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Abstract—In this article we study synchronization of systems
of homogeneous phase-coupled oscillators with plastic coupling
strengths and arbitrary underlying topology. The dynamics of
a coupling strength between two oscillators is governed by the
phase difference between these oscillators. We show that such
systems are gradient and always achieve frequency synchroniza-
tion. Moreover, for these systems we provide sufficient stability
and instability conditions that are based on results from algebraic
graph theory. For a special case when underlying topology is a
tree, we formulate a criterion of stability for equilibria. Several
examples are used to demonstrate variety of equilibria the system
has, and to illustrate differences in behavior of systems with
constant and plastic coupling strengths.

I. INTRODUCTION

Synchronization of phase-coupled oscillators is an extensive
topic of research that finds applications in a variety of disci-
plines including neuroscience ([17], [24], [31], [32]), physics
([24], [4]), mathematics ([10]) and engineering ([8], [23]).

One of the most important properties of each model of
phase-coupled oscillators is how coupling between oscillators
is defined. First of all, the coupling is characterized by a
coupling function, which is a trigonometric sin() in case of
Kuramoto model – a canonical model for studying synchro-
nization phenomenon. However, a broader class of coupling
functions can be considered ([21], [12], [5], [22]). Another
characteristic of the coupling is whether coupling strengths
are constant or varying with time. While having constant cou-
pling strengths is a more prevalent assumption that generally
simplifies analysis of the models, it was suggested ([12], [29],
[26]) that considering varying or plastic coupling strengths
may be more suitable for studying oscillations in neuroscience,
since synaptic neural connections undergo modifications due
to learning or forgetting processes.

Synchronization of systems of phase-coupled, and in partic-
ular, Kuramoto oscillators has been extensively analyzed under
various assumptions: homogeneous ([21]) or heterogeneous
([10], [9]) oscillators; special topology such as complete graph,
graph of diameter two or arbitrary ([10], [9]) topology; finite
or infinite number of oscillators. However, most of the existing
works concentrate on the case of constant coupling strengths.
Moreover, those works that study systems of phase-coupled
oscillators with plastic coupling strengths generally contain

only empirical insights and interesting simulation results. In
some cases, analytical description is provided, but only for a
few simple special examples such as two connected oscillators
[29]. In [28], the authors show some interesting results on
synchronization and stability for systems of homogeneous
oscillators with plastic coupling strengths, but only for a
complete graph topology.

The goal of this work is to develop a general analytical
framework for studying systems of phase-coupled homoge-
neous oscillators with non-constant coupling and arbitrary un-
derlying topology. We show by providing a Lyapunov function,
that these systems always achieve frequency synchronization,
and derive two sufficient conditions: one for showing stabil-
ity, and another one for showing instability of equilibrium.
Moreover, these conditions characterize all equilibria when
underlying topology is a tree graph.

The structure of the article is the following. In the next
section we formally describe the model and introduce nec-
essary notation. In Section III we provide several motivating
examples. In subsection A of section IV a Lyuponov function
is introduced and synchronization of oscillators is shown.
Then, in subsection B we formulate stability and instability
sufficient conditions. Further, in subsection C we provide a
criterion of stability for the tree underlying topology. Finally,
in section V we apply our stability results to several examples,
and conclude in section VI.

II. PROBLEM FORMULATION
We study a system of phase-coupled oscillators with plastic

coupling strengths whose dynamics is governed by the follow-
ing two classes of equations:

φ̇i = ωi +
∑
j∈Ni

Kij · fij(φj − φi), i ∈ {1, . . . , n} (1a)

K̇ij = sij
(
αij · Fij(φj − φi)−Kij

)
, ij ∈ E, (1b)

where E is the set of edges. Equation (1a) defines behavior
of an oscillator, and equation (1b) determines dynamics of a
coupling strength. Here φi is a phase of oscillator i; ωi is
its intrinsic frequency; Ni is a set of oscillators connected
to oscillator i, i.e. the set of its neighbors; Kij and fij
are a coupling strength and a 2π-periodic coupling function,



Fig. 1: Examples of function fij satisfying Assumption 1.

respectively, between connected oscillators i and j. In equa-
tion (1b), Fij(x) = −

∫ x
0
fij(t) dt + C with a choice of

integration constant C that makes
∫ π
0
Fij(t) dt = 0. Positive

constants αij determine minimum and maximum values of
the coupling strengths, so each Kij takes values from interval
[αij · Fminij , αij · Fmaxij ], and positive constants sij define
rate of change of the coupling strengths. Notice, that when
fij(φj − φi) = sin(φj − φi) ∀i, j, then Fij(φj − φi) =
cos(φj − φi) and system (1) becomes a Kuramoto model
with varying coupling strengths which is called a generalized
Kuramoto model in [29].

The topology of system (1) is defined by an undirected
connected graph G = (V,E) with a vertex set V and an edge
set E. Each vertex vi ∈ V corresponds to the oscillator φi, and
each edge ij ∈ E corresponds to the coupling strength Kij , so
that |V | = n, where n is a number of oscillators in a system,
and Ni = {j ∈ V |ij ∈ E}. Additionally, if oscillators i and j
are not connected, then the coupling strength between them is
always equal to zero, i.e. Kij ≡ 0 if ij /∈ E. We denote by m
the number of edges in a graph so that |E| = m. Therefore,
the total number of variables and equations in system (1) is
n+m. It is assumed that coupling is symmetric, and Kij and
Kji are the same variable.

In this paper, similarly to [21], we require that functions fij
satisfy these three conditions:

Assumption 1 Functions fij ∀i, j satisfy:
1) Symmetric coupling: fij = fji;
2) Odd: fij(x) = −fij(−x);
3) C1: fij is continuously differentiable.
Examples of a 2π-periodic function fij satisfying these

three conditions are shown on Fig. 1.
To the best of our knowledge, system (1) was initially

introduced in [12] as an extension to the classical Kuramoto
model of synchronization. Because strength of synapses –
connections between neurons – can generally change its value
and is believed to play a key role in learning and memory
formation in the brain, it is natural to consider plastic cou-
pling strengths between oscillators in the Kuramoto model.
A well-known synaptic plasticity mechanism called Hebbian
rule states that a synapse between two simultaneously active
neurons, i.e. neurons that spike almost at the same time, be-
comes stronger. When neurons are modeled by phase-coupled
oscillators, simultaneously firing neurons can be represented
by oscillators whose phases are almost equal. This idea is

implied in the model (1) with fij = sin(), where a connection
between two oscillators becomes stronger if it is small enough
and if the phases of these oscillators are close to each other.
Analytical results presented in our article hold however for a
wider set of functions fij that only need to satisfy Assumption
1.

In the previous works, several modifications of model (1)
were introduced and investigated. For example, in [30], [1], [2]
time delays are added to the model, and behavior of oscillators
for different values of delay parameters is explored. In [20]
the coupling strength equation of (1) was replaced by an
exponential Spike Timing-Dependent Plasticity (STDP) rule,
in which a coupling strength’s Kij dependence on a phase
difference (φj−φi) is defined via exponential function instead
of function f ′ij . In [14] a stochastic model of oscillators is
studied, where equations (1) contain additive Gaussian noise
terms.

In this article we study frequency synchronization of system
(1). We say that system (1) achieves frequency synchronization
if φ̇1(t) = · · · = φ̇n(t) = φ̇ and K̇ij(t) = 0 ∀i, j as t → ∞,
where φ̇ is a common synchronization frequency. We analyze
model (1) with homogeneous oscillators which implies that all
intrinsic frequencies of oscillators are equal, i.e. there exists
a constant ω such that ω1 = · · · = ωn = ω. It is easy to see
that if such homogeneous oscillators synchronize, then their
synchronization frequency is ω. Without loss of generality, we
assume that ω = 0, and in the rest of the article consider the
following system:

φ̇i =
∑
j∈Ni

Kij · fij(φj − φi), (2a)

K̇ij = sij
(
αij · Fij(φj − φi)−Kij

)
. (2b)

Observe that if
(
φ∗,K∗

)
is an equilibrium of system (2),

then
(
φ∗ + δ1n,K

∗), where 1n is a n-dimensional vector of
ones and δ ∈ R, is also an equilibrium and belongs to the
same limit cycle. We will not differentiate between equilibria
belonging to the same orbit and thus consider them to be
identical. Therefore, in the rest of the article when we talk
about stability of an equilibrium

(
φ∗,K∗

)
, we imply stability

of the following set of equilibria: 1

Eφ∗ = {
(
φ,K

)
=
(
φ∗ + δ1n,K

∗), δ ∈ R}. (3)

III. MOTIVATING EXAMPLES

In this section we illustrate the differences between the
model (2) and the model with constant coupling with several
simple examples. The number of oscillators in these examples
varies from two to four, and we assume that fij(φj − φi) =
sin(φj −φi) for all connected oscillators i and j. We demon-
strate with these examples that stability of equilibria may
change if the coupling strength becomes plastic. Additionally,
new equilibria may arise in this case. Moreover, system (2)
can possess infinitely many equilibria as shown in Section

1Alternatively, we could consider phase differences (φi − φj) as the
variables of system (2) and study stability of a single equilibrium instead
of a set (3) of equilibria.



(a) Constant positive coupling
strength K

(b) Constant negative coupling
strength K

(c) plastic coupling strength K

Fig. 2: Example with two oscillators. Green (filled) circles cor-
respond to stable equilibria, red (not filled) circles correspond
to unstable equilibria.

III-C. For each example we consider three types of coupling
strengths: constant equal positive, constant equal negative, and
varying coupling strengths.

A. Two Oscillators

A system of two connected homogeneous oscillators with
a constant positive coupling strength K12 and a trigonometric
sin() coupling function is described by the following equa-
tions:

φ̇i = K12 · sin(φj − φi), (4)

where i = 1, j = 2 or i = 2, j = 1. This system has two
topologically distinct equilibria: one is in-phase and stable:
φi = φj , and another one is anti-phase: φj = φi + π and
unstable.

When the coupling strength K12 is constant and negative,
then the set of equilibria of system (4) remains unchanged,
but the in-phase equilibrium now becomes unstable, whereas
the anti-phase equilibrium becomes stable.

System (2) of two oscillators with a plastic coupling strength
contains two sets of equilibria that are characterized by the
following conditions:

1). sin(φj − φi) = 0. If φi = φj , then K12 = α, and when
φj = φi + π, then K12 = −α.

2). K12 = 0, then cos(φj − φi) = 0, i.e. φj = φi + π/2.
The Jacobian for the system of two oscillators takes form:

J =

−K12 · cos() K12 · cos() sin()
K12 · cos() −K12 · cos() − sin()
α · s · sin() −α · s · sin() −s

 ,
where sin() = sin(φj − φi) and cos() = cos(φj − φi) for
brevity. It can be easily verified that equilibria from the first
set are stable, whereas the equilibria from the second set

(a) Constant positive coupling strength K

(b) Constant negative coupling strength K

(c) plastic coupling strength K

Fig. 3: Example with three oscillators. Green (filled) circles
correspond to stable equilibria, red (not filled) circles corre-
spond to unstable equilibria.

(when K = 0) are unstable. Therefore, two observations can
be made: all equilibria of system (4) with constant coupling
strength are also equilibria of system (2) with plastic coupling
strength, and they are all stable for system (2). The second
observation is that when the coupling strength is non-constant,
a new set of equilibria emerges. This set, however, contains
only unstable equilibria in case of two oscillators. On Fig. 3
we depict the sets of equilibria and their stability for three
types of coupling described above.

B. Three Oscillators

In this subsection we consider an example of three con-
nected homogeneous oscillators. We assume that underlying
topology is a complete graph, which means that each oscillator
is connected to two others. When the coupling function is sin()
and coupling strength K is constant, the behavior of oscillators
is defined by the following set of equations:

φ̇1 = K · sin(φ2 − φ1) +K · sin(φ3 − φ1),
φ̇2 = K · sin(φ1 − φ2) +K · sin(φ3 − φ2),
φ̇3 = K · sin(φ1 − φ3) +K · sin(φ2 − φ3).

(5)

When K > 0, system (5) has 3 topologically distinct equilib-
ria: one is in-phase when φi = φj = φk and stable, another
one is φi = φj , φk = φi + π and unstable, and the last one
is defined as φj = φi + 2π/3, φk = φi − 2π/3 and is also
unstable.

When K < 0, the set of equilibria of system (5) remains the
same. Stability properties of the equilibria, however, change,
as in the example with two oscillators. In particular, the first
equilibrium becomes unstable, and the last two become stable.



We now enumerate all equilibria of system (2) with three
oscillators assuming that α12 = α23 = α13 = α:

1). In-phase equilibrium: φi = φj = φk and K12 = K23 =
K13 = α. This equilibrium is stable.

2). φi = φj , φk = φi+π, and Kij = α, Kjk = Kik = −α,
and again a stable equilibrium.

3). φj = φi + 2π/3, φk = φi − 2π/3, and Kij = Kjk =
Kik = −0.5 · α. This equilibrium is unstable for all positive
values of the rate parameter s > 0. However, when s = 0,
then system (2) becomes a system (5) with constant coupling
strengths, and if Kij = Kjk = Kik = −0.5 · α, this
equilibrium is stable.

The equilibria 1), 2) and 3) are also equilibria of system
(5), but the following equilibria exclusively correspond to the
system (2):

4). φi = φj , φk = φi + π/2, and the coupling strengths
Kij = α, Kjk = Kik = 0. This equilibrium is not stable.

5). φj = φi + π/3, φk = φi − π/3, and Kij = Kik =
0.5 · α, Kjk = −0.5 · α. Similarly to the equilibrium 3), this
equilibrium is unstable for all positive values of s, and if s is
equal to zero while Kij = Kik = 0.5 · α, Kjk = −0.5 · α,
then equilibrium is stable.

6). φj = φi + π/2, φk = φi − π/2, Kij = Kik = 0,
Kjk = −α. This is again an unstable equilibrium for all s > 0,
and is stable when s = 0, Kij = Kik = 0, Kjk = −α.

Notice that at an equilibrium, Kij = cos(φj − φi) for all i
and j. If we plug these values of the coupling strengths into
the equations of phases, we will obtain:

sin 2(φ2 − φ1) + sin 2(φ3 − φ1) = 0,

− sin 2(φ2 − φ1) + sin 2(φ3 − φ2) = 0,

sin 2(φ3 − φ1) + sin 2(φ3 − φ2) = 0.

Each of these equations is a direct consequence of the remain-
ing two, and the set of equilibria of system (2) can be found
by solving a system of arbitrary two of the above equations.

From the considered examples of two and three oscillators
several observations can be made. First, each equilibrium of
a system with constant coupling strengths was also an equi-
librium of a system with varying coupling strengths. Second,
stability of these common equilibria can differ for systems
with constant and non-constant coupling. Third, system (2)
can possess additional equilibria.

C. Four Oscillators

We consider here the case of four oscillators connected by
a complete graph. Instead of describing all equilibria of this
system, we will show that system (2) with four homogeneous
oscillators and sin() coupling has infinitely many topologically
distinct equilibria.

These equilibria can be defined by means of a parameter β.
Then for each value of β ∈ (0, π/2), phases: φj = φi + π/2,
φk = φi + β, φl = φk − π/2, and coupling strengths
Kij = Kkl = 0, Kik = cos(β), Kil = Kjk = cos(π/2−β) =
sin(β), Kjl = cos(π − β) = − cos(β) define an equilibrium.
Phases corresponding to this equilibrium with a value of
parameter β = π/4 are shown on Fig. 4.

Fig. 4: Equilibrium corresponding to β = π/4 for the example
with four oscillators.

Notice, that in all such equilibria two coupling strengths are
equal to zero, and edges corresponding to non-zero coupling
strengths form a graph with a ring topology.

These equilibria are unstable for the case of positive learning
rate s, but if s = 0, then they become stable.

In several previous works ([13], [15]) a Kuramoto model
with dynamic connectivity has been studied. For example, in
[13] it was assumed that a system of homogeneous Kuramoto
oscillators can learn and remember different patterns, each of
which is defined by values of the coupling strengths Kij .
However, the learning process, i.e. the process of obtaining
these patterns was not studied. It was assumed instead that the
patterns have been learned and the coupling strengths took the
values corresponding to a particular pattern, and were fixed at
those values. In addition, only K = ±1 were considered, and
thus only anti-phase equilibria in which some oscillators have
phase φ and the remaining oscillators have phase φ+π. There
is a finite number of such anti-phase equilibria. In this work we
discovered another set of solutions, and the prominent property
of this set is that it comprises infinite number of equilibria.

The infinite set of equilibria defined for the case of four
oscillators can be generalized for all systems with even n > 2
number of oscillators. φ1 . . . φn

2−1 have the same phase φ,
oscillators φn

2
. . . φn−2 have phase φ − π

2 , and two other
oscillators have phases φn−1 = φ− β and φn = φ− β − π

2 .

IV. MAIN RESULTS

This section is organized as follows. We first show in The-
orem 1 by providing a Lyapunov function that system (2) of
homogeneous oscillators is gradient and thus always converges
to a set of equilibria, i.e. achieves frequency synchronization.
After that we formulate sufficient instability and stability con-
ditions for equilibria of system (2) with arbitrary underlying
topology in Theorems 2 and 3, respectively. Further, when
the underlying topology is a tree and for a particular set of
functions fij that satisfy Assumptions 1 and 2, we derive a
criterion of stability and demonstrate that system (2) converges
to a stable equilibrium almost surely.

A. Frequency Synchronization

In Theorem 1 we prove that system (2) of homogeneous
oscillators is a gradient system and always achieves frequency
synchronization. A similar result was obtained in [28], where



a potential function was found for system (2) and frequency
synchronization was shown, but only for the case of a complete
graph topology. Although the potential function is not really
different in the case of an arbitrary topology, we provide a
proof of Theorem 1 for completeness.

Theorem 1 (Frequency synchronization) System (2) is a
gradient system and achieves frequency synchronization for all
initial values of phases and coupling strengths.

Proof. Notice, that all variables of system (2): φi, Kij are
defined on a compact set. Indeed, all phase variables φi
are defined on a n-dimensional torus Tn, and all coupling
variables Kij are defined on [αij · Fminij , αij · Fmaxij ]

n(n−1)
2 .

We can also provide a potential function V :

V = −
∑

ij∈E,i>j
KijFij(φi − φj) +

1

2

∑
ij∈E,i>j

K2
ij

αij
. (6)

This function is well-defined, bounded, and it is easy to verify
that the derivative of V is:

V̇ = (∇V )T ∗



φ̇i
.
.

φ̇n
K̇21

.

.

K̇n,n−1


= −

n∑
i=1

(φ̇i)
2 −

∑
ij∈E,i>j

(K̇ij)
2

αijsij
.

We can see that V̇ is always non-positive and is equal to zero
if and only if φ̇i = 0 and K̇ij = 0 for all i and j. Thus,
by LaSalle’s Invariance Principle [19], the trajectories of (2)
always converge to a set of equilibria. In other words, for all
initial conditions frequency synchronization occurs.

Remark Notice that Theorem 1 does not imply pointwise
convergence to a single equilibrium. It is also not guaranteed
that equilibria of system (2) are isolated.

B. Stability And Instability Conditions For Arbitrary Topology

The main results of this subsection are Theorem 2 which is
a sufficient instability condition, and Theorem 3 that defines
a sufficient condition for stability of an equilibrium of system
(2). These results are based on Lyapunov’s indirect method
[16], that states:

1) If Reλi < 0 for all eigenvalues of the Jacobian matrix
J , then equilibrium is asymptotically stable.

2) If Reλi > 0 for at least one eigenvalue of the Jacobian
matrix J , then equilibrium is unstable.

Let B ∈ Rn×m denote an oriented incidence matrix of a
graph that defines underlying topology of system (2). Then
element (i, e) of this matrix is

B(i, e) =


1 if i is the head of e,
−1 if i is the tail of e,
0 otherwise.

(7)

Although the definition of matrix B implies that graph G is
oriented, all properties of this matrix used in this article do not
depend on a particular orientation. Therefore, we assume that
for a given undirected graph G, an arbitrary orientation of its
edges is chosen, i.e. for every undirected edge e = (u, v) one
of the nodes u, v is designated as a head of e, and another
one corresponds to a tail of e.

Let α ∈ Rm, s ∈ Rm, K ∈ Rm, f ′ ∈ Rm and f ∈ Rm
denote vectors whose components are αij , sij , Kij , f ′ij(φj −
φi) and fij(φj − φi), respectively, for each i, j such that
ij ∈ E. We will use symbol ∗ to denote the componentwise
product of vectors. Jacobian of system (2) can be written in a
following way:

J =

[
B 0
0 I

] [
−diag(K ∗ f ′) −diag(f)
−diag(α ∗ s ∗ f) −diag(s)

] [
BT 0
0 I

]
,

The first matrix in a product is of size (n + m) · (m + m),
the second matrix is of size (m+m) · (m+m) and the last
matrix in the product has dimensions (m + m) · (n + m).
Notice that Jacobian J has a trivial eigenvector [1n 0m]T ,
where 1n ∈ Rn is a vector of ones and 0m ∈ Rm is a
vector of zeros with n and m components, respectively. This
eigenvector emerges due to rotational invariance of system (2)
and corresponds to a zero eigenvalue. Since trajectories of
system (2) are orthogonal to the direction of an orbit, we still
can apply Lyapunov’s indirect method to explore stability of
the set (3). If all remaining eigenvalues of the Jacobian have
negative real part, then equilibrium is stable; if there exists
an eigenvalue with a positive real part, then equilibrium is
unstable.

The component of vector f that corresponds to the edge
e = (i, j) is equal to fij(φi−φj) if edge e = (i, j) is oriented
from a tail j to a head i, and thus B(i, e) = 1, B(j, e) = −1.
Similarly, if edge e = (i, j) is oriented from a tail i to a
head j, then B(i, e) = −1, B(j, e) = 1 and component of f
associated with edge ij is equal to fij(φj − φi).

Each partition P of the graph’s vertices into two sets V −

and V + such that V − ∩ V + = ∅ and V − ∪ V + = V , defines
a cut C(P ) , {ij ∈ E|i ∈ V −, j ∈ V +}. With each cut
C(P ) we associate a cut vector cP ∈ Rm which is defined as
follows:

cP (e) =


1 if e goes from V − to V +,
−1 if e goes from V + to V −,
0 if e /∈ C(P ).

(8)

We can now formulate the following instabiliy condition
that is similar to Theorem 2 of [21]:

Theorem 2 (Sufficient instability condition) If there exists
a cut C(P ) such that at equilibrium

(
φ∗,K∗

)
of system (2):∑

ij∈C(P )

(Kijf
′
ij − αijf2ij) < 0, (9)

where Kij = K∗ij , f
′
ij = f ′ij(φ

∗
j −φ∗i ) and fij = fij(φ

∗
j −φ∗i ),

then
(
φ∗,K∗

)
is an unstable equilibrium.



Proof. We first show that the Jacobian of system (2) can be
decomposed into a product of matrices D and A:

J = DA, (10)

where D is a positively-definite diagonal matrix, and A is
a symmetric matrix. We then demonstrate that stability of
equilibria of system (2) does not depend on matrix D, because
matrices J and A have the same number of positive, negative
and zero eigenvalues. Next, for matrix A we provide a vector
~X such that ~XTA ~X > 0, which guarantees that the symmetric
matrix A has a positive eigenvalue and so does the Jacobian
matrix J . This in turn means that an equilibrium is unstable
due to Lyapunov’s indirect method.

Decomposition (10) is possible because system (2) is a
gradient system. Note that the Hessian matrix H(V ) of the
potential function V is symmetric. Let matrix D be defined
as

D =

[
I 0
0 diag(α ∗ s)

]
, (11)

then, since equations (2) can be written as follows:[
φ̇

K̇

]
= −D · ∇V, (12)

decomposition (10) exists with A = −H(V ).
We now show that matrices J and A = −H(V ) have

the same numbers of positive, negative and zero eigenvalues.
Observe that if matrix D

1
2 is a square root of matrix D,

then matrices DA and D
1
2AD

1
2 have the same eigenvalues,

because matrix D is positive-definite. This also implies that
Jacobian of system (2) with homogeneous oscillators has only
real eigenvalues. Next, since A is a symmetric matrix with
real entries, it can be diagonalized by an orthogonal matrix, i.e.
there exists a real orthogonal matrix Q such that A = QGQT ,
where G is a diagonal matrix. Further, notice that

D
1
2AD

1
2 = D

1
2QGQTD

1
2 = LGLT , (13)

where matrix L is defined as L = D
1
2Q and is invertible.

Therefore,

QTAQ = L−1(D
1
2AD

1
2 )(L−1)T = G. (14)

By Sylvester’s law of inertia, numbers of positive, negative
and zero eigenvalues of matrices A, D

1
2AD

1
2 and G are equal.

Thus, since J = DA and D
1
2AD

1
2 have equal eigenvalues,

numbers of positive, negative and zero eigenvalues of matrices
J and A are the same.

We now consider the symmetric matrix A and show that
when condition (9) is satisfied, matrix A has a positive
eigenvalue. We define a matrix M to be:

M =

[
diag(K ∗ f ′) diag(f)
diag(f) diag(1/α)

]
, (15)

where 1/α is a vector with components 1/αij , then

A = −
[
B 0
0 I

]
M

[
BT 0
0 I

]
. (16)

We denote:
B̂ =

[
B 0
0 I

]
, (17)

and then
A = −B̂MB̂T . (18)

Now we will assume that there exists a cut C(P ) that satisfies
condition (9). We define a vector ~Y ∈ R2m to be:

~Y =

[
cP

−cP ∗ f ∗ α

]
, (19)

where cP is a cut vector associated with the cut C(P ), and
multiplication in −cP ∗ f ∗ α is componentwise.

It can be verified that the sum from (9) is equal to ~Y TM~Y .
Indeed, if an edge k (1 ≤ k ≤ m) belongs to the cut C(P ),
then ~Yk = ±1 and ~Yk+m = ∓fkαk. The summand number k
in ~Y TM~Y is equal to:

Y 2
kKkf

′
k + 2YkYm+kfk +

Y 2
m+k

αk
= Kkf

′
k − 2f2kαk + f2kαk = Kkf

′
k − f2kαk,

(20)

which is also the kth summand of the sum (9).
The cut space of graph G is defined as a space spanned

by all cut vectors cP . It is known (see for example [3]) that
the range of BT is the cut space of G. Therefore, for the cut
vector cP there exists a vector ~x1 ∈ Rn such that cP = BT~x1.
Therefore,

~Y =

[
BT~x1

−cP ∗ f ∗ α

]
= B̂T ~X, (21)

where ~X =

[
~x1

−cP ∗ f ∗ α

]
∈ Rn+m.

Finally,

0 > ~Y TM~Y = ~XT B̂MB̂T ~X = − ~XTA ~X, (22)

which means that their is a vector ~X such that ~XTA ~X > 0
and thus symmetric matrix A has a positive eigenvalue which
implies that Jacobian J has also a positive eigenvalue. There-
fore, equilibrium

(
φ∗,K∗

)
is unstable.

We now formulate a sufficient condition for an equilibrium
of system (2) to be stable.

Theorem 3 (Sufficient stability condition) If at equilib-
rium

(
φ∗,K∗

)
of system (2), for each ij ∈ E:

Kijf
′
ij − αijf2ij > 0, (23)

where Kij = K∗ij , f
′
ij = f ′ij(φ

∗
j − φ∗i ), then equilibrium(

φ∗,K∗
)

is asymptotically stable.

Proof. All eigenvalues of the Jacobian of system (2) are real.
To apply Lyapunov’s indirect method, we need to show that at
equilibrium

(
φ∗,K∗

)
Jacobian has only negative eigenvalues.

However, it has always at least one zero eigenvalue that
corresponds to the rotational invariance of the system: if
all phases φi (i = 1, . . . , n) are simultaneously shifted by
the same value, system does not change. The eigenvector
associated with this zero eigenvalue is a vector [1n 0m]T .



In this article we do not distinguish equilibria that belong to
the same set (3), and study stability of the whole set Eφ∗ .
As was previously mentioned, to show stability of Eφ∗ using
an indirect Lyapunov’s method, we need to show that all
remaining eigenvalues of the Jacobian are strictly negative.

In the proof of Theorem 2 it was shown that the Jacobian
matrix J and symmetric matrix A have the same numbers
of negative, positive and zero eigenvalues. This means that
matrix A also possesses a zero eigenvalue corresponding to
the rotational invariance. Moreover, it is easy to see that vector
[1n 0m]T is also an eigenvector of matrix A associated with a
zero eigenvalue. Therefore, to prove that equilibrium

(
φ∗,K∗

)
is stable, it is sufficient to demonstrate that all eigenvalues of
matrix A are negative (except for one zero eigenvalue corre-
sponding to the rotational invariance), or that ~XTA ~X < 0 for
all non-zero vectors ~X ∈ Rn+m, ~X 6= span

(
[1n 0m]T

)
, since

A is symmetric.
Notice that because A = −B̂MB̂T , matrix A will have

only negative eigenvalues (except one) if ~Y TM~Y > 0 for all
non-zero vectors ~Y ∈ R2m. Indeed, if B̂T ~X 6= 0n+m, then

~XTA ~X = − ~XT B̂MB̂T ~X = −~Y TM~Y < 0, (24)

where vector ~Y , B̂T ~X .
Additionally, if ~X = [~x1 ~x2]

T , where ~x1 are the first n
components of ~X , and ~x2 are the last m components of ~X ,
then B̂T ~X = 0n+m only if BT~x1 = 0n and ~x2 = 0m. And
since ker(BT ) = span(1n) for a connected G (see for example
[3]), then B̂T ~X 6= 0n+m if ~X 6= span

(
[1n 0m]T

)
.

Therefore, it is now enough to show that condition (23) is
sufficient for matrix M to be positively definite. Let ~Y ∈ R2m

be an arbitrary vector, then ~Y TM~Y is a sum of m terms,
where the kth term is equal to

Y 2
kKkf

′
k + 2YkYm+kfk +

Y 2
m+k

αk
. (25)

We now consider this term as a quadratic function of Yk.
This equation is an equation of parabola whose branches are
directed upwards because Kkf

′
k > 0 due to (23). Then, the

minimum value of (25) is achieved at the vertex of the parabola
and is equal to:(Ym+kfk

Kkf ′k

)2
Kkf

′
k − 2

(Ym+kfk
Kkf ′k

)
Ym+kfk +

Y 2
m+k

αk

= −
Y 2
m+kf

2
k

Kkf ′k
+
Y 2
m+k

αk
= Y 2

m+k

(
− f2k
Kkf ′k

+
1

αk

)
.

(26)

The last expression is positive if Ym+1 6= 0 and if condition
(23) is satisfied.

Suppose that Ym+k = 0, then (25) becomes equal to
Y 2
kKkf

′
k ≥ 0, and is equal to zero only if Yk = 0. Since

~Y is a non-zero vector, there exists at least one component k
of vector ~Y such that the sum (25) is strictly positive, and for
all other components these sums are non-negative. Therefore,
for all vectors ~Y ∈ R2m: ~Y TM~Y > 0, and ~XTA ~X < 0 for all
vectors ~X ∈ Rn+m such that ~X 6= span

(
[1n 0m]T

)
. Thus, all

eigenvalues of A except one are negative, so are eigenvalues
of J , and equilibrium

(
φ∗,K∗

)
is asymptotically stable.

Remark Notice that conditions (9) and (23) can be written
as follows: ∑

ij∈C(P )

(Fijf
′
ij − f2ij) < 0,

Fijf
′
ij − f2ij > 0,

(27)

because at equilibrium: Kij = αijFij and αij > 0. Thus, they
are independent of αij .

C. Stability And Instability Conditions For Tree Topology

In this subsection we consider system (2) of homogeneous
oscillators when the underlying topology graph G is a tree.
For example, star and chain graphs are the graphs with a
tree topology. When the topology is a tree, each single edge
defines a cut of G, and using Theorem 2, a sufficient instability
condition for tree graphs can be formulated as follows:

Corollary 4 (Sufficient instability condition for trees) If
there exists an edge ij ∈ E such that at equilibrium

(
φ∗,K∗

)
of system (2) with tree topology:

Kijf
′
ij − αijf2ij < 0, (28)

where Kij = K∗ij , f
′
ij = f ′ij(φ

∗
j −φ∗i ) and fij = fij(φ

∗
j −φ∗i ),

then
(
φ∗,K∗

)
is an unstable equilibrium.

Using Theorem 3 and Corollary 4, stability of an equilib-
rium of system (2) with a tree topology can be determined
if Kijf

′
ij − αijf2ij 6= 0 for every ij ∈ E. To guarantee that

the last condition is always satisfied, we will now concentrate
on a more special class of functions fij(). In particular, these
functions must fulfill the following conditions.

Assumption 2 Functions fij ∀i, j satisfy:
1) Assumption 1;
2) f ′ij(0) > 0, f ′ij(π) < 0;
3) fij(x) > 0, ∀x ∈ (0, π),
Example of a function that meets all conditions of Assump-

tion 2 is shown on the left side of Fig. 1. The following fact
establishes a property of all equilibria of system (2) with a
tree topology, and with functions fij() satisfying Assumption
2.

Lemma 5 Let
(
φ∗,K∗

)
be an equilibrium of system (2) with

a tree underlying topology and with functions fij() satisfying
Assumption 2, and let f∗ij , fij(φ

∗
j −φ∗i ) ∀i, j. Then for each

pair ij ∈ E, exactly one of the following two conditions is
satisfied:
• f∗ij = 0; this implies that either φ∗j − φ∗i = 0, or
φ∗j − φ∗i = π.

• K∗ij = 0; this implies that F ∗ij = 0.

Proof. Since the underlying topology is defined by a graph G
that is a tree, there are nodes in G each of which has a single
neighbor. These nodes are the leaves of a tree graph G. Let φi
be an oscillator associated with a leaf node i, and let φj be an
oscillator such that node j is a single neighbor of node i. Then,
from equation (1a), at an equilibrium

(
φ∗,K∗

)
: φ̇i = 0 if and

only if K∗ij = 0 or fij(φ∗j −φ∗i ) = 0. Because K∗ij = 0 if and
only if F ∗ij = 0, and for function fij satisfying Assumption 2,
fij and Fij are not equal to zero simultaneously, either f∗ij = 0



or K∗ij = F ∗ij = 0. We then remove all leaf nodes from the
graph G and apply the same reasoning for the leaves of a new
smaller graph which is also a tree. We repeat this procedure
until we obtain a single node, and at each step condition of
the theorem is satisfied.

Corollary 6 For tree topology all equilibria are isolated.
We can now see that when the underlying topology of

system (2) is a tree, and if coupling functions fij() satisfy
Assumption 2, then at equilibrium:

Kijf
′
ij − αijf2ij 6= 0 (29)

for every ij ∈ E. Indeed, if at equilibrium fij = 0, then from
Lemma 5, Kij 6= 0, and f ′ij 6= 0 due to Assumption 2. If
Kij = 0, i.e. Fij = 0, then by definition of Fij and from
Assumption 2: fij 6= 0.

Since Assumption 2 guarantees that condition (29) holds
for every equilibrium, it is possible to formulate a criterion of
stability for system (2) whose underlying topology is a tree
graph.

Theorem 7 (Criterion of stability for the tree topology)
If the underlying topology of system (2) is a tree, and functions
fij() satisfy Assumption 2 for each ij ∈ E, then an equilib-
rium

(
φ∗,K∗

)
is stable if and only if condition (23) holds for

every edge ij ∈ E.
We now provide a result regarding ranks of matrices B̂ and

M for a tree topology.
Lemma 8 For tree topology:

n = m+ 1,

Rank(B̂) = Rank(B̂T ) = min(n+m,m+m) = 2m,

Rank(M) = 2m.

Proof. The first equation says that in a tree graph the number
of vertices is greater than the number of edges by one, and is
obvious. Second fact follows from the properties of the inci-
dence matrix B and because we consider a tree topology. We
now show that the third equation is correct. Recall that matrix
M has dimensions (2m) ·(2m). Suppose by contradiction that
M has a zero eigenvalue, then there exists a non-zero vector
~x such that M~x = 0. This system contains 2m equations, the
first m of them are of the form:

xiKif
′
i + xm+ifi = 0, (30)

where i = 1, . . . ,m, and the remaining m equations are:

xi · fi + xm+i/αi = 0, (31)

where i = 1, . . . ,m again. We choose a particular index i
such that 1 ≤ i ≤ m, and consider a pair of corresponding
equations: one from (30) and another one from (31). We now
use Lemma 5 and first consider the case when f∗i = 0. Then,
from the first equation, xi = 0 because Ki 6= 0 and f ′i 6= 0.
And from the second equation: xm+i = 0 since αi > 0. Now
consider the case when K∗i = 0, then from the first equation:
xm+i = 0, and then from the second equation: xi = 0 since
fi 6= 0. Therefore, in both cases xi = xm+i = 0, and since

this should be true for all 1 ≤ i ≤ m, vector ~x has to be a
zero vector which contradicts our assumption that ~x is non-
zero.

While Theorem 1 does not guarantee pointwise convergence
and isolation of equilibria in general, for the case of a
tree underlying topology we proved isolation of equilibria in
Lemma 5, and now can show that it converges to a stable
equilibrium almost surely.

Theorem 9 At any equilibrium of system (2) with a
tree topology and with functions fij satisfying Assumption
2, Jacobian has only one zero eigenvalue due to rotational
invariance, and system converges to a stable equilibrium
almost surely.

Proof. Jacobian matrix is of size (n+m) · (n+m) or, using
Lemma 8, of size (2m+ 1) · (2m+ 1), and can be expressed
as follows:

J = −B̂MB̂T , (32)

and matrix M is of size (2m) · (2m), matrices B̂ and B̂T are
of size (2m + 1) · (2m), (2m) · (2m + 1), respectively. We
now employ the following fact: if matrix A has dimensions
x · y, matrix B is of size y · z and Rank(B) = y, then
Rank(AB) = Rank(A). Using this fact we conclude that
Rank(B̂M) = 2m, and Rank(J) = Rank(B̂MB̂T ) = 2m.
Since rank of a matrix is equal to the number of non-zero
eigenvalues, Jacobian matrix J has only one zero eigenvalue
which is due to the rotational invariance. Thus, all equilibria of
(2) with tree topology and functions fij satisfying Assumption
2, are hyperbolic when domain of the system is restricted to
the subspace orthogonal to [1n 0m]T . Therefore, system (2)
almost surely converges to a stable equilibrium.

V. NUMERICAL ILLUSTRATIONS

In this section we consider several network examples and
apply our results to explore stability of their equilibria. In these
example we will assume that fij = sin(φj − φi) and
Fij = − cos(φj − φi), and system (2) becomes a generalized
Kuramoto model with plastic coupling strengths. Notice that
this choice of functions fij guarantees that Assumption 2 is
satisfied.

A. Two Oscillators

Since two connected oscillators form a tree topology, we
can apply a criterion of stability provided in Theorem 7. We
will assume that α12 takes an arbitrary positive value.

In subsection III-A we described two types of equilibria of
the system of two oscillators. The first type corresponds to
the case when sin(φ2 − φ1) = 0, which implies that f12 = 0,
K12/α12 = f ′12 = cos(φ2 − φ1) and sufficient condition (23)
is satisfied making these equilibria stable.

The second type of equilibria for this system is when
cos(φ2 − φ1) = 0, i.e. K12 = 0, and f12 = sin(φ2 − φ1) = 1.
Then, inequality (28) holds and equilibrium is unstable.

Behavior of a system of two oscillators after a small
perturbation from the anti-phase equilibrium is shown on Fig.



(a) Two oscillators, stable equilibrium (b) Three oscillators, unstable equilibrium (c) Six oscillators, stable equilibrium

Fig. 5: Behavior of a system with two oscillators after a small perturbation from the stable anti-phase equilibrium (left), and
of a system with three oscillators after a small perturbation from an unstable equilibrium.

5a. This equilibrium is stable, and the system converges to it
after a perturbation.

B. Three Oscillators

Here we examine stability of equilibria of system (2) with
three all-to-all connected oscillators. In that case the under-
lying topology is not a tree and we will employ Theorems
2 and 3 to show stability or instability. We will assume for
simplicity that αij = 1 for all ij ∈ E.

The in-phase equilibrium is stable since condition (23) is
satisfied: cos2(0) > sin2(0). Clearly, the anti-phase equilib-
rium, i.e. when φi = φj and φk = φi + π, is also stable.

Now consider equilibrium φj = φi+2π/3, φk = φi−2π/3,
and a two-edge cut C(P ) = {ij, ik}. Because 2

(
cos2(2π/3)−

sin2(2π/3)
)
< 0, condition (9) is satisfied and equilibrium is

unstable.
Next equilibrium is defined as φi = φj , φk = φi + π/2.

Using cut C(P ) = {ki, kj}, we obtain: 2
(
cos2(π/2) −

sin2(π/2)
)
< 0, which means that equilibrium is unstable due

to the Theorem 2.
If equilibrium is described by φj = φi+π/3, φk = φi−π/3,

then for cut C(P ) = {ij, ik}: 2
(
cos2(π/3) − sin2(π/3)

)
<

0, and equilibrium is unstable. On Fig. 5b behavior of this
system is shown after a small perturbation from this unstable
equilibrium.

Finally, when φj = φi + π/2, φk = φi − π/2, and cut
C(P ) = {ij, ik}: 2

(
cos2(π/2)− sin2(π/2)

)
< 0, equilibrium

is unstable.

C. Four Oscillators

We will check that equilibrium of system (2) with four
oscillators shown on Fig. 4 is unstable. At this equi-
librium φj = φi + π/2, φk = φi + π/4, φl =
φi − π/4, and we define cut C(P ) as C(P ) =
{ij, ik, il}. Since

(
cos2(π/2) − sin2(π/2)

)
+
(
cos2(π/4) −

sin2(π/4)
)
+
(
cos2(π/4) − sin2(π/4)

)
< 0, then Theorem 2

guarantees that this equilibrium is unstable.

D. Six Oscillators

In [28] it was shown that when in system (2) all coupling
functions are sin() and the underlying topology is a complete

Fig. 6: Stable equilibrium corresponding to the example with
six oscillators with β = π/6.

graph, then the only stable equilibria are those in which every
phase difference is a multiple of π. Using an example with six
oscillators and sin() coupling functions, we demonstrate that
this property does not generally hold in case of an arbitrary
topology.

In this example the underlying topology is a ring graph, so
that the pairs of connected oscillators are (1, 2), (2, 3), (3, 4),
(4, 5), (5, 6), (6, 1). The equilibrium is defined as follows:
φ1 = 5π

12 , φ2 = π
4 , φ3 = π

12 , φ4 = − π
12 , φ5 = −π4 , φ6 = − 5π

12 ,
K12 = K23 = K34 = K45 = K56 = cos(π6 ), K16 = cos( 5π6 ).
The phases of oscillators at the equilibrium are shown on Fig.
6. Using Theorem 3, it is easy to verify that this equilibrium
is stable, and on Fig. 5c a behavior of the system is shown
after a small perturbation from this equilibrium.

VI. CONCLUSION

In this work we studied a model of arbitrary interconnected
homogeneous coupled oscillators with a time-varying cou-
pling. We demonstrated that systems of oscillators described
by this model always achieve frequency synchronization. Suf-
ficient stability and instability conditions for equilibria were
provided for a general underlying topology, and a criterion of
stability was formulated for a tree topology. Additionally, for
the tree topology a condition on the coupling function was
found that guarantees almost surely convergence to a stable
equilibrium. We illustrated our theoretical results with several
examples.
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