATE OPTIMAL ROUTING 1873

Fig. 11. (a) Network used to study optimal solutions reached by different algorithms and HALO's dependence on initial conditions [Solid line in (b) and (c) is
]. (b) Initial split ratios affect both the number of iterations to converge to the optimal solution as well as the optimal solution. Parentheses in the

legend indicate time 0. (c) Solutions and trajectories computed by different routing algorithms. PEFT does not have a trajectory since it is calculated centrally.

Fig. 12. NetFPGA experimental setup. (a) System diagram (b) Topology of the hardware testbed. Each link is bidirectional and can be replaced with two unidi-
rectional links to get a directed graph. (c) Time-varying traffic.

The nodes were first ranked according to their degree and then
added in that order to the set implementing the HALO protocol
to obtain the results seen in Fig. 10(c). The degree-two nodes
on the East and the West Coasts were added to the set together
since by that point most of the performance gain had already
been achieved. As can be seen, for each set implementing
HALO, the algorithm converges to the optimal solution for
the case where the remaining nodes are constrained to have
only one outgoing link per destination. As expected, as the
number of cities/nodes that run the algorithm increase, the
performance of the network improves. However, it is also
interesting how adding the first few higher-degree nodes to the
set implementing HALO results in the bulk of the performance
improvement.

F. Dependence on Initial Conditions
Next, using the network in Fig. 11(a), we explore how

the initial split ratios influence the rate of the conver-
gence of HALO to the optimal solution and the solution
itself. Each link has capacity 5 units, and there are two de-
mands units. We start with initial
routes (1–3–2–4, 1–2–4–5), (1–3–2–4, 1–3–4–5), (1–2–4,
1–3–2–4–5), and 60% through (1–3–4, 1–3–4–5), 40% through
(1–2–4, 1–2–4–5). As can be seen from Fig. 11(b), each set of
initial split ratios generates a different optimal solution, all of
which satisfy , an optimality condition that
follows from the fact that at optimum and the resulting
symmetry of the problem. Also, we find that each set of initial
conditions needs a different number of iterations to converge to
the optimal solution. With a step-size of 0.01 for HALO, listed
in the same order as the initial routes, the numbers of iterations

required to come within 0.1% of the optimal solution are 574,
347, 1004, and 179.

G. Different Algorithms Can End up With Different Split
Ratios
As shown in Fig. 2, HALO follows a different trajectory from

Gallager's algorithm in searching for an optimal solution. How-
ever, in that case, both algorithms converged to the same op-
timal solution. In general, because the MCF problem is strictly
convex in link rates and only convex in flow rates ,
there can bemultiple optimal solutions in terms of the flow rates.
We demonstrate this with the following example. Again, we use
the topology in Fig. 11(a) with the same link capacities and de-
mands used to evaluate the dependence of HALO on the initial
split ratios. The initial routes supplied to the different algorithms
are (1–3–2–4) and (1–2–4–5), i.e., and . As
can be seen from Fig. 11(c), each algorithm generates a different
optimal solution, all of which again satisfy .

VIII. EXPERIMENTAL EVALUATION
The results of the numerical evaluation, particularly those

showing convergence with asynchronous link-state updates
and executions, led us to test HALO on a hardware testbed. As
shown in Fig. 12(b), we built a simple cube network of eight
Dell PCs connected to NetFPGA 1G boards programmed to
act as routers. We performed experiments to verify optimality,
to evaluate performance as input traffic varied, as well as
to measure network latency compared to Equal-Cost Multi-
path (ECMP) routing. Before describing our results, we give a
brief overview of how we implemented HALO.



1874 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Fig. 13. NetFPGA experimental results. (a) Converging to optimal routing for time-varying traffic. (b) Max link utilization quickly reduced to optimal values.
(c) Significant improvement in latency and maximum sustainable load over ECMP.

A. Implementing HALO on NetFPGA
We implemented HALO by modifying the Reference

Router [30] project that converts the NetFPGA board to
a single-path router. First, we altered the link-state update
packets to carry link rates and set the link-states to broadcast
every 250 ms for quick convergence. The link rates and the
per-destination flow rates were obtained from the appropriate
registers. Then, we programmed HALO to calculate split ratios
that were stored in a modified routing table. We accomplished
multipath routing by implementing a random number generator
that selected the appropriate output port according to these split
ratios. For the network cost function, we used ,
which gave us as the price of each link.
A notable difference between the NetFPGA implementation

and our model is the lack of synchronization between the
routers. Thus, the NetFPGA testbed is used to provide physical
verification of the numerical observations of the convergence
of HALO in asynchronous environments.

B. Verifying Optimality
As illustrated in Fig. 12(b), we sent two video streams from
to and to . From symmetry, we expected the traffic

to split equally over the three outgoing links at and . Sim-
ilarly, we calculated the optimal split ratios at the intermediate
routers as well. Similar to the numerical evaluation, despite the
lack of synchronization between the routers, the network con-
verged to the optimal routing assignment about a second after
we introduced the traffic streams.

C. Performance With Varying Input Traffic
Next, we added time-varying traffic to the preceding experi-

ment using iPerf as shown in Fig. 12(c). HALO quickly adapted
to the input traffic changes as can be seen in Fig. 13(a). Also,
it distributed the larger time-varying traffic input more evenly
over the network as captured by the reduction in the maximum
link utilization in the network in Fig. 13(b).

D. Latency Compared to ECMP
In this experiment, we sent increasing traffic from

192.168.104.1 to 192.168.103.1, in addition to the video traffic
from to , using both HALO and Equal-Cost Multipath
with equal traffic splits (ECMP). We also used a rate limiter
to reduce the capacity of the NetFPGA boards to 475 Mb/s
since otherwise the PC network interface cards (NICs), with
a capacity of around 800 Mb/s, would be the bottleneck to

sending extra traffic. Using ECMP, one of the paths from to
shared link 5 with the direct path between 192.168.104.1

and 192.168.103.1. Consequently, the maximum traffic that
we were able to send with ECMP between 192.168.104.1 and
192.168.103.1 was around 430 Mb/s after accounting for the
video traffic. On the other hand, HALO adjusted the routes
as needed to satisfy the increasing traffic demand based on
link-state feedback, and we were able to send as much traffic
as the NIC at 192.168.104.1 could support. The results of mea-
suring the latency between 192.168.104.1 and 192.168.103.1
are plotted in Fig. 13(c). As can be seen, HALO not only
supports more traffic than ECMP, but also offers much better
latency over the larger range of traffic that it supports.

IX. SUMMARY

In this paper, we developed HALO, the first link-state, hop-
by-hop routing algorithm that optimally solves the traffic en-
gineering problem for intradomain routing on the Internet. Fur-
thermore, we showed that based on feedback from the link-state
updates, the protocol automatically adapts to input traffic and
topology changes by adjusting router split ratios. We also pro-
vided guidelines on implementing HALO by translating the the-
oretical model to a discrete implementation for numerical eval-
uations and then to a physical testbed built on NetFPGA boards.
Importantly, although they did not satisfy the theoretical as-
sumptions about continuous split ratio updates and synchroniza-
tion between the routers, the numerical and experimental eval-
uations backed up our theoretical predictions about the perfor-
mance and adaptivity of HALO. In terms of future directions,
there are still interesting areas to be explored. For instance, the
convergence rate of the algorithm needs to be analyzed. An-
other direction involves developing the theory behind the per-
formance of algorithm in the absence of synchronous link-state
updates and executions.

ACKNOWLEDGMENT

The authors thank Dr. D. Xu of AT&T for helpful discus-
sions on PEFT and helping generate some simulation results,
and P. Sharma, A. Sinha, N. Wu, and C.-H. Yu of Cornell Uni-
versity for helping obtain testbed results.

REFERENCES
[1] N. Michael, A. Tang, and D. Xu, “Optimal link-state hop-by-hop

routing,” in Proc. IEEE ICNP, 2013, pp. 1–10.
[2] R. Gallager, “A minimum delay routing algorithm using distributed

computation,” IEEE Trans. Commun., vol. COM-25, no. 1, pp. 73–85,
Jan. 1977.



MICHAEL AND TANG: HALO: HOP-BY-HOP ADAPTIVE LINK-STATE OPTIMAL ROUTING 1875

[3] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method: An
approach to store-and-forward communication network design,” Net-
works, vol. 3, no. 2, pp. 97–133, 1973.

[4] B. Fortz and M. Thorup, “Increasing internet capacity using local
search,” Comput. Optim. Appl., vol. 29, no. 1, pp. 13–48, Oct. 2004.

[5] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Ap-
proach, 5/E. New York, NY, USA: Addison-Wesley, 2010.

[6] D. Bertsekas and E. Gafni, “Projected newton methods and optimiza-
tion of multicommodity flows,” IEEE Trans. Autom. Control, vol.
AC-28, no. 12, pp. 1090–1096, Dec. 1983.

[7] D. Xu,M. Chiang, and J. Rexford, “Link-state routing with hop-by-hop
forwarding can achieve optimal traffic engineering,” IEEE/ACMTrans.
Netw., vol. 19, no. 6, pp. 1717–1730, Dec. 2011.

[8] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM
Trans. Netw., vol. 13, no. 2, pp. 234–247, Apr. 2005.

[9] S. Srivastava, G. Agrawal, M. Pioro, and D. Medhi, “Determining
link weight system under various objectives for OSPF networks using
a lagrangian relaxation-based approach,” IEEE Trans. Netw. Service
Manag., vol. 2, no. 1, pp. 9–18, Nov. 2005.

[10] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate
computation of large-scale IP traffic matrices from link loads,” in Proc.
ACM SIGMETRICS, New York, NY, USA, 2003, pp. 206–217.

[11] D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE
Commun. Mag., vol. 37, no. 12, pp. 42–47, Dec. 1999.

[12] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” in Proc. 20th Annu. IEEE INFOCOM, 2001, vol.
3, pp. 1300–1309.

[13] D. Applegate and E. Cohen, “Making routing robust to changing traffic
demands: Algorithms and evaluation,” IEEE/ACM Trans. Netw., vol.
14, no. 6, pp. 1193–1206, Dec. 2006.

[14] M. Kodialam, T. V. Lakshman, J. Orlin, and S. Sengupta, “Oblivious
routing of highly variable traffic in service overlays and IP backbones,”
IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 459–472, Apr. 2009.

[15] T. Stern, “A class of decentralized routing algorithms using relax-
ation,” IEEE Trans. Commun., vol. COM-25, no. 10, pp. 1092–1102,
Oct. 1977.

[16] C. E. Agnew, “On quadratic adaptive routing algorithms,” Commun.
ACM, vol. 19, no. 1, pp. 18–22, Jan. 1976.

[17] D. Palomar and M. Chiang, “A tutorial on decomposition methods for
network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, pp. 1439–1451, Aug. 2006.

[18] F. Paganini and E. Mallada, “A unified approach to congestion control
and node-based multipath routing,” IEEE/ACM Trans. Netw., vol. 17,
no. 5, pp. 1413–1426, Oct. 2009.

[19] Y. Xi and E. Yeh, “Node-based optimal power control, routing, and
congestion control in wireless networks,” IEEE Trans. Inf. Theory, vol.
54, no. 9, pp. 4081–4106, Sep. 2008.

[20] P. Mahey, A. Ouorou, L. J. LeBlanc, and J. Chifflet, “A new proximal
decomposition algorithm for routing in telecommunication networks,”
Networks, vol. 31, no. 4, pp. 227–238, 1998.

[21] D. Bertsekas and R. Gallager, Data Networks. Upper Saddle River,
NJ, USA: Prentice-Hall, 1992.

[22] M. Wang, C. W. Tan, W. Xu, and A. Tang, “Cost of not splitting in
routing: characterization and estimation,” IEEE/ACM Trans. Netw.,
vol. 19, no. 6, pp. 1849–1859, Dec. 2011.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge Univ. Press, 2004.

[24] J. Lygeros, K. Johansson, S. Simic, J. Zhang, and S. Sastry, “Dynamical
properties of hybrid automata,” IEEE Trans. Autom. Control, vol. 48,
no. 1, pp. 2–17, Jan. 2003.

[25] J. Lygeros, K. Johansson, S. Simic, J. Zhang, and S. Sastry, “Conti-
nuity and invariance in hybrid automata,” in Proc. 40th IEEE Decision
Control, 2001, vol. 1, pp. 340–345.

[26] M. Alizadeh et al., “Data center TCP (DCTCP),” Comput. Commun.
Rev. vol. 40, no. 4, pp. 63–74, Aug. 2010.

[27] Cisco Systems, Inc., San Jose, CA, USA, “OSPF link-state advertise-
ment (LSA) throttling,” 2012 [Online]. Available: http://www.cisco.
com/en/US/docs/ios/12_0s/feature/guide/fsolsath.html

[28] CVX Reaserch, Inc., “CVX: Matlab software for disciplined convex
programming, version 2.0 beta,” Sep. 2012 [Online]. Available: http:/
/cvxr.com/cvx

[29] J. Lepropre, S. Balon, and G. Leduc, “Totem: A toolbox for traffic en-
gineering methods,” presented at the Poster and Demo Session of IEEE
INFOCOM Apr. 2006.

[30] Stanford University, Stanford, CA, USA, “NetFGPA reference router
walkthrough,” Aug. 2013 [Online]. Available: https://github.com/
NetFPGA/netfpga/wiki/ReferenceRouterWalkthrough

Nithin Michael (S'06) received the B.S. degree
(summa cum laude) in electrical and computer
engineering from Drexel University, Philadelphia,
PA, USA, in 2008, and the M.S. and Ph.D. degrees
in electrical engineering with a minor in applied
mathematics from Cornell University, Ithaca, NY, in
2012 and 2013, respectively.
His research is focused on the optimization of en-

gineering networks.
Dr. Michael was the recipient of first Honors in

ECE and the Highest Academic Achievement Award
for graduating first in his class from the College of Engineering, Drexel Univer-
sity, in 2008. At Cornell, he was a Jacobs Fellow in 2008 and 2010.

Ao Tang (S'01–M'07–SM'11) received the B.E. in
electronics engineering from Tsinghua University,
Beijing, China, in 1999, and the M.S. and Ph.D.
degrees in electrical engineering with a minor in
applied and computational mathematics from the
California Institute of Technology, Pasadena, CA,
USA, in 2002 and 2006, respectively.
He is currently an Associate Professor with the

School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY, USA, where he
works on control and optimization of communication

networks.
Dr. Tang received the following recent awards, the Cornell Engineering

School Michael Tien '72 Excellence in Teaching Award in 2011, the Young
Investigator Award from the Air Force Office of Scientific Research (AFOSR)
in 2012, and the Presidential Early Career Award for Scientists and Engineers
(PECASE) from the White House in 2012.


