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Abstract—In this paper, we study network utility maximization
over both routing choice and path rate assignment for any
given path cardinality constraint. We provide a novel convex

relaxation, which leads to a randomized algorithm with perfor-
mance guarantees. The new relaxation also enables distributed
algorithm design and allows us to obtain performance estimation
for nonconvex routing optimization problems that is significantly
better than previous work based on the multipath routing relax-
ation. Convergence and performance of the proposed randomized
algorithm are characterized theoretically and further illustrated
numerically through examples to demonstrate its superiority over
existing work.

I. INTRODUCTION

Many current Internet routing protocols are single-path

based. For example, the Open Shortest Path First (OSPF)

protocol allows a user (source-destination pair) to use only

one path from the source to the destination, with the exception

that traffic may split evenly among equal-cost paths. Recently,

the IETF has published the multipath specification as an

experimental standard in RFC 6824 to promote the feasibility

of multipath TCP. It is expected that the use of multipath

routing will increase the resource usage efficiency and provide

better load balancing [1].

More generally, the number of paths (W ) allowed, i.e.,

the path cardinality constraint, greatly affects the attainable

performance of a given routing scheme, theoretical tractability

of routing optimization, as well as actual implementation com-

plexity. On one hand, using all the available paths (multipath

routing, W =∞) can potentially achieve the best possible per-

formance and also make routing optimization problems convex

and tractable. But it is often too expensive for implementation

in terms of protocol overhead. On the other hand, allowing

only one path between each source-destination pair (single-

path routing, W = 1) is much easier to realize and has been the

dominating practice. Its performance nevertheless is usually

suboptimal and the corresponding optimization formulations

and algorithms are typically very hard to analyze due to the

intrinsic nonconvexity in the problem structure.

Take the network utility maximization over joint congestion

control and routing as an example, which is also the main

topic of this paper. If multipath is allowed, the corresponding
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routing optimization problems are convex and tractable [2],

[3]. However, due to various difficulties such as out-of-order

arrival of packets, the actual use of multipath TCP only

starts to gain attention recently [4], [5]. If we only look at

congestion control plus single-path routing, the authors in

[6] showed that this problem is in general NP-hard. They

proposed a relaxation based on Lagrange duality that is akin

to a multipath TCP utility maximization framework, and a

dual-based algorithm to maximize the system utility when the

Lagrange duality gap is zero. The duality gap thus measures

the cost of not splitting. The authors in [7] further studied this

duality gap characterization using ideas from sparse recovery,

and obtained sufficient conditions under which the gap is zero.

In the event that the duality gap is non-zero, the authors

proposed algorithms to project the solution obtained by solving

the multipath TCP problem to a feasible single-path TCP

solution. Besides the network utility maximization framework,

the benefit of using multipath has also been studied within the

traffic engineering framework [8].

In all these studies, an interesting finding [7], [8] has been

that in terms of performance, single-path routing may not

be too far away from multipath routing, especially when the

network size and the number of users are both large. This

motivates a practical implementation to consider using only a

few number of paths. Typically, the number of allowed paths

W is small, and hence we call this the sparse routing in the

paper. In fact, a natural question that generalizes the above

single-path and multipath routing studies arises: assuming W
(1 ≤ W ≤ ∞) paths are allowed for each user, what is the

optimal routing performance and how to achieve it.

This paper investigates the above general problem and

makes two contributions:

• We study network utility maximization over joint conges-

tion control and routing with path cardinality constraints,

which is generally a nonconvex problem. To characterize

its performance, we propose a convex relaxation of this

problem that is significantly tighter than the standard

multipath relaxation.

• Based on the new convex relaxation, we develop a novel

dual-based distributed algorithm that can be interpreted

as sparse multipath TCP/IP joint congestion control and

routing algorithm. Even with path cardinality constraints,

it can load balance a large portion of the traffic with a

small number of paths. We demonstrate the effectiveness
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of this solution both theoretically and numerically.

This paper is organized as follows. We introduce the system

model and formulate the network utility maximization problem

in Section II. In Section III, we propose a convex relaxation

to this NP-hard problem. In Section IV, we focus on deriving

stronger results in the linear utility special case for throughput

maximization. In Section V, we propose a dynamic dual

algorithm to solve the convex relaxation in a distributed

manner. In Section VI, we illustrate the numerical performance

of our algorithm. We conclude the paper in Section VII.

II. MODEL AND NOTATION

We summarize the key notations, especially those related

to the vector norms, used in the paper below. For a vector

u = (u1, . . . , un) ∈ R
n:

• The l1 norm ‖u‖1 denotes
∑n

k=1|uk|.
• The infinity norm ‖u‖∞ denotes maxk=1,...,n|uk|.
• ‖u‖0 denotes the number of nonzero entries in u.1

Let (u[1], . . . , u[n]) be a rearrangement of (u1, . . . , un) sorted

in nonincreasing order, i.e., u[1] ≥ · · · ≥ u[n], then the sum of

W largest components in u

W
∑

k=1

u[k]

is a convex function over u [9, Sec. 3.2.3]. When u ≥ 0 and

W = 1, this is just the infinity norm.

A network consists of L uni-directional links with positive

and finite capacities c = (c1, . . . , cL)
T , which support N

source-destination pairs or users indexed by i. There are Ki

acyclic paths available for user i. Each path is a sequence of

links over which the data of user i can flow to its destination.

The paths of user i are represented by an L×Ki matrix Ri,

where Ri
lk = 1 if path k of user i passes through link l, and

Ri
lk = 0 otherwise. The overall routing matrix R is the L×K

matrix defined by

R =
(

R1 R2 · · · RN
)

.

Here K =
∑N

i=1 K
i.

For each user i, xi is a Ki × 1 vector whose kth entry xi
k

denotes the sending rate of user i through its path k. Let

x =











x1

x2

...

xN











be the complete rate allocation. Each user i has a utility U i(·)
as a function of its total transmission rate ‖xi‖1. We assume

U i(·) to be concave, increasing and continuous, which is the

case in most TCP algorithms [10].

1Note that ‖u‖
0

is not a vector norm. Our notation for the number of
nonzero entries in u follows from the compressed sensing literature, and is
commonly known as “l0 norm”.
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Fig. 1. A sample network with five links (dotted line) and two users. The
first user, whose source is A and destination is C, has rate x1

1
and x1

2
on its

two paths (solid line). The second user, whose source is D and destination is
C, has rate x2

1 and x2
2 on its two paths (dashed line).

For example, as shown in Fig. 1, a five-link network

supports two users, each of which has two available paths.

The corresponding routing matrices are given by

R1 =













1 0
1 0
0 1
0 0
0 0













, R2 =













0 0
0 0
1 0
1 0
0 1













.

We now state the network utility maximization problem

over joint congestion control and routing with path cardinality

constraints. The goal is to maximize the aggregate utility of

all users with the restriction that each user can only split

its data into at most W flows. Here, W is relatively small

enough such that the rate allocation xi is a sparse vector. This

sparse routing problem can be formulated as the following

optimization problem:

max

N
∑

i=1

U i
(

‖xi‖1
)

s. t. Rx ≤ c,

x ≥ 0,

‖xi‖0 ≤W, ∀i = 1, . . . , N.

(1)

Let optS denote the optimal value of (1). Note that when

W = 1, we have the single-path routing special case studied

in [6], [7].

By dropping the last N nonconvex constraints in (1),

interestingly, this yields the multipath routing problem:

max

N
∑

i=1

U i
(

‖xi‖1
)

s. t. Rx ≤ c,

x ≥ 0.

(2)

Indeed, (2) can also be viewed as a relaxation of (1), and its

relaxation gap has been studied in [6], [7]. If x is a feasible

solution to (2), define a new rate allocation y by

yik =

{

xi
k if xi

k is among the W largest rates of user i,

0 otherwise.



Then y is feasible for the original sparse routing problem (1).

In the following, we say y is the projection of x to a sparse

routing configuration.

In fact, the multipath relaxation (2) is hitherto the only

known relaxation to (1) in the literature, but, in general, it

can be very loose and algorithms based on the multipath

relaxation cannot solve (1) distributedly or with guarantees.

In Section III, we will provide stronger convex relaxation

techniques to (1) that can even lead to distributed algorithms

with guarantees.

III. CONVEX RELAXATION

We start by considering a reformulation of (1) that es-

sentially moves the nonconvexity from the path cardinality

constraints to the objective function.

Lemma 1: The sparse routing problem (1) and the following

problem (3) have the same optimal value:

max

N
∑

i=1

U i

(

W
∑

k=1

xi
[k]

)

s. t. Rx ≤ c,

x ≥ 0.

(3)

Proof: Let γ be the optimal value of (3). The optimal

solution to (1) is obviously feasible for (3), and the correspond-

ing objective values are the same in both problems, which

implies that optS ≤ γ. Conversely, if we have an optimal

solution to (3), projecting it to a sparse routing configuration

will give a feasible solution to (1) without changing the

objective value. Thus, γ ≤ optS .

Next, we want to relax problem (3) in order to make its

objective function concave. The objective function of (3) is

separable for each user and the only constraints coupling the

different users are from Rx ≤ c, so (3) is a special case of

the separable problems studied in [11]. For each user i, define

f i(xi) =











U i

(

W
∑

k=1

xi
[k]

)

if 0 ≤ xi ≤ ‖c‖∞,

−∞ otherwise.

(4)

Then problem (3) can be rewritten as

max
N
∑

i=1

f i(xi)

s. t. Rx ≤ c,

(5)

because xi ≤ ‖c‖∞ in (4) is automatically implied by the

constraints in (3).

For each function f i in (5), its concave envelope f̂ i is a

concave function defined by

f̂ i = inf
{

g|g is concave and g(xi) ≥ f i(xi), ∀xi ∈ R
Ki
}

.

Define

ρi = sup
xi

{

f̂ i(xi)− f i(xi)
}

,

where we consider (−∞)− (−∞) = 0. ρi measures the non-

concavity of the function f i [12].

Replacing each function f i by its concave envelope f̂ i, we

get the convex relaxation for sparse routing problem (1):

max

N
∑

i=1

f̂ i(xi)

s. t. Rx ≤ c.

(6)

The Lagrange dual problem of (6) is

min sup
x

{

N
∑

i=1

f̂ i(xi) + pT (c−Rx)

}

s. t. p ≥ 0.

Remark 1: The multipath relaxation (2) can also be under-

stood as replacing f i by

gi(xi) =

{

U i
(

‖xi‖1
)

if xi ≥ 0,

−∞ otherwise.

Since U i(·) is increasing and concave, gi(xi) ≥ f i(xi) and

gi is also concave. Thus gi(xi) ≥ f̂ i(xi) and our convex

relaxation (6) is always tighter than or at least the same as the

multipath relaxation (2).

Solving the convex relaxation (6) can provide a suboptimal

solution to the original sparse routing problem (1) within the

bound given below.

Theorem 2 (modified from [11, Theorem 2]): Let w ∈ R
K×1

be a random vector drawn from the uniform distribution on

a unit sphere. Assume (x∗, p∗) is an optimal primal-dual pair

for (6). Then with probability 1, the following problem

min wTx

s. t. Rx = Rx∗,
N
∑

i=1

(

f̂ i(xi)− f̂ i(x∗i)
)

≥ p∗T (Rx−Rx∗)

has a unique optimal solution x̂, which is also an optimal

solution to (6) and satisfies

optS −
N
∑

i=1

f i(x̂i) ≤
min{N,L}
∑

i=1

ρi. (7)

Here we assume users are sorted such that ρ1 ≥ · · · ≥ ρN .

Remark 2: It is important to note that not every optimal

solution to (6) satisfies the bound (7). In fact, the auxiliary

optimization problem in Theorem 2 can be viewed as using

randomization to find such a desired optimal solution.

IV. THROUGHPUT MAXIMIZATION

In general, calculating the concave envelope f̂ i can be hard.

In this section, we restrict ourselves to the special case when

U i(s) = s, in which we can say something stronger and

improve the convex relaxation (6). Maximizing a linear utility

is equivalent to maximizing the total network throughput, and

[13] analyzed the relationship between throughput maximiza-

tion and fair rate allocation.
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Fig. 2. The function max{x1, x2} (plane OAC and OBC) on the unit
square, which is a special case of the f i defined in (4) for linear utility and
W = 1. Its concave envelope (plane OAB and ABC) is the smallest concave
function bounded by max{x1, x2} from below.
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Fig. 3. (a) A simple network with one user and two links. The user can
choose one link to send data from the node on the left to the node on
the right. (b) Comparison among the feasible region of sparse (single-path)
routing problem (1), convex relaxation (8), improved convex relaxation (9)
and multipath relaxation (2) for the network in (a).

Lemma 3: For linear utility function U i(s) = s, the concave

envelope f̂ i for f i defined in (4) is

f̂ i(xi) =











‖xi‖1 if 0 ≤ xi ≤ ‖c‖∞, ‖xi‖1 ≤W‖c‖∞,

W‖c‖∞ if 0 ≤ xi ≤ ‖c‖∞, ‖xi‖1 > W‖c‖∞,

−∞ otherwise.

Proof: Due to the space constraint, we omit the proof but

simply provide a graphical illustration (Fig. 2) here.

The convex relaxation (6) then becomes

max

N
∑

i=1

‖xi‖1

s. t. Rx ≤ c,

x ≥ 0,

‖xi‖1 ≤W‖c‖∞, ∀i = 1, . . . , N.

(8)

Let us illustrate how the convex relaxation (8) can be

stronger than the multipath relaxation (2) and, in fact, can

be further strengthened by considering a simple illustrative

example. In Fig. 3(a), there are two links with capacity

c1 = 2, c2 = 1 and a single user who can choose only

one from them (W = 1). The feasible region of the original

sparse (single-path) routing problem (1), convex relaxation (8)

and multipath relaxation (2) are drawn in Fig. 3(b). In this

example, the feasible region of (8) is not the smallest convex

set containing the feasible region of the original problem

(1), which demonstrates that (8) can be further improved

by restricting the feasible region to the convex hull (A) in

Fig. 3(b).

Define

ĉik = min
l=1,...,L

{cl|Ri
lk = 1}

to be capacity of the bottleneck link on path k of user

i. Tightening the last N constraints in (8), we obtain the

following improved convex relaxation by using weighted l1

norm instead of l1 norm:

max

N
∑

i=1

‖xi‖1

s. t. Rx ≤ c,

x ≥ 0,

Ki

∑

k=1

xi
k

ĉik
≤W, ∀i = 1, . . . , N.

(9)

Let optC denote the optimal value of (9). For any feasible

solution x of sparse routing problem (1), xi
k ≤ ĉik, so x is

also feasible for (9), thus optS ≤ optC . On the other hand,

for a feasible solution to (9), we can project it to a suboptimal

solution to (1) by transmitting packets only on the paths that

have W largest rates for each user.

Next, we will investigate the quality of the solution obtained

by the above method. Among all the optimal solutions of

(9), we shall focus on vertex optimal solutions, because the

following result shows that the maximal violation of path

cardinality constraints can be bounded for a vertex.

Lemma 4: Assume x is a vertex of the feasible region of

(9). Let N ′ be the number of users with at least W+1 positive

flows in rate allocation x, then

N ′ ≤ L

W
.

At the same time, x has at most N ′ + L positive flows.

Proof: Recall that a vertex must have K =
∑N

i=1 K
i

independent active constraints (i.e., constraints that hold with

equality). If in vertex x, a user i has less than W positive

flows, its corresponding constraint

Ki

∑

k=1

xi
k

ĉik
≤W (10)

must be inactive.

Now assume user i has exact W positive flows and its

corresponding constraint (10) holds with equality. Without loss

of generality, we can assume that its first W paths are used.

Then the only possible case is

xi
k = ĉik, k = 1, . . . ,W,

xi
k = 0, k = W + 1, . . . , Ki.

For k = 1, . . . ,W , if l is the bottleneck link for path k, then

ĉik = cl. The capacity constraint for link l must have the form

xi
k = cl, i.e., the link l is fully occupied by user i. Therefore,

the constraint (10) of user i is not an independent constraint

because it can be written as a linear combination of the active

constraints in Rx ≤ c and x ≥ 0.



Hence, there are at most N ′ independent active constraints

from (10). Since at most L active constraints can be obtained

from Rx ≤ c, there are at least K−N ′−L active constraints

among x ≥ 0, i.e., x must have at most N ′+L positive flows.

However, N ′ is the number of users who have at least W+1
positive flows. By the previous result, we have

(W + 1)N ′ ≤ N ′ + L,

which implies N ′ ≤ L/W .

Based on the above lemma, we can bound the loss of the

total rates after the projection of a vertex, which leads to the

following main result.

Theorem 5: Assume x is a vertex of the feasible region of

(9). Let y be the projection of x. Then

N
∑

i=1

‖xi‖1 −
N
∑

i=1

‖yi‖1 ≤ Ψ(L,W )‖c‖∞,

where

Ψ(L,W ) = max
n=1,...,⌊L/W⌋

(

n− Wn2

n+ L

)

W. (11)

Proof: Let Gi be the number of positive flows of user i
in rate allocation x. Let S denote the set of users with at least

W + 1 positive flows, i.e.,

S = {i|Gi ≥W + 1, i = 1, . . . , N}.
Note that the set S contains the users who will be affected by

the projection, and N ′ is just the number of users in S.

If i ∈ S, then the average of those positive rates of user i
in x must be less than or equal to that in y, i.e.,

‖xi‖1
Gi

≤ ‖y
i‖1
W

,

because yi only contains the flows of user i with W largest

rates. Now

‖xi‖1 − ‖yi‖1 ≤
(

1− W

Gi

)

‖xi‖1

≤
(

1− W

Gi

) Ki

∑

k=1

xi
k

ĉik
‖c‖∞

≤
(

1− W

Gi

)

W‖c‖∞, (12)

where (12) holds because x is feasible for (9). If i /∈ S, then

‖xi‖1 − ‖yi‖1 = 0. (13)

Adding up (12) and (13) for all users, we have

N
∑

i=1

‖xi‖1 −
N
∑

i=1

‖yi‖1 ≤
∑

i∈S

(

1− W

Gi

)

W‖c‖∞

=

(

N ′ −W
∑

i∈S

1

Gi

)

W‖c‖∞

≤
(

N ′ −W
N ′2

∑

i∈S Gi

)

W‖c‖∞

≤
(

N ′ − WN ′2

N ′ + L

)

W‖c‖∞,
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Fig. 4. The plot of Ψ(L,W )/L as a function of L for a given W . When W =
2, as L → ∞, the function tends to the upper bound, a1 = 2(

√
2− 1)2 ≈

0.343, established in Proposition 6. Similarly, for W = 10, the function tends
to the upper bound a2 = 10(

√
10− 3)2 ≈ 0.263.

in which the second last inequality holds because

N ′

∑

i∈S 1/Gi
≤ 1

N ′

∑

i∈S

Gi,

and the last inequality is from Lemma 4.

Since N ′ is an integer between 0 and L/W , by enumerating

all the possibilities for N ′, we establish the desired result.

Because the feasible region of (9) is bounded, the optimal

solution to (9) can be attained at one vertex of the feasible

region. Applying Theorem 5 to this optimal vertex solution,

we can obtain a suboptimal solution to the original problem

(1) whose value is at least

optC −Ψ(L,W )‖c‖∞,

and thus we have

optS ≤ optC ≤ optS +Ψ(L,W )‖c‖∞.

Note that this relaxation gap depends on neither the network

topology nor the number of available paths for each user.

For single-path routing (W = 1),
(

n− Wn2

n+ L

)

W =
L

1 + L/n
.

The maximizer inside (11) is always attained by n = L, so

Ψ(L, 1) = L/2 and by solving the improved convex relaxation

(9) we can find a suboptimal solution to the original problem

(1) within the bound of L‖c‖∞/2. In contrast, Theorem 2

gives a suboptimal solution within the bound of
∑min{N,L}

i=1 ρi,
where

ρi =

(

1− 1

Ki

)

‖c‖∞

is the nonconcavity of the function (4) sorted in decreasing

order. When N ≥ L and Ki is large, it is easy to see that our

improved convex relaxation (9) for the linear utility case can

provide a stronger guarantee as compared to the general case

in Theorem 2.

The cases for W > 1 is complex due to the floor function

in (11) (see Fig. 4), but we have the following result.



Proposition 6: If W ≥ 2,

Ψ(L,W ) ≤ (
√
W −

√
W − 1)2WL.

Proof: For any integer n = 1, . . . , ⌊L/W ⌋,
(

n− Wn2

n+ L

)

W

=

(

(2W − 1)L− (n+ L)(W − 1)− WL2

n+ L

)

W

≤
(

(2W − 1)L− 2
√

(W − 1)WL2
)

W

= (
√
W −

√
W − 1)2WL,

and the result follows.

Remark 3: It is worth emphasizing that Theorem 5 only

holds for vertices. To see how it may fail otherwise, consider

a network with two nodes and three unit-capacity links from

the left node to the right node. Assume three users want to

simultaneously use the network to transmit, and each of them

is only able to choose a single link. Then

x1 = x2 = x3 =
(

1/3 1/3 1/3
)T

is an optimal solution to convex relaxation (9). One possible

projection of x to a sparse routing configuration is

y1 = y2 = y3 =
(

1/3 0 0
)T

.

But
3
∑

i=1

‖xi‖1 −
3
∑

i=1

‖yi‖1 = 2 > Ψ(3, 1) =
3

2
.

V. DISTRIBUTED DUAL ALGORITHM

The convex relaxation (9) and Theorem 5 enable us to obtain

an approximate solution to the sparse routing problem (1) by

a distributed algorithm (Algorithm 1). The idea is first finding

a vertex solution x̂ to (9) using Lagrange dual decomposition,

and then projecting x̂ to a sparse routing configuration, i.e.,

selecting only W paths that have the largest rates in x̂ for each

user. A novel aspect of our distributed algorithm is its ability

to yield a vertex solution to (9) using randomization and a

feasible solution to (1) by projection at the same timescale.

Algorithm 1 (Distributed Algorithm with Randomization):

In the following, b > 0 and α > 0 are fixed constants. Let t
be the algorithm iteration index.

• Source initialization for user i:

1) Randomly choose nonnegative numbers τ ik for k =
1, . . . , Ki subject to i.i.d. uniform distribution over

[0, b].
2) Set x̄i(0) to be a Ki × 1 zero vector.

• Link initialization for link l:

1) Set initial link price p
(0)
l ← 0.

• Source update for user i in iteration t:

1) Calculate the aggregate cost for each path:

dik ←
L
∑

l=1

Ri
lkp

(t−1)
l + τ ik, k = 1, . . . , Ki.

2) Find the index k′ maximizing (1− dik)Wĉik.

3) x̌i
k ←

{

Wĉik′ if k = k′ and dik′ < 1,

0 otherwise.

4) Update the running average

x̄i(t) ← 1

t

(

(t− 1)x̄i(t−1) + x̌i
)

.

• Link update for link l in iteration t:

1) Current step size α(t) ← α/t.
2) p(t) ←

(

p(t−1) − α(t)(c−Rx̌)
)

+
.2

The design of Algorithm 1 and its proof of convergence and

optimality are summarized in the three main steps below:

1) We add a random perturbation to the objective function

of the convex relaxation (9). The resulting problem (14)

has a unique optimal solution that is also a vertex.

2) We show that the optimal solution to (14) is near-optimal

for (9).

3) We apply dual decomposition to (14) to obtain a decen-

tralized algorithm, establish its convergence and charac-

terize its performance (Theorem 9).

Step 1: Note that Theorem 5 only holds for vertices, so the

first step is to ensure that the obtained optimal solution to (9)

is a vertex. If the optimal solution is unique, then it is always a

vertex. However, we need a method to prevent the problematic

case where the solution is not unique (this happens commonly

when the network has some symmetry). Inspired by [14], we

consider the following randomized version of (9):

max

N
∑

i=1

Ki

∑

k=1

(1− τ ik)x
i
k

s. t. Rx ≤ c,

x ≥ 0,

Ki

∑

k=1

xi
k

ĉik
≤W, ∀i = 1, . . . , N.

(14)

Here the vector τ = {τ ik|i = 1, . . . , N, k = 1, . . . , Ki} can

be randomly chosen according to any continuous distribution

whose support is in the box [0, b]K , where b > 0 is a fixed

constant. In the source initialization part of Algorithm 1,

it suffices to choose the uniform distribution. Based on the

following well-known theorem, with probability 1, problem

(14) has a unique optimal solution.

Theorem 7: Suppose S is a nonempty compact set in R
n,

then the set of u ∈ R
n for which the maximizer of uTx over

x ∈ S is not unique has Lebesgue measure 0.

The readers are referred to [11, Theorem 3] for a proof. For

convenience, we omit the with probability 1 condition in the

rest of paper.

The unique optimal solution to (14) must be a vertex of its

feasible region, and it is also a feasible vertex solution to the

convex relaxation (9).

2Here (u)+ = max{u, 0}.



Step 2: In the following result, we bound how far the

optimal solution to (14) can be from the optimality for (9).

Lemma 8: Let ẑ be the unique optimal solution to the

randomized problem (14), then

optC −
N
∑

i=1

‖ẑi‖1 ≤ b

(

L

W
+ L

)

‖c‖∞.

Proof: Assume x̂ is an optimal vertex solution to (9), then

optC −
N
∑

i=1

‖ẑi‖1 =

N
∑

i=1

‖x̂i‖1 −
N
∑

i=1

‖ẑi‖1

≤
N
∑

i=1

‖x̂i‖1 −
N
∑

i=1

Ki

∑

k=1

(1− τ ik)ẑ
i
k

=

N
∑

i=1

Ki

∑

k=1

(1− τ ik)(x̂
i
k − ẑik) +

N
∑

i=1

Ki

∑

k=1

τ ikx̂
i
k

≤ b

(

L

W
+ L

)

‖c‖∞,

in which the inequalities hold because 0 ≤ τ ik ≤ b, 0 ≤ x̂i
k ≤

‖c‖∞, ẑ is an optimal solution to (14), and Lemma 4 implies

that x̂ has at most L/W + L positive flows.

Step 3: We apply the Lagrange dual decomposition to the

randomized problem (14). For each user i, let Qi denote the

polyhedron














xi ≥ 0,

Ki

∑

k=1

xi
k

ĉik
≤W.

Let p ∈ R
L×1 be the Lagrange dual prices for the link capacity

constraints. Consider the (partial) Lagrangian of (14):

L(x, p) =
N
∑

i=1

Ki

∑

k=1

(1− τ ik)x
i
k + pT (c−Rx)

= pT c+

N
∑

i=1





Ki

∑

k=1

(1− τ ik)x
i
k − pTRixi





= pT c+

N
∑

i=1

Ki

∑

k=1

(1 − dik)x
i
k,

where

dik =

L
∑

l=1

Ri
lkpl + τ ik

is the aggregate cost for path k of user i, calculated by the first

step of the source update part in Algorithm 1. The domain of

L(x, p) is p ≥ 0 and xi ∈ Qi, ∀i = 1, . . . , N .

Remark 4: The aggregate cost dik above has two compo-

nents. The first component is the dynamic price depending on

the link congestion. The second component τ ik is fixed during

the entire iteration, so it can be understood as the static price

for this path. Although, from a purely theoretical viewpoint, τ ik
can be chosen according to any probability distribution satisfy-

ing the mentioned requirement, in the networking application

we can choose τ ik in some meaningful way such as letting τ ik
be proportional to the measured delay of the path.

Now, the Lagrangian L(x, p) is separable for different users.

For a fixed link price p, let x̌i be a maximizer for the separated

Lagrangian, i.e.,

x̌i = argmax
xi∈Qi

Ki

∑

k=1

(1− dik)x
i
k.

x̌i must be attained at some vertex of the polyhedron Qi. If

dik > 1 for all available paths of user i, then x̌i = 0. Otherwise,

assume path k′ maximizes (1 − dik)Wĉik, then

x̌i =
(

0 · · · Wĉik′ · · · 0
)T

,

in which the only nonzero component is the k′th. The third

step of the source update part in Algorithm 1 computes x̌i.

The Lagrange dual problem for the randomized problem

(14) is

min
p≥0

max
xi∈Qi

L(x, p).

It is easy to see that strong duality holds for (14) by Slater’s

constraint qualification. The following iteration gives the sub-

gradient method for solving the dual problem with step size

α(t):

p(t) =
(

p(t−1) − α(t)(c−Rx̌(t))
)

+
,

where x̌(t) maximizes the Lagrangian L(x, p) for fixed p =
p(t−1).

In general, during the iterations of subgradient method, x̌(t)

may not be primal feasible, and this sequence may not be

convergent. However, the running average

x̄(t) =
1

t

t
∑

j=1

x̌(j)

will converge to the optimal solution to (14) [15]. Now we

can state and prove the main theorem about Algorithm 1.

Theorem 9: In Algorithm 1, x̄(t) converges to a vertex ẑ of

convex relaxation (9). Let ŷ be the projection of ẑ to a sparse

routing configuration, then

optS −
N
∑

i=1

‖ŷi‖1 ≤ Ψ(L,W )‖c‖∞ + b

(

L

W
+ L

)

‖c‖∞.

Proof: Let ẑ be the unique optimal solution to (14), which

is also a vertex of convex relaxation (9). Using the result

in [15, Theorem 6], we know that every limit point of the

sequence {x̄(t)} must be ẑ. Since {x̄(t)} is bounded and its

limit point is unique, we have

lim
t→∞

x̄(t) = ẑ.

From Lemma 8, we have

optC −
N
∑

i=1

‖ẑi‖1 ≤ b

(

L

W
+ L

)

‖c‖∞. (15)
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Source

Fig. 5. A sample of relay network with three source nodes, two relay nodes
and a single destination node. A user at each source node sends data to the
destination node through some relay nodes.

Applying Theorem 5 to the projection ŷ of ẑ, we have

N
∑

i=1

‖ẑi‖1 −
N
∑

i=1

‖ŷi‖1 ≤ Ψ(L,W )‖c‖∞. (16)

The result follows by considering optS ≤ optC and adding up

(15) and (16).

Remark 5: After the projection, some users may lose some

rates when restricted to using only W paths. Thus, ŷ does not

necessarily achieve the optimal utility for this fixed routing

configuration. One can further improve the solution ŷ by

solving a network utility maximization over the sparse routing

configuration chosen in the projection of ẑ.

VI. NUMERICAL EXAMPLES

A. Relay Network Topology

In Section V, we have given a worst-case analysis for

Algorithm 1. However, in many situations, the performance

of Algorithm 1 is much better. In this part, we discuss how

our algorithm can be applied to a relay network topology, in

which Algorithm 1 is always able to converge to an optimal

solution to the sparse routing problem (1).

We consider a network (Fig. 5) consisting of three types

of nodes. There is a single node that is the destination of all

users. There are R relay nodes with links to the destination

node, and there are N users at different source nodes, which

do not directly connect to the destination node but connect to

all the relay nodes. Assume that each link in the network has

unit capacity and N ≥ R.

If the capacity constraints for the links between the desti-

nation and the relay nodes are satisfied, then all the other link

capacity constraints are automatically satisfied. Only listing

the constraints for up-level links, the sparse routing problem

(1) for this example can be written as

max

N
∑

i=1

‖xi‖1

s. t.

N
∑

i=1

xi
r ≤ 1, ∀r = 1, . . . , R,

x ≥ 0,

‖xi‖0 ≤W, ∀i = 1, . . . , N,

(17)

where xi
r is the transmission rate of user i toward relay node

r. The convex relaxation of (17) can be obtained by replacing

the last N constraints with

‖xi‖1 ≤W, ∀i = 1, . . . , N. (18)
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Fig. 6. The rates of one particular user under iterations of Algorithm 1 for
the relay network topology example with N = 4, R = 3 and W = 2.

If the random perturbation in Algorithm 1 is sufficiently

small, the algorithm will converge to an optimal vertex so-

lution to the convex relaxation, and by the next proposition,

which is also an optimal solution to the original sparse routing

problem (17). The Algorithm 1 for the relay network topology

is demonstrated in Fig. 6.

Proposition 10: For the relay network topology, each vertex

of the convex relaxation is feasible for the original sparse

routing problem (17).

Proof: The idea is to show that the coefficient matrix

of the convex relaxation is totally unimodular and its every

vertex is an integral solution. Thus, for such a vertex, the last

N constraints (18) are equivalent to the last N path cardinality

constraints in (17).

B. Random Graph

The authors in [6] also proposed a heuristic algorithm

based on Lagrange duality to solve the single-path routing

problem, which is summarized in Algorithm 2. Similar to

our Algorithm 1, it involves combining the dynamic price

additively with a static component τ ik.

Algorithm 2 (Lagrange Dual Heuristic Algorithm in [6]):

In iteration t:

1) Every user i calculates the aggregate cost for each path:

dik ←
L
∑

l=1

Ri
lkp

(t−1)
l + τ ik, k = 1, . . . , Ki.

2) For each user i, find the path k̂i that has the least cost

among all available paths of user i.
3) Solve the network utility maximization problem on the

paths selected in step 2, i.e., solving problem (2) with

the additional restrictions

xi
k = 0, ∀i = 1, . . . , N, ∀k 6= k̂i.

Let (x(t), p(t)) be the optimal primal-dual pair.

If τ ik is omitted or if this term is small, Algorithm 2

does not converge and may oscillate among several routing

configurations [6]. But, if τ ik is large, the resulting routing

configuration weakly depends on the congestion level of links,
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Fig. 7. (a) The aggregate utility of the solution to the relaxed problem (9) and the final single-path solution obtained after t iterations of Algorithm 1 with
parameter b = 0.2 and α = 0.1. (b) The time-average utility achieved by Algorithm 2 under different choices of b.

and it can be far from optimality. On the contrary, the reason

for our Algorithm 1 to include the static price is to guarantee

a vertex solution with the least violation of path cardinality

constraints (a totally different algorithm design consideration

as compared to the work in [6]). In Algorithm 1, τ ik can be

relatively small, so it only slightly affects the performance of

our algorithm.

In the following, we compare our Algorithm 1 with Algo-

rithm 2 under a random network setting. The network has 10

links and 4 users. Each user has five available paths but it

is only allowed to use one. The routing matrix R and link

capacities c are randomly generated, and c is normalized such

that ‖c‖∞ = 10. The static price τ ik is also randomly chosen

according to i.i.d. uniform distribution over [0, b].
Fig. 7(a) displays the aggregate utility of the approximate

solution to the convex relaxation (9) generated by Algorithm 1

after t iterations. The final aggregate utility of the single-path

routing solution, obtained by taking the algorithm output, pro-

jecting it to a single-path routing configuration and improving

it by solving the network utility maximization problem over

the selected paths (see Remark 5), is also shown in Fig. 7(a).

We can see that a near-optimal single-path solution can be

found after dozens of iterations. However, Algorithm 2 suffers

large instability when b ≤ 2.6. Even measuring the time-

average utility (Fig. 7(b)), the performance is not nearly as

good as Algorithm 1.

VII. CONCLUSION

We studied the network utility maximization over joint con-

gestion control and routing with path cardinality constraints,

which is in general a nonconvex and NP-hard problem. We

proposed a novel convex relaxation that significantly outper-

formed the standard multipath relaxation, and enabled the

design of distributed algorithms that can be interpreted as

sparse multipath TCP/IP joint congestion control and routing

algorithm. Even with path cardinality constraints, it can load

balance a large portion of the traffic with a small number of

paths. Numerical simulations show that the distributed dual

algorithm performs well in the contrived setting as well as

a random graph topology in comparison to a state-of-the-art

TCP/IP algorithm, which demonstrates the value of our new

convex relaxation and its decomposition.
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