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Distributed Synchronization of Heterogeneous
Oscillators on Networks With Arbitrary Topology

Enrique Mallada, Member, IEEE, Randy A. Freeman, and Ao Kevin Tang, Senior Member, IEEE

Abstract—Many network applications rely on the synchroniza-
tion of coupled oscillators. For example, such synchronization can
provide networked devices with a common temporal reference
necessary for coordinating actions or decoding transmitted mes-
sages. In this paper, we study the problem of using distributed
control to achieve phase and frequency synchronization of a net-
work of coupled heterogeneous nonlinear oscillators. Not only do
our controllers guarantee zero-phase error in steady state under
arbitrary frequency heterogeneity, but they also require little
knowledge of the oscillator nonlinearities and network topology.
Furthermore, we provide a global convergence analysis, in the
absence of noise and propagation delay, for the resulting nonlinear
system whose phase vector evolves on the n-torus.

Index Terms—Coupled oscillators, distributed control, nonlin-
ear control, synchronization.

I. INTRODUCTION

A CHIEVING temporal coordination among different net-
worked devices is a fundamental requirement for the

successful operation of many engineering systems. For ex-
ample, it is necessary in communication systems to recover
transmitted messages [1] in sensor networks for coordinating
wakeup cycles [2] or achieving temporal measurement coher-
ence [3], and in computer networks to preserve the causality of
distributed events [4]. Almost ubiquitously, such coordination
is accomplished by providing each node of the network with
its own local oscillator (LO) and then compensating its phase
and frequency (using information received from other devices
on the network) to achieve a common temporal reference.

Legacy applications, such as public-switched telephone net-
works and cellular networks, use a centralized hierarchical
synchronization scheme with high-precision oscillators that
have relative frequency errors ranging from 0.01 to 4.6 parts per
million (ppm) [5], [6]. For several reasons, however, these tradi-
tional synchronization architectures have become increasingly
unsuitable for newer distributed applications. For example, tra-
ditional methods can break down with the failure of only a few
nodes. In addition, many newer applications use inexpensive
oscillators having errors as high as 100 ppm [7]. Thus, a
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synchronization protocol designed for these newer applications
should satisfy two essential requirements: 1) it should be dis-
tributed and independent of the network topology (each node
should use only its neighbors’ oscillator information to adjust it
own oscillator) and 2) it should be robust to wide variations
and uncertainty in the specifications of the oscillators used
throughout the network.

A variety of synchronization algorithms has been proposed
along these lines, jointly inspired by collective synchronization
in physics and biology [8]–[11] and cooperative control in
engineering networks [12], [13]. One possible solution is to use
monotonically increasing time sources (e.g., clocks) and update
their times based on offset information [14]–[22] to achieve a
common absolute time reference (clock synchronization). This
is suitable for applications in computer networks where a refer-
ence to an absolute time is needed (e.g., distributed databases).
Another solution is to use periodic time sources (e.g., os-
cillators) interconnected with phase comparators [23]–[25] or
pulse-coupling [26]–[28], where the objective is to achieve a
common relative time reference (phase synchronization) that
enables temporal coordination within the network (e.g., waking
up simultaneously).1

While the theoretical study of clock synchronization is fairly
mature, with solutions that can provide zero offset error syn-
chronization on networks with arbitrary heterogeneous fre-
quencies [4] and asynchronous updates [22], little is known
about the phase synchronization counterpart. For example, most
phase synchronization solutions present nonzero steady-state
phase differences in the presence of frequency heterogeneity
[23]–[28] with convergence guarantees limited to idealized
scenarios, such as homogeneous frequencies [29]. The only ex-
ception is [25] which can guarantee phase synchronization for
complete graph topologies. Thus, whether or not such systems
can synchronize for arbitrary networks and arbitrary frequency
heterogeneity has remained an open question [24].

In this paper, we provide a positive answer to this question
under very general conditions. We propose two distributed con-
trollers that can achieve phase synchronization for a network of
arbitrarily interconnected oscillators, under mild assumptions
on the oscillator and phase comparator characteristics. For ex-
ample, we allow the instantaneous frequency of each oscillator
to be a highly uncertain nonlinear function of the local control
input, a model consistent with most analog oscillators [such
as voltage-controlled oscillators (VCOs) or complementary

1Although one can use clock synchronization to achieve phase synchro-
nization by simply mapping the linear times onto the circle using a modulo
operator, this approach can lead to undesirable transients if the phases keep
wrapping around the circle as the linear times synchronize. For this reason,
we consider these to be separate synchronization problems, each suitable for
different application areas.
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metal–oxide semiconductors (CMOS) oscillators]. Also, unlike
existing work, we allow the set of oscillator frequencies to be
bounded, so that each oscillator may operate within a prescribed
frequency range, even during the transient part of the response.
Finally, we allow flexibility in the choice of the phase com-
parator responses, rather than assuming as in [25] that they are
sinusoidal. We only require that the measured phase difference
is noiseless and can be obtained without propagation delay.

The main contribution of this paper is a novel nonlinear
convergence analysis that leverages recent results on the stabil-
ity of equilibria of homogeneous-frequency coupled oscillators
[29]. In particular, our controllers are based on a Hamiltonian
dynamic system defined on the graph in which each local
minimum of the energy function represents a synchronized tra-
jectory. Each controller employs a different mechanism to dis-
sipate energy and thereby converge to a synchronized solution.
Furthermore, we show that any trajectory that is synchronized
in frequency but not in phase must be unstable and that the
phase-synchronized trajectory is almost-globally stable.

II. NOTATION AND TERMINOLOGY

We let T = R/2πZ denote the unit circle, regarded as the Lie
group of angle addition. We equip T with the usual Riemannian
metric which defines the distance d(p, q) between two points
p, q∈T to be the length of the shorter of the two arcs connecting
them. Given a set S⊆T, we define the diameter of S to be
diam(S)=supp,q∈S d(p, q) (so that diam(T)=π). For p∈N,
we let Tp denote the Cartesian product of p circles. For i ∈
{1, . . . , p}, we let ∂i denote the unit vector field pointing in
the counterclockwise direction on the ith factor of Tp (which
we write simply as ∂ when p = 1). Because these unit vector
fields form an ordered basis for the tangent space of Tp at each
point, we can represent tangent vectors for Tp as elements of
R

p, that is, as coordinate vectors with respect to this basis.
Moreover, all Jacobian matrices of mappings defined on T

p will
be representations of the differential with respect to this basis.

All graphs in this paper will be simple, undirected, connected
graphs having n vertices (with 2 � n < ∞) and m edges (with
m � n− 1). We represent such a graph G as a pair G = (V, E)
for a vertex set V and edge set E . We label and order the ver-
tices and edges, writing V = {1, . . . , n} and E = {1, . . . ,m},
where each edge k ∈ E is an unordered pair of distinct vertices
k = {i, j} ⊂ V . For each vertex i ∈ V , we let Ni denote the
following indexed set of neighbors of i:

Ni = {(j, k) ∈ V × E : k = {i, j}}. (1)

Thus, (j, k) ∈ Ni if and only if (i, k) ∈ Nj , that is, if and
only if edge k connects vertices i and j.

III. PROBLEM STATEMENT AND RESULTS

We consider a network of controlled oscillators in which
each oscillator shares the current value of its phase with its
immediate neighbors. The purpose of the controller design is
to guarantee frequency and phase synchronization of the in-
terconnected system. We adopt the classical phase-locked loop
(PLL) structure for each controlled oscillator [23], [30]. This
structure consists of three components connected in feedback,
as illustrated in Fig. 1: a base oscillator, a phase comparator, and

Fig. 1. PLL components of a controlled oscillator.

a loop filter. The base oscillator is a physical device (such as a
VCO) whose frequency is determined dynamically by means of
a control signal; the phase of each controlled oscillator system
is simply the phase of its base oscillator. The phase comparator
produces a phase error signal by comparing its own phase with
the phases of its neighbors. Finally, the loop filter produces the
control signal from the phase error.

We represent the network of oscillators by a graph G=(V, E)
in which each vertex is a controlled oscillator and each edge
indicates an exchange of phases between neighboring vertices.

We represent the phase of oscillator i at time t ∈ R by
ϕi(t) ∈ T, and we write the phase vector signal for the entire
network as the column vector

ϕ = [ϕ1 . . . ϕn]
T ∈ T

n. (2)

We define a synchronization measure δϕ to be the diameter
of the finite subset of T consisting of the n phases ϕi

δϕ = diam{ϕ1, . . . , ϕn} ∈ [0, π]. (3)

Note that if δϕ < 2π/3, then the n phases ϕi all lie within
an arc of length δϕ. Therefore, a small value of δϕ represents
a tight clustering of the oscillator phases, and these phases are
all identical when δϕ = 0. This diameter (3) is a worst-case
measure of synchronization, rather than an average measure,
as a single outlier can make this diameter large. The following
definition describes our design goal.

Definition 1: Let I ⊂ R be an interval. The network of os-
cillators achieves almost-global synchronization within I when
for almost all initial states (including the initial oscillator phases
and any initial loop filter states), the trajectories of the system
satisfy:

• asymptotic frequency synchronization: there exists a
constant ω� ∈ I such that ϕ̇i(t) → ω� as t → ∞ for each
i ∈ V;

• asymptotic phase synchronization: δϕ(t) → 0 as t →
∞;

• constrained frequencies: ϕ̇i(t) ∈ I for all t � 0 and each
i ∈ V;

• internal boundedness: all loop filter states (if any) are
bounded in forward time.

The constraint interval I used in this definition characterizes
the desired range of frequencies for the oscillators. Choosing an
appropriate interval I in the design is thus useful for preventing
the oscillators from moving too fast, too slow, or reversing
direction.
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Fig. 2. Examples of χi(·) and ξ(·) such that χi(ξ(·)) ∈ [.5, 1.5].

A. Base Oscillator and Phase Comparator

In common models of controlled analog oscillators, the in-
stantaneous frequency is some uncertain monotonic nonlinear
function of the control input. For example, the graph of this
function is the “tuning curve” seen on data sheets of many
voltage-controlled oscillatorVCOs, where it is understood that
this curve is typical rather than exact. Motivated by such mod-
els, we assign an uncertain frequency function χi to the base
oscillator in each vertex i, where χi : U → R is a strictly in-
creasing C1 function on a known open interval domain U ⊂ R;
see Fig. 2(a). The angular velocity of the phase of the oscillator
at time t (that is, its instantaneous frequency) is then given
by χi(ui(t)), where ui(·) is a U -valued control signal. Hence,
our model for the base oscillator is the differential equation

ϕ̇i = χi(ui). (4)

In this oscillator model, the oscillator stops whenever χi(ui) =
0 and reverses direction whenever χi(ui) changes sign. How-
ever, an oscillator need not admit such behavior, as the image
χi(U) need not contain zero.

As we see from the model (4), the base oscillators are non-
linear and heterogeneous. In addition, we do not need precise
knowledge of the frequency functions χi to complete our design
and guarantee almost-global synchronization. In fact, as we will
see when we list our assumptions in Section III-E, all we need
to know about the functions χi is that they are C1 with positive
derivatives on U , and that the intersection of their images χi(U)
is nonempty.

The phase comparator in vertex i calculates a linear com-
bination of functions of phase differences to produce a phase
error ei

ei(ϕ) =
∑

(j,k)∈Ni

akf(ϕj − ϕi) (5)

where the constants ak are positive edge weights and f : T →
R is the phase coupling function. For example, the coupling
function used in many classical PLL designs is the sine function
f = sin. Alternatively, one can build other coupling functions f
by cascading a sawtooth phase comparator [31] and a nonlinear
component that provides the f -shape or by directly synthesiz-
ing a nonlinear phase comparator [32].

B. Example: Kuramoto Model

Suppose that the frequency function χi for each base oscilla-
tor i has the simple affine form χi(ui) = ωi + ui, where the
constant ωi ∈ R represents the nominal oscillator frequency.

Suppose further that the phase coupling function is the sine
function f = sin and that all loop filters are constant unity gains
so that ui ≡i. Then, the controlled phase equation becomes

ϕ̇i = ωi +
∑

(j,k)∈Ni

ak sin(ϕj − ϕi). (6)

This model of a network of coupled oscillators has been
studied extensively, and we refer the reader to the survey paper
[33]. In particular, if the graph G is complete, and if all edge
weights ak are the same, then this is the famous Kuramoto
model of coupled oscillators [34].

The oscillator network characterized by the dynamics in
(6) fails to meet the design goal of Definition 1. Indeed, the
existence of a synchronized trajectory for the model (6) where
δϕ ≡ 0 implies that the nominal frequencies ωi are all identical.
If these frequencies were known precisely, then we could sim-
ply cancel them out via control by setting ui = ei + ω� − ωi to
obtain a model of the form (6) where ωi = ω� for all i ∈ V .
However, even in this case of identical frequencies, almost-
global synchronization has been proved only for special classes
of connected graphs, such as complete graphs [35] or trees [33].
Instead, we are interested in oscillators having unknown hetero-
geneous frequencies on arbitrary connected graphs. In this case,
one can choose sufficiently large edge weights ak to guarantee
“practical” phase synchronization where δϕ becomes small,
provided it does not start off too large [33]. However, choosing
large edge weights makes it less likely that the frequencies ϕ̇i

will be constrained to a desired interval I during the transient.
In any case, we see that we must depart from this standard
model (6) to meet the design goal of Definition 1, and we do
so by choosing a nonsinusoidal coupling function f in (5) and
a nonlinear dynamic loop filter.

C. Toward Synchronization: A Hamiltonian System

The loop filter in vertex i produces the control signal ui from
the phase error ei. It is well known that introducing the integral
action into the loop filter can compensate offset mismatches
for networks of heterogeneous oscillators [19], [21]–[23], [25],
[30]. Thus, as a first attempt at achieving almost-global syn-
chronization of the oscillator network, we simply make the loop
filter a scaled integrator

γ̇i = ciei(ϕ) (7)
ui = ζ(γi) (8)

where γi(·) is the real-valued internal filter state, ci is a positive
parameter, and ζ : R → U is a scaling function which squeezes
the value of γi into the domain U of the frequency function χi.
As shown in Fig. 2, we can choose ζ(R) to be a strict subset of
U , which can help us achieve the desired frequency constraint
ϕ̇i(t) ∈ I. For illustration purposes, in our simulations, we
will use

χi(u) =
atan(αu)

atan(α)
+ 1 and ζ(γ) = l

2

π
atan(γ) (9)

with α=10, l=χ−1
i (1.5), and U=(−1, 1). Notice that the

specific choice of l makes χi(ζ(γ))∈ [.5, 1.5]⊂χi(U)=[0, 2].
We do not assume that the oscillators have access to the

global time variable t. As a result, the differential dt used in
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Fig. 3. Hamiltonian oscillations with f = sin.

Fig. 4. Six-node graph, ring topology.

the construction of dγi/dt in (7) is unknown, and we account
for this by assuming that the positive constant ci is unknown.

The system resulting from (4) and (7) and (8) is

ϕ̇i =χi (ζ(γi)) (10)
γ̇i = ciei(ϕ) (11)

where ei is the phase error in (5). The first thing we notice
about this system (10), (11) is that it admits a synchronized
solution at any frequency ω�∈R which belongs to the image of
each function χi ◦ ζ. Indeed, choose any initial states such that
δϕ(0)=0 and χi(ζ(γi(0)))=ω� for each i∈V; then ϕ̇i≡ω�

and γ̇i≡0 for every i∈V , which implies δϕ≡0. However,
solutions starting from other initial conditions will not converge
to such synchronized trajectories, which means this system still
fails to meet the design goal of Definition 1. We illustrate the
lack of convergence in Fig. 3, where we show the evolution of
the frequencies and phases of six oscillators interconnected in a
ring topology according to Fig. 4, with ak=1 ∀k, f=sin, and
χi and ζ given by (9), with α=10 and l=1.2

The second thing we notice about the system (10), (11) is that
it is a Hamiltonian system with position variables ϕi and mo-
mentum variables γi/ci. Indeed, assuming the phase coupling
function f is odd, the n-vector of phase errors ei is the negative
gradient of a potential function of the phase vector ϕ (as we will
show in Section IV-A). Furthermore, each function (χi ◦ ζ)/ci,
being a scalar function of a scalar variable, is trivially the gradi-
ent of a potential function of its argument γi. The sum of these
potential functions is a Hamiltonian associated with the dy-
namics (10)–(11). Moreover, as we will see in Section IV-A, if
we let the position variables be the phases ϕi measured rela-
tive to an appropriate rotating frame, then the system is still
Hamiltonian, but now the Hamiltonian is proper and non-

2The expression 〈ϕi(t)〉 that appears in the figures of this paper is used for
representation only. It amounts to the coordinate-dependent average, that is,
〈ϕi(t)〉 = (1/n)

∑
i∈V ϕi(t), when the phases ϕi(t) represent values in R.

Fig. 5. Frequency synchronization without phase consensus.

negative and is thus a Lyapunov function candidate. If we can
guarantee that synchronized trajectories represent the only local
minima of this Lyapunov function, then we can perturb these
Hamiltonian dynamics with dissipation terms in the controller
to achieve almost-global synchronization. This is the control
design strategy we will pursue in this paper.

D. PI Loop Filter: A Perturbed Hamiltonian System

We propose two different perturbed Hamiltonian systems
in this paper—the first now and the second later on in
Section III-F. For our first perturbation, we add a proportional
term to the integral control (8), resulting in a proportional-
integral (PI) loop filter of the form

γ̇i = ciei(ϕ) (12)
ui = ζ (ei(ϕ) + γi) . (13)

Such a loop filter (without our nonlinear scaling function ζ)
can be found in classical PLL designs [30] as well as in various
coupled oscillator systems [23], [25]. More generally, the error
term ei in (13) can be replaced with a scaled error term κiei,
where the “proportional gain” κi is a positive constant (or
even a positive function of γi), with virtually no change in the
convergence proof. We have left this gain κi out of the analysis
to simplify notation, but the flexibility it adds will be important
for tuning the performance of the system. We might also intro-
duce a corresponding “integral gain,” but for the analysis, this
can be absorbed into the constant ci.

To summarize, each controlled oscillator in the network has
second-order dynamics of the form

ϕ̇i =χi (ζ (ei(ϕ) + γi)) (14)
γ̇i = ciei(ϕ) (15)

with

ei(ϕ) =
∑

(j,k)∈Ni

akf(ϕj − ϕi). (16)

The state space of each such oscillator is the cylinder T× R.
The system (14)–(16) has the same structure as [22] in the sense
that it uses the offset error information to control θi and γi. In
fact, it is easy to see that the linearization of (14)–(16) around an
orbit is equivalent to a continuous time version of the algorithm
proposed in [22].

Fig. 5 shows the same setup as in Fig. 3 but using (14)–(16)
instead of the Hamiltonian system (10)–(11). Although the sys-
tem converges to a phase-locked orbit, the phases do not reach
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phase consensus. It is possible to show that this property is
generic within a neighborhood of ak = 1. Thus, there is a set of
initial conditions with positive measure so that trajectories start-
ing within this set achieve frequency synchronization but not
asymptotic phase synchronization. In this paper, we will solve
the lack of phase consensus by choosing a nonsinusoidal f .

We next present conditions under which this oscillator sys-
tem exhibits almost-global synchronization within a given
interval I.

E. Assumptions and Main Result

We assume that each vertex knows its neighbors in the graph
G (as they need to exchange phase information), but otherwise
the graph is unknown. However, we do assume the following:

A1) the graph G is connected, and there exists a known upper
bound on the number n of vertices in G.

The frequency functions χi of the base oscillators are uncertain;
we merely assume that they satisfy the following:

A2) the frequency functions χi : U → R are all C1 with pos-
itive derivatives χ′

i : U → (0,∞), and have a common
nonempty frequency range, i.e.,⋂

i∈V
χi(U) �= ∅. (17)

It is clear from the oscillator model (4) that (17) is necessary for
the existence of phase trajectories having synchronized frequen-
cies. This condition (17) implies the existence of some common
interval of possible base oscillator frequencies and, thus, places
an inherent limit on the extent to which these oscillators can
differ from each other. Indeed, if one oscillator can only pro-
duce frequencies in the kilohertz range and another only in the
megahertz range, then there is no possibility of synchronization.

We next assume that our loop filter scaling function ζ satisfies:

A3) the scaling function ζ : R → U is C1 with positive
derivative ζ ′ : R → (0,∞), and is such that⋂

i∈V
χi (ζ(R)) �=∅ (18)

⋃
i∈V

χi (ζ(R)) ⊂I (19)

where I is the constraint interval from Definition 1.

It is clear from (4) that (19) constrains the frequencies ϕ̇i to the
interval I as required by the design goal in Definition 1. If I is
large enough to contain the union of the images χi(U), then we
can always satisfy assumption A3) by choosing the scaling func-
tion ζ to be a diffeomorphism onto U [so that (17) and (18) are
the same]. However, if I is not that large, then assumption A3)
states that we have found a solution to the problem of designing
ζ to satisfy both (18) and (19) based on some a priori knowl-
edge about the set of possible frequency functionsχi. Such a de-
sign problem could very well have no solution if I is too small.

We let f ′ : T → R denote the derivative of the phase cou-
pling function f in the direction of the unit vector field ı̂. We
make two assumptions on this function f :

A4) the phase coupling function f : T → R is C1 and odd, that
is, f(−θ) = −f(θ) for all θ ∈ T;

Fig. 6. Examples of phase-coupling functions f when b = 0.5.

A5) there is a constant b ∈ (0, π/(n− 1)] such that f ′(θ) >
0 whenever cos(θ) > cos(b) and f ′(θ) < 0 whenever
cos(θ) < cos(b), for any θ ∈ T.

Assumptions A4) and A5) also appeared in [36] and [37]
and play an important role in the convergence analysis: A4)
allows the interpretation of (4) and (7) and (8) as a Hamiltonian
system, while A5) is needed to guarantee convergence to the
desired solution.

Note that to choose such a parameter b, we must use our
assumed knowledge in (A1) of a known upper bound on n.
Examples of functions f which satisfy assumptions A4)–A5)
are shown in Fig. 6 for b = 0.5. The first example is given by
the Cω formula

f(θ) = [1− cos(b)]
sin(θ)

1− cos(b) cos(θ)
. (20)

This function is related to the characteristic of certain “tanlock”
phase comparators [30], and it generates the sinusoidal cou-
pling f = sin when b = π/2. The other examples are C1 and
piecewise polynomial of various degrees p � 1, each having
a derivative given by f ′(θ) = 1− (|θ|/b)p−1 on a certain arc
containing [−b, b] and a constant derivative on the complement
of [−b, b]. All of these examples are normalized to have a unit
derivative at zero, which means they should result in similar
performance for small deviations around a stable synchronized
trajectory. When b is small (which we require when n is large),
the magnitude of the derivative of the tanlock function is
small on the arc [b, π] when compared to the magnitude of the
derivatives of the piecewise-polynomial functions. As a result,
the piecewise-polynomial functions might provide faster con-
vergence to a synchronized state when some initial phase differ-
ences are greater than b (due to their larger gains for large phase
differences). Note that it is not the case that the slope f ′(0)
must get large as b gets small—ours is not a high-gain solution.
In fact, because the edge weights ak can be arbitrarily small,
our solution includes low-gain designs.

The final assumption is on the choice of the edge weights ak:
A6) each edge weight ak is chosen at random from a contin-

uous probability distribution on the interval (0,∞).
This assumption allows us to state that with probability one, we
avoid an unknown zero-measure set of bad edge weight vectors
a = [a1 . . . am]T ∈ R

m for which our stability analysis does
not guarantee convergence.

Theorem 2: Assume A1)–A6). Then, with probability one
in the selection of edge weights in (A6), the network of oscil-
lators with vertex dynamics (14)–(16) achieves almost-global
synchronization within I.
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Fig. 7. Decaying oscillations with tanlock f .

Fig. 8. Additional properties of controllers.

Note that when n�4, assumption A5) rules out the sinu-
soidal phase-coupling function f=sin. In fact, the requirement
b�π/(n−1) is within a factor of two of being necessary.
Indeed, one can show that for a oscillator network of size n and
ring topology, the uniformly distributed phase-locked orbit with
f=sin, illustrated in Fig. 5 forn=6, is stable for all b>(2π/n).
In contrast, Fig. 7 shows that when substituting sin with the
tanlock function (20) with b=π/5, the same initial condition
now converges to the desired orbit as predicted by Theorem 2.

Finally, we illustrate two interesting characteristics of our
controllers in Fig. 8. In the left column of Fig. 8, we show how
by setting l=χ−1

i (1.5) as in Fig. 2, we are able to constrain
the oscillator frequencies to lie within (0.5, 1.5). In the right
column, we change the range of χi to be χ1(U)=χ3(U)=
χ5(U) = (0, 2) and χ2(U)=χ4(U)=χ6(U)=(1.9, 3.9). We
can see that despite the very narrow intersection of frequency
ranges, the oscillators still synchronize in frequency and phase.

We will prove Theorem 2 in Section IV. In this proof, we first
construct a Lyapunov function for the system, and then apply
the Krasovskii–LaSalle invariance theorem to show that all
trajectories converge to a certain invariant subset M of the state
space T

n × R
n. We then determine the structure of this set M,

showing first that it is the disjoint union of isolated embeddings
of the cylinder T× R. We next show that the state space admits
a foliation into invariant (2n− 1)-dimensional submanifolds,
and that the intersection of each leaf of this foliation with
the set M is the disjoint union of isolated embeddings of
the circle T (as conceptualized in Fig. 9). Each such circle
represents a periodic trajectory with a constant synchronized
frequency ω� ∈ I (so that ϕ̇i ≡ ω�). One of the cylinders of
the set M is good, in that all of the periodic trajectories on

Fig. 9. Invariant set M (shown in gray) is a collection of isolated cylinders.
The intersection of each invariant leaf of the foliation (shown in blue) with M
is a collection of isolated circles (shown in red).

this cylinder are also synchronized in phase (so that δϕ ≡ 0).
The remaining cylinders of M (if any) are bad, in that all of the
periodic trajectories on these cylinders are out of phase. Finally,
using a local linearization analysis, we show that the phase-
synchronized trajectories are exponentially stable (relative to
each leaf of the foliation), whereas the out-of-phase trajectories
are exponentially unstable. Because we show that these periodic
trajectories are isolated on each leaf (a key step in the proof),
we conclude that almost all trajectories achieve asymptotic
synchronization in both frequency and phase.

F. Dual Controller: A Different Perturbed Hamiltonian System

The approach we take in the controller design in (14)–(16)
is to perturb the Hamiltonian system (10), (11) by adding a
dissipation term to the dynamics of each position variable.
An alternative, dual approach is to add a dissipation term to
the dynamics of each momentum variable. We will do this by
including a second comparator in addition to the phase com-
parator, that is, by introducing a second set of error signals zi
in addition to the phase errors ei in (5). The resulting controller
is more complex, but further analysis might reveal that it has
performance advantages over the controller (14)–(16).

For this dual controller, each pair of neighboring vertices
agrees on an orientation of the edge connecting them. Thus,
each vertex i can partition its neighbor set as Ni = N+

i ∪ N−
i ,

where (j, k) ∈ N+
i when i is the head of the edge k = {i, j}

and (j, k) ∈ N−
i when i is the tail of the edge k. Furthermore,

we make an additional assumption on the frequency functions
χi of the base oscillators:

A7) the interval U and the intervals χi(U) for each i ∈ V
contain only positive real numbers.

In other words, we assume that the graph of each χi(·) lies
completely in the first quadrant, which is true for many analog
oscillators. This assumption guarantees that the functions ζ and
χi take on only positive values. Consequently, for each ordered
pair of vertices ij, we can define the ratio

ρij(γi, γj) =
ζ(γj)χi(ζ(γi))

ζ(γi)χj(ζ(γj))
> 0. (21)

Using (10), that is, using the base oscillator model (14), to-
gether with the integrator loop filter (7), (8), we can calculate
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(21) as

ρij(γi, γj) =
ζ(γj)

ζ(γi)

[
dϕj

dϕi

]−1

. (22)

We then define a new error signal zi for vertex i as

zi(γ) =
∑

(j,k)∈N+
i

dk [ζ(γj)− ρij(γi, γj)ζ(γi)]

+
∑

(j,k)∈N−
i

dk
[
ρ−1
ij (γi, γj)ζ(γj)− ζ(γi)

]
(23)

where γ = [γ1 . . . γn]
T ∈ R

n is the vector of loop filter states
and the constants dk are an additional set of positive edge
weights. For vertex i to compute this error variable zi, it must
receive the signal ζ(γj) from each of its neighbors. Also, we see
from (22) that it must calculate the derivative of each neighbor’s
phase ϕj with respect to its own phase ϕi, a calculation which
does not require knowledge of the global time variable t.

Using these new error signals zi, we define the dual perturbed
Hamiltonian system as

ϕ̇i =χi(ζ(γi)) (24)
γ̇i = ciei(ϕ) + cizi(γ). (25)

Thus, we have retained the simple integrator loop filter in (7)
and (8), but have changed its input from ei to the sum ei + zi.
This amounts to modifying Fig. 1 by putting a “γ-comparator”
in parallel with the phase comparator.

Although at first sight the physical interpretation of zi is
obscured by the implementation details, substituting (21) and
(24) into (23) gives

zi(γ) =
∑

(j,k)∈Ni

ηk(γ) [χj(ζ(γj))− χi(ζ(γi))]

=
∑

(j,k)∈Ni

ηk(γ) [ϕ̇j − ϕ̇i] (26)

with

ηk(γ) = dk
ζ(γj)

χj (ζ(γj))
where j is the tail of edge k (27)

for each k ∈ E . Therefore, (23) can be interpreted as an indirect
estimate of the frequency mismatch (26) between oscillator i
and its neighbors. As we will see in the proof of the following
theorem in Section V, this frequency’s error terms zi are the
right perturbation that need to be added to the dynamics of
the momentum variables to guarantee the dissipation of the
Hamiltonian energy.

Theorem 3: Assume A1)–A7). Then, with probability one
in the selection of edge weights in A6), the network of oscil-
lators with vertex dynamics (23)–(25) achieves almost-global
synchronization within I.

The proof of this theorem is similar to that of Theorem 2, and
we will highlight the main differences in Section V.

IV. PROOF OF THEOREM 2

For any p ∈ N, we let 0p and 1p denote the column vectors of
p zeros and p ones, respectively, and we let Ip denote the p× p
identity matrix. Any �× p matrix with integer elements will
represent either an R-linear map from R

p to R
� or a Z-linear

map from T
p to T

�, depending on context. In particular, if
M is an �× p matrix with integer elements and t → x(t) is a
curve in T

p, then t → y(t) = Mx(t) is a curve in T
� (with M

representing a Z-linear map) and, furthermore, ẏ(t) = Mẋ(t)
for all t (with M now representing an R-linear map).

We first introduce some notation for writing the overall
coupled dynamics (14)–(16) in a compact form. We define state
vectors

ϕ = [ϕ1 . . . ϕn]
T ∈ T

n (28)
γ = [γ1 . . . γn]

T ∈ R
n (29)

along with the following diagonal matrices:

A =diag{a1, . . . , am} ∈ R
m×m (30)

C =diag{c1, . . . , cn} ∈ R
n×n. (31)

For convenience, we define σi = χi ◦ ζ for each i, and we
note from assumptions A2) and A3) that each σi is C1 with
a positive derivative. We next define mappings F : Tm → R

m

and Σ : Rn → R
n by

F (θ) = [f(θ1) . . . f(θm)]T ∈ R
m (32)

Σ(y) = [σ1(y1) . . . σn(yn)]
T ∈ R

n (33)

where θ = [θ1 . . . θm]T ∈ T
m and y = [y1 . . . yn]

T ∈ R
n.

Note that Σ is a C1 diffeomorphism onto its image Σ(Rn).
Finally, we let B ∈ {−1, 0, 1}n×m be an oriented incidence
matrix for the graph G. Using the fact from A4) that f is odd,
we can write the dynamics (14)–(16) as

ϕ̇ =Σ(−BAF (BTϕ) + γ) (34)
γ̇ = −CBAF (BTϕ). (35)

For convenience, we define e : Tn → R
n by

e(ϕ) = [e1(ϕ) . . . en(ϕ)]
T = BAF (BTϕ) (36)

which enables us to write (34) and (35) as

ϕ̇ =Σ(e(ϕ) + γ) (37)
γ̇ =Ce(ϕ). (38)

Note that 1Tne ≡ 0 because 1TnB = 0 (a property of any ori-
ented incidence matrix). This property also implies e(ϕ) =
e(ϕ+ 1nθ) for any ϕ ∈ T

n and any θ ∈ T.

A. Global Lyapunov Function

In this section, we construct a Lyapunov function for the
system (37), (38), which is the Hamiltonian we described in
Section III-C for the system (10), (11).

Since f is odd from A4), the integral of the 1-form f · 〈∂, ·〉
around any smooth closed curve in T is zero. Thus, this 1-form
is the differential of a smooth function Ψ : T → R, which is
unique up to an additive constant (which we choose so that the
minimum value of Ψ on T is zero). Therefore, d/dt(Ψ ◦ x) ≡
f(x)ẋ for any curve x : R → T. We then define V : Tm →
[0,∞) as the sum

V (θ) =
∑
k∈E

akΨ(θk) (39)

where θ = [θ1 . . . θm]T ∈ T
m. It follows that:

d

dt
V (BTϕ) = FT (BTϕ)ABT ϕ̇ = −eT (ϕ)ϕ̇. (40)
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From (18), there exists a frequency � ∈
⋂

i σi(R). Therefore,
the function W : Rn → [0,∞) defined as

W (γ) =
∑
i∈V

1

ci

γi∫

σ−
i
1(�)

[σi(s)−�] ds (41)

is proper (because σi is increasing) and has a derivative given by

d

dt
W (γ) =

[
ΣT (γ)−�1T

n

]
C−1γ̇. (42)

We now obtain a Lyapunov function by adding (39) and (41):
we define U : Tn × R

n → [0,∞) by

U(ϕ, γ) = V (BTϕ) +W (γ) (43)

which is a proper function on T
n × R

n. Because 1T
ne ≡ 0, the

derivative of (43) along the trajectories of (37) and (38) is

U̇ = −eT (ϕ)Σ (e(ϕ) + γ) + ΣT (γ)e(ϕ)

= −eT (ϕ)

1∫
0

Σ′ (e(ϕ)s+ γ) ds · e(ϕ) (44)

where Σ′(·) denotes the diagonal Jacobian matrix

Σ′(γ) = diag {σ′
1(γ1), . . . , σ

′
n(γn)} . (45)

Because Σ′(·) is positive definite, we have U̇ � 0 and U̇ = 0
if and only if e(ϕ) = 0. It follows from the Krasovskii–LaSalle
invariance theorem that all trajectories of the system (37), (38)
converge to the largest invariant set M contained within the set
Φ× R

n, where Φ ⊂ T
n denotes the set

Φ = e−1 ({0}) =
{
ϕ ∈ T

n : BAF (BTϕ) = 0
}
. (46)

Note that because BT1n=0, this set Φ has the symmetry
property Φ=Φ+1nT. Also, it follows from A4) that F (0) = 0,
which means Φ contains all points of the form 1nθ for θ ∈ T.
The next step in the proof is to investigate the structure of this
set M.

B. Structure of the Set M
In this section, we show that the largest invariant set M

contained within the set Φ× R
n is M = Φ× Γ, where Φ in

(46) is the zero set of e, and Γ ⊂ R
n is the set

Γ =
{
γ ∈ R

n : BTΣ(γ) = 0
}
. (47)

We begin by exploring the structure of these sets Φ and Γ. First,
we show that Φ is the disjoint union of isolated embeddings
of the circle T. Next, we show that Γ = α(R), where α : R →
R

n is a C1 curve in R
n. Moreover, if we let q ∈ R

n denote
the unit vector in the direction of C−11n, then this curve α is
such that qTα(·) is the identity map on R. Finally, we show that
M = Φ× Γ, that is, that M is the disjoint union of isolated
embeddings of the cylinder, as illustrated in Fig. 9.

Structure ofΦ: We partitionTn using the following matrices:

R =

[
0T
n−1

In−1

]
∈ {0, 1}n×(n−1) (48)

S =

[
−1T

n−1

In−1

]
∈ {−1, 0, 1}n×(n−1). (49)

Clearly, the state ϕ satisfies the identity

ϕ = 1nϕ1 +RSTϕ (50)

which defines the direct sum T
n=1nT⊕RT

n−1. Here, the
first summand represents the first component angle and the
second one represents the remaining angles measured relative
to the first. Note that STR=In−1, that ST1n=0, and that
BT=BTRST . Also, because G is connected from A1), we
have rank(B)=n−1 and, thus, the columns of BTR are in-
dependent.

Because ϕ∈Φ if and only if RSTϕ∈Φ, it follows from (50)
that Φ = RSTΦ+ 1nT. It also follows that for any μ ∈ T

n−1,
we have μ ∈ STΦ if and only if Rμ ∈ Φ, that is, if and only
if e(Rμ) = 0. We next show that the points in the set STΦ are
isolated, which implies that Φ is the disjoint union of isolated
embeddings of the circle T.

Using the above partition of T
n, we define two sym-

metric matrix functions L : Tn−1 → R
n×n and L� : Tn−1 →

R
(n−1)×(n−1) by

L(μ) = BAF ′(BTRμ)BT and L�(μ) = RTL(μ)R (51)

for μ∈T
n−1, where F ′(·) denotes the diagonal Jacobian matrix

F ′(θ) = diag {f ′(θ1), . . . , f
′(θm)} (52)

with θ = [θ1 . . . θm]T ∈ T
m. Here, L(μ) represents a weighted

Laplacian matrix for the graph G in which the weights can have
positive, negative, or zero values. Also, because B = SRTB,
we have

L(μ)R = SL�(μ) and L(μ) = SL�(μ)ST (53)

for all μ ∈ T
n−1. Note that L(μ) is congruent to the block-

diagonal matrix diag{0, L�(μ)}. The proof of the following
theorem is in Appendix A:

Theorem 4: There is a closed set Z ⊂ R
m having a zero

Lebesgue measure such that if a = [a1 . . . am]T �∈ Z , then the
matrix L�(μ) in (51) is invertible for all μ ∈ STΦ.

Corollary 5: If a �∈ Z , then the points in STΦ are isolated.
Proof: Define the mapping P : Tn−1 → R

n−1 by setting
P (μ) = RTBAF (BTRμ) so that P−1({0}) = STΦ. The Ja-
cobian matrix for P is just L�(μ) which, by Theorem 4, is
invertible for all μ ∈ STΦ. The result follows from the inverse
function theorem. �

We do not provide a method for computing the set Z of bad
edge weight vectors, although it is clear from (46) and (51) that
this set Z depends only on the graph G (through B) and the
phase coupling function f (through F ). Instead, we rely on the
random edge weight selection in A6) to avoid this zero-measure
set: from now on, we will assume a �∈ Z , which occurs with
probability one according to A6).

Remark 6: Theorem 4 guarantees that the set Z of unde-
sired weights ak is nowhere dense. However, in practice, the
weights ak can take on only finitely many values due to limited
machine precision, and we thus can no longer guarantee that
their random selection within this finite-precision set will avoid
the set Z with probability one. Nevertheless, our simulations
indicate that we do indeed always avoid Z when choosing
finite-precision weights at random. In fact, if we further assume
that f is piecewise analytic, which is the case for all of the
examples presented in this paper, then we can show that Z is a
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subanalytic set and is therefore a locally finite union of em-
bedded submanifolds of dimension at most m− 1. This makes
it highly unlikely that we will generate random weights in Z
even when using finite precision.

Structure of Γ: To explore the structure of the set Γ in (47),
we partition R

n by defining q ∈ R
n and Q ∈ R

n×(n−1) as

q =
C−11n

‖C−11n‖
and Q = CS(STC2S)

− 1
2 . (54)

Using the fact that 1T
nS = 0, it is straightforward to show that

the n× n matrix [q Q] is orthogonal; thus, the state γ satisfies
the identity

γ = qqT γ +QQT γ (55)

which defines the direct sum R
n = qR⊕QR

n−1 via orthogo-
nal projections. We define the open interval J ⊂ R as

J =
⋂
i∈V

σi(R) (56)

which is nonempty from (18). Because s1n ∈ Σ(Rn) for all
s ∈ J , we can define the function β : J → R as

β(s) =
∑
i∈V

qiσ
−1
i (s) = qTΣ−1(s1n) (57)

where the constants qi are the components of the vector q.
Note that each term in the sum in (57) is strictly increasing in
s. Suppose {s�} is a sequence in J such that s� → sup J as
� → ∞. Then there exists i ∈ V such that s� → supσi(R) as
� → ∞, which means σ−1

i (s�) → ∞ as � → ∞. Thus, β(s�) →
∞ as � → ∞, which means supβ(J) = ∞. Similar reasoning
yields inf β(J) = −∞, and we conclude that β is invertible.
Therefore, we can define a C1 curve α : R → R

n as follows:

α(r) = Σ−1
(
β−1(r)1n

)
(58)

which satisfies qTα(r) = β(β−1(r)) = r for all r ∈ R. Be-
cause rank(B) = n− 1, it follows from (47) that γ ∈ Γ if and
only if Σ(γ) = x1n for some x ∈ J , that is, if and only if

γ = Σ−1(x1n) = Σ−1
(
β−1(β(x))1n

)
= α (β(x)) (59)

for some x ∈ J . Therefore, Γ = α(β(J)) = α(R).
Our remaining task in this section is to show that M=Φ×Γ.

Proof of M = Φ× Γ: First, we calculate the derivative of
e(ϕ) in (36) using (37)

ė = −BAF ′(BTϕ)BTΣ(e(ϕ) + γ)
= −L(STϕ)Σ (e(ϕ) + γ) . (60)

We see from (37) and (38) that ϕ̇ = Σ(γ) and γ̇ = 0 on the set
Φ× R

n, which means the second derivative ϕ̈ is zero

0 = ϕ̈ = −Σ′(γ)L(STϕ)Σ(γ)

= −Σ′(γ)SL�(STϕ)STΣ(γ) (61)

on Φ×R
n. Now Σ′(·) in (45) is positive definite, L�(STϕ)

is invertible from Theorem 4, and S in (49) has independent
columns; therefore, (61) implies STΣ(γ)=0. Because BT =
BTRST , this, in turn, implies BTΣ(γ)=0, and we conclude
that M⊂Φ×Γ. We observe that Φ×Γ is itself invariant under
the dynamics (37) and (38), and it follows that M=Φ×Γ.

To summarize the results of this section, we have found that
(ϕ, γ) ∈ M if and only if e(ϕ) = 0 and γ = α(r) for some r ∈
R, in which case r = qT γ. Furthermore, the zero set of e in (46)
is RSTΦ+ 1nT, where the points in STΦ are isolated.

C. Global Analysis: Frequency Synchronization

To study the synchronization properties of our system (37),
(38), we first observe that qT γ̇ ≡ 0, which means the state space
admits a foliation whose leaves are the invariant manifolds
T
n × Ξr, where

Ξr = qr +QR
n−1 = {γ ∈ R

n : qT γ = r} (62)

for a constant parameter r ∈ R. Note that because Γ = α(R)
and qTα(·) is the identity map, the intersection Γ ∩ Ξr is the
Singleton {α(r)}. Thus, the intersection of each invariant leaf
T
n × Ξr with M = Φ× Γ is just Φ× {α(r)}, which we have

shown to be the disjoint union of isolated embeddings of the
circle T (depicted as red circles in Fig. 9).

We now fix r ∈ R and examine the dynamics on T
n × Ξr,

noting that γ ≡ qr +QQT γ on this invariant manifold. Now
that r is fixed, we will write αr = α(r). Because αr = qr +
QQTαr, we have

γ − αr ≡ QQT (γ − αr) (63)

on T
n × Ξr. We next define the projected state variables

w1=STϕ ∈ T
n−1 and w2=QT (γ − αr) ∈ R

n−1. (64)

Taking time derivatives of these variables, and using (63) and
the fact that e(ϕ) = e(Rw1), we obtain

ẇ1 =STΣ(e(Rw1) +Qw2 + αr) (65)
ẇ2 =QTCe(Rw1). (66)

This is an autonomous system in the projected states (w1, w2),
and its equilibria are precisely all points of the form (μ�, 0) for
vectors μ� ∈ STΦ. Each equilibrium represents a frequency-
synchronized solution of (37) and (38) with ϕ̇ ≡ β−1(r)1n

and γ ≡ αr. The equilibrium with μ� = 0 represents a phase-
synchronized trajectory with δϕ ≡ 0, and all other equilibria
represent out-of-phase trajectories.

Furthermore, each trajectory of the system (65), (66) con-
verges to an equilibrium, which means each trajectory of the
system (37), (38) achieves asymptotic frequency synchroniza-
tion. Indeed, we have shown that all trajectories of the system
(37), (38) converge to the set M=Φ× Γ in forward time.
Therefore, γ converges to the Singleton set Γ ∩ Ξr={αr},
which means w2 converges to zero. In addition, ϕ converges
to the set Φ, which means w1 converges to the set STΦ.
Corollary 5 states that points in STΦ are isolated, and we
conclude that w1 converges to one of these points.

In the next section, we will perform a local linearization anal-
ysis at each equilibrium of the system (65), (66) to determine
its stability.

D. Local Analysis: Phase Synchronization

We compute the linear approximation of the dynamics (65),
(66) at an equilibrium (μ�, 0) as follows:

ẇ1 ≈ −STΣ′(αr)L(μ
�)R(w1 − μ�) + STΣ′(αr)Qw2 (67)

ẇ2 ≈ −QTCL(μ�)R(w1 − μ�) (68)
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or using (53)

ẇ1 ≈ −STΣ′(αr)SL
�(μ�)(w1 − μ�) + STΣ′(αr)Qw2 (69)

ẇ2 ≈ −QTCSL�(μ�)(w1 − μ�). (70)

If we define the (n− 1)× (n− 1) matrices

X =STΣ′(αr)S > 0 (71)

Y =QTCS = (STC2S)
1
2 > 0 (72)

Z =STΣ′(αr)Q (73)

then we can write this approximation more compactly as

ẇ1 ≈ −XL�(μ�)(w1 − μ�) + Zw2 (74)
ẇ2 ≈ −Y L�(μ�)(w1 − μ�). (75)

Note from (54) and (72) that Q = CSY −1 so that S =
C−1QY , which means Z in (73) satisfies

Y −1Z = QTC−1Σ′(αr)Q > 0. (76)

Thus, the linearization (74), (75) satisfies the assumptions in the
following theorem, whose proof is in [38, Theor. 7].

Theorem 7: Let Λ ∈ R
2p×2p be the block matrix

Λ =

[
−XL Z
−Y L 0

]
(77)

where L,X, Y, Z ∈ R
p×p satisfy:

1) L is symmetric;
2) X +XT > 0;
3) Y is symmetric and invertible;
4) Y −1Z is symmetric with Y −1Z � 0.

If L has a negative eigenvalue, then Λ has an eigenvalue with a
positive real part. If instead Z is invertible and L > 0, then Λ is
Hurwitz.

We can complete the local linearization analysis by applying
Theorem 7 together with the following theorem.

Theorem 8: The Laplacian L(μ) has n− 1 positive eigen-
values for μ = 0, and it has at least one negative eigenvalue for
any nonzero μ ∈ STΦ.

The proof of Theorem 8, which follows from [29, Lemmas 1
and 2], relies on the properties of the phase coupling function
f defined in Assumption A5) and the graph G. The basic
intuition is that for μ� �= 0, choosing b small enough guarantees
a negative eigenvalue in L(μ�) independently of the choice
of μ� ∈ STΦ, and for μ� = 0, L(μ�) is a weighted Laplacian
with positive weights which has n− 1 positive eigenvalues
whenever G is connected.

Let us now consider an equilibrium (μ�, 0) of the non-
linear system (65), (66). Recall that L(μ�) is congruent to
diag{0, L�(μ�)}; thus, Theorem 8, together with Sylvester’s
law of inertia, imply that L�(μ�) > 0 when μ� = 0 and that
L�(μ�) has a negative eigenvalue for all nonzero μ� ∈ STΦ.
Therefore, if μ� = 0, which represents an in-phase steady-state
solution, then it follows from Theorem 7 that this equilibrium
is exponentially stable. Likewise, if μ� �= 0, which represents
an out-of-phase steady-state solution, then this equilibrium is
exponentially unstable. Because all out-of-phase equilibria are
both isolated and exponentially unstable, we conclude (say
from [39, Prop. 1], for example) that the set Sr ⊂ T

n × Ξr of
initial states from which trajectories converge to out-of-phase
steady-state solutions has zero measure in T

n × Ξr (regarded

here as a (2n− 1)-dimensional manifold). It then follows from
Tonelli’s theorem that the set S =

⋃
r∈R Sr has zero measure in

T
n × R

n. In other words, the system achieves asymptotic phase
synchronization from almost every initial state.

V. PROOF OF THEOREM 3

We define the diagonal matrix function

H(γ) = diag {η1(γ), . . . , ηm(γ)} ∈ R
m×m (78)

so that we can write the dynamics (24), (25) as

ϕ̇ =Σ(γ) (79)
γ̇ =Ce(ϕ)− CBH(γ)BTΣ(γ). (80)

Because 1T
ne ≡ 0 = 1T

nB, the derivative of (43) along trajecto-
ries of (79) and (80) is

U̇ = −ΣT (γ)BH(γ)BTΣ(γ). (81)

Now H(·) is positive definite; hence, U̇ � 0 and U̇ = 0 if and
only if BTΣ(γ) = 0. It follows from the Krasovskii-LaSalle
invariance theorem that all trajectories of the system (79), (80)
converge to the largest invariant set M contained within the set
T
n × Γ, where Γ ⊂ R

n is from (47). We next show that again
M = Φ× Γ, just as in the proof of Theorem 2.

It follows from (80) that this systems also satisfies qT γ̇ ≡
0 and, thus, admits a foliation whose leaves are the invariant
manifolds T

n × Ξr. Because BTΣ(γ) is the constant zero on
the set Γ, its derivative is zero on M

0 ≡BTΣ′(γ)γ̇ ≡ BTΣ′(γ)QQT γ̇

≡BTRSTΣ′(γ)CS(STC2S)
− 1

2QT γ̇. (82)

Because the columns of BTR and S are independent and be-
cause the diagonal matrix Σ′(γ)C is positive definite, it follows
that QT γ̇ ≡ 0 and, thus, γ̇ ≡ 0 on M. It then follows from (80)
that e(ϕ) ≡ 0 on M, and we conclude that M ⊂ Φ× Γ. We
observe that Φ× Γ is itself invariant under the dynamics (79),
(80), and it follows that M = Φ× Γ.

We now fix r ∈ R and examine the dynamics on the invariant
manifold T

n × Ξr. Using (63), we see that the derivatives of the
projected state variables (64) along the trajectories of (79) and
(80) are

ẇ1 =STΣ(Qw2 + αr) (83)
ẇ2 =QTCe(Rw1)−QTCBH(Qw2 + αr)

× BTΣ(Qw2 + αr). (84)

As in the proof of Theorem 2, the equilibria of this system are
precisely all points of the form (μ�, 0) for vectors μ� ∈ STΦ.
The equilibrium with μ� = 0 represents a fully synchronized
trajectory with δϕ ≡ 0, and all other equilibria represent out-
of-phase, frequency-synchronized trajectories. Because M =
Φ× Γ, because Γ ∩ Ξr is a Singleton, and because the points
of STΦ are isolated, we see that each trajectory of the system
(83), (84) converges to an equilibrium.

We still have to perform a local linearization analysis at
each equilibrium (μ�, 0) of the system (83), (84). We omit the
details, but we can do this using Theorem 8 together with a dual
version of Theorem 7 based on [40, Theor. 5, Corollary 2] (c.f.
[38, Theor. 10]). The rest of the proof follows that of Theorem 2.
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VI. CONCLUDING REMARKS

We have presented two distributed controllers for the phase
and frequency synchronization of heterogeneous nonlinear
oscillators, and we have shown that each guarantees almost-
global convergence on arbitrary connected graphs. Our solu-
tions can be readily implemented using analog oscillators and
phase comparators, and our analysis holds under very general
assumptions on the system. In particular, unlike most existing
work, we neither require the set of admissible frequencies to be
unbounded, nor assume any special network topology.

APPENDIX

PROOF OF THEOREM 4

We let T denote the finite collection of all m×m diagonal
matrices Δ = diag{δ1, . . . , δm} such that for all k ∈ E , either
δk = f ′(0) or δk = f ′(π). For each such matrix Δ ∈ T , we
define the closed set

PΔ =
{
a ∈ R

m : det
(
RTBdiag(a)ΔBTR

)
= 0

}
(85)

where diag(a) = diag{a1, . . . , am} denotes the diagonal ma-
trix whose diagonal entries are the m elements of a. Now Δ
is invertible by assumption A5), and furthermore, the columns
of BTR are independent; it follows that PΔ �= R

m (take
diag(a) = Δ−1), which means PΔ, is a closed algebraic set
having zero measure. Thus

P =
⋃
Δ∈T

PΔ (86)

is also a closed algebraic set having zero measure. Therefore,
the set O = R

m \ P is a nonempty open semialgebraic set.
Next, we define the mapping H : Tn−1 ×O → R

n−1 by

H(μ, a) = RTBdiag(a)F (BTRμ). (87)

The Jacobian matrix of H is

DH(μ, a) =

[
∂H
∂μ

(μ, a)
∂H
∂a

(μ, a)

]
(88)

where

∂H
∂μ

(μ, a) =RTBdiag(a)F ′(BTRμ)BTR (89)

∂H
∂a

(μ, a) =RTBdiag
(
F (BTRμ)

)
. (90)

If we define the matrix

J (μ, a) =

⎡
⎣ I

diag(a)diag
(
F (BTRμ)

)+
·
[
F ′(0)− F ′(BTRμ)

]
BTR

⎤
⎦ (91)

where (·)+ denotes the Moore—Penrose pseudoinverse, then

DH(μ, a) · J (μ, a) = RTBdiag(a)Δ(μ)BTR (92)

where Δ(μ) is the diagonal matrix

Δ(μ) = F ′(BTRμ) + diag
(
F (BTRμ)

)
diag

(
F (BTRμ)

)+
·
[
F ′(0)− F ′(BTRμ)

]
. (93)

It follows from assumptions A4) and A5) that f(θ) = 0 if and
only if θ ∈ {0, π}, so for any μ ∈ T

n−1, the matrix Δ(μ) in

(93) belongs to T . It follows from the definition of O that the
matrix in (92) is invertible, and we conclude that DH(μ, a)
has rank n− 1 for all (μ, a) ∈ T

n−1 ×O. Thus, H � {0},3

and it follows from the parametric transversality theorem4 [41,
Theor. 6.35] that there exists a set Y ⊂ O having zero measure
such that if a ∈ O \ Y , then Ha � {0}, where Ha denotes
the mapping μ → H(μ, a). Choose Z = P ∪ Y; we have thus
shown that for all a ∈ R

m \ Z , if μ is such that H(μ, a) = 0,
then the matrix in (89) is invertible. Note that we can also write
Z as the projection of a closed subset of Tn−1 × R

m onto R
m

and, as such, it is closed because T
n−1 is compact.

Suppose a ∈ R
m is the edge weight vector so that A =

diag(a), suppose a ∈ R
m \ Z , and suppose μ ∈ STΦ. Then,

Rμ ∈ Φ which means H(μ, a) = 0, and it follows that L�(μ)
in (51), which is the same as the matrix in (89), is invertible.
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