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A Control-Theoretic Approach to In-Network
Congestion Management

Ning Wu, Yingjie Bi, Nithin Michael, Ao Tang , John C. Doyle, and Nikolai Matni

Abstract— WANs are often over-provisioned to accommodate
worst-case operating conditions, with many links typically run-
ning at only around 30% capacity. In this paper, we show
that in-network congestion management can play an impor-
tant role in increasing network utilization. To mitigate the
effects of in-network congestion caused by rapid variations in
traffic demand, we propose using high-frequency traffic con-
trol (HFTraC) algorithms that exchange real-time flow rate
and buffer occupancy information between routers to dynam-
ically coordinate their link-service rates. We show that the
design of such dynamic link-service rate policies can be cast
as a distributed optimal control problem that allows us to
systematically explore an enlarged design space of in-network
congestion management algorithms. This also provides a means
of quantitatively comparing different controller architectures:
we show, perhaps surprisingly, that centralized control is not
always better. We implement and evaluate HFTraC in the face
of rapidly varying UDP and TCP flows and in combination with
AQM algorithms. Using a custom experimental testbed, a Mininet
emulator, and a production WAN, we show that HFTraC leads to
up to 66% decreases in packet loss rates at high link utilizations
as compared to FIFO policies.

Index Terms— Network congestion management, distributed
control, optimal control.

I. INTRODUCTION

W IDE area network operators must keep packet loss
levels very low [1] while network traffic cycles through

periods of both high and low demand [2]. In order to meet
these and other service level agreements (SLAs) (e.g., restric-
tions on latency, jitter, etc.) in the face of variable and unpre-
dictable traffic demand, WANs are often over-provisioned to
accommodate both normal and worst-case conditions. Natu-
rally, this conservative approach results in low average uti-
lization, with many network links typically running at around
30% capacity. As network operators strive to lower cost and
stay competitive, more responsive approaches that can reduce
this over-provisioning become increasingly appealing.
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While successfully addressing these issues will ultimately
require rethinking how control is done across the protocol
stack, this paper focusses on the challenge of controlling,
avoiding and managing congestion in the network layer.
As such, we assume that a Traffic Engineering (TE) prob-
lem has already been solved based on nominal estimates of
traffic demands, leading to a fixed routing topology. When
traffic demands are inelastic, fluctuations in demand around
the nominal values used to solve the TE problem lead to
in-network congestion. For elastic demands, existing solu-
tions use combinations of congestion control and congestion
avoidance protocols wherein end-hosts use feedback from the
network – provided in the form of packet drops (e.g., [3], [4]),
ECNs (e.g., [5]–[7]), RTTs (e.g., [8]), and queueing delay
estimates (e.g., [9]) – to adjust their transmission rates so as
to respect the capacity constraints of the network. All of these
algorithms are reactive, adjusting their transmission rate based
on some form of congestion signal from within the network.
Therefore, in both the inelastic and elastic setting, in-network
congestion is unavoidable.

With the introduction of SDN, solutions [1], [2], [10] have
emerged that successfully increase utilization while avoiding
congestion by carefully combining rapid and clever TE updates
with end-host pacing. The results are impressive, but at this
time, their applicability is limited to tightly controlled envi-
ronments, such as DCNs or enterprise inter-datacenter WANs.
Outside of these settings in-network congestion is simply
unavoidable when aiming to increase network utilization.
Despite the wide body of literature aimed at controlling and
avoiding congestion, little attention has been paid to how to
mitigate the effects of congestion that has already entered
the network on performance. The challenge is that congestion
management naturally benefits from network-scale coordi-
nation, but traffic demand fluctuations are a fast timescale
phenomena.

It is therefore worth asking: can network-scale coordi-
nation and control be effectively applied to manage RTT
timescale traffic demand fluctuations? This paper provides
an affirmative answer. By allowing routers to exchange flow
rate and buffer occupancy information in real-time, so that
they can dynamically coordinate their link-service rates to
suitably “spread” congestion throughout the network, we show
that the resulting control policies explicitly use buffers as
resources to manage and mitigate the effects of in-network
congestion. Our approach is partially inspired by the success
of static in-network pacing, which has been shown to provide
benefits in the “tiny-buffer” setting [11], and of feedback rule
based end-host pacing in the DCNs [12] and optical packet
switched networks [13], [14]. Our work expands upon these
ideas by allowing switches to simultaneously react quickly to
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local congestion events and to coordinate with each other to
optimize system wide utilization and packet loss rates.

This combination of dynamic control and network-scale
coordination results in a family of algorithms that we call
High Frequency Traffic Control (HFTraC), and is what allows
HFTraC to achieve higher network utilization and lower
packet loss rates than existing static, end-host only or link-
by-link rate-limiting policies. Further, that HFTraC works
by only rate-limiting the routers’ interfaces and does not
change queuing management or routing strategies makes it
compatible with and complementary to standard congestion
control, AQM and TE approaches. We also demonstrate that
at the rapid timescales that we consider, the responsiveness of
the link-rate controllers plays an important role in performance
– to that end, we provide a systematic study of HFTraC
implementation architectures, varying from completely cen-
tralized to completely decentralized. We show that the degree
of decentralization of an architecture loosely determines its
latency, describe the associated latency/performance tradeoff
and use it to quantitatively compare different architectures,
thus providing a fresh perspective on the often philosophical
debate pertaining to network architectures.

Related Work: As far as we are aware, we present the first
use of distributed optimal control in the field of networking,
and provides the first example of network-scale control being
used to manage the inherently fast timescale phenomena of
congestion. Below we summarize other related work.

Optimal Control: We draw upon classical results in optimal
control [15] – these in particular are applicable to synthe-
sizing GOD and centralized control laws. When designing
coordinated architectures, we build on recent results from
the distributed optimal control literature, see [16]–[24] and
references therein. The use of optimal control in networking is
limited, with a notable exception being [25], where the authors
use Model Predictive Control to maximize user Quality of
Experience in the context of video streaming. They similarly
show that a control-theoretic approach expands the design
space of dynamic adaptive video streaming algorithms, leading
to significant improvements over the state of the art.

Traffic Engineering: Traffic engineering is of great impor-
tance for network management and optimization and has
attracted much attention over the years, see [26]–[34] for
a non-exhaustive example list. In particular, the commu-
nity has recognized the importance of implementing respon-
sive (dynamic) traffic engineering [35]–[41]. HFTraC works
with fixed routing topologies, and aims to mitigate the effects
of congestion caused by fast timescale traffic fluctuations
around the average demand values typically used in TE
algorithms.

TCP/AQM: Congestion control and avoidance algorithms
built around TCP, AQM and ECN have a rich history in the
networking community. The corresponding control analysis,
see [5], [42]–[56] for an incomplete list, use models that also
explicitly include physical propagation delay. As demonstrated
in §V-D, HFTraC should be viewed as a congestion manage-
ment algorithm that is and complementary to the congestion
control and avoidance provided by TCP/AQM.

Backpressure Techniques: The backpressure algorithm (BP)
and its many variants [57]–[62] have similar goals to those
of HFTraC, in that both BP and HFTraC attempt to dis-
tribute packets that have already entered the network so as

Fig. 1. (a) Two tandem switches. (b) Two SD pairs share a common link.

to minimize some measure of overall congestion. Both algo-
rithms attempt to meet their goals by controlling queue service
rates – however, whereas BP selects each packet’s next hop
based on one hop queue size information, HFTraC assumes
a fixed routing strategy but allows for network-wide coordi-
nation. This is an important difference, because in contrast
to HFTraC, BP algorithms are not compatible with existing
TE solutions – further because BP may lead to variable end-
to-end delays for packets within the same flow, out-of-order
packet arrivals can be an issue when used in conjunction
with TCP/AQM schemes. Finally, HFTraC algorithms allow
for a principled exploration of tradeoffs between average
queue-length and packet drop %.

SDN: We are partially inspired by the recent work
in SDN based traffic management. Specific examples
include [1], which achieves high utilization by rate limiting
smoothing; [63], in which a hierarchical bandwidth allocation
infrastructure is proposed; and [2], which addresses issues
related to transient congestion. We are also motivated by the
richness of the newly expanded network architecture design
space enabled by the introduction of SDN, which range from
completely centralized [10], to completely decentralized [64].

Key Findings: We show in §V that: HFTraC can simultane-
ously achieve up to 80% decreases in packet loss rate relative
to FIFO and up to 50% decreases in average queue length
relative to static smoothing (Fig. 6a); HFTraC improves packet
loss % and network utilization when used with TCP/AQM
(Figs. 13-16); and the coordinated implementation of HFTraC
yields up to a 30% decrease in packet loss rate relative to the
centralized implementation (Figs. 6a-7).

We further make the following contributions1: (i) we show
that the dynamic service rate control task can be cast as a
distributed optimal control problem (§III); (ii) we implement
practical HFTraC controllers in the context of WANs using
OpenFlow enabled switches (§IV); and (iii) we provide a
systematic evaluation of HFTraC via a hardware testbed,
Mininet emulation, and a production WAN.

II. USING BUFFERS AS RESOURCES

Through the use of a series of toy examples built around
the systems shown in Figs. 1a & 1b, we show how dynamic
pacing policies based on buffer occupancy and link-rates can
increase network utilization and robustness to traffic demand
variability.2 We start with familiar static pacing policies, and
gradually increase the level of dynamic coordination between
switches. We note that in the interest of clarity, we restrict

1An earlier extended abstract [65] suggested HFTraC as an in-network con-
gestion management scheme, but provided only proof-of-concept experimental
support of its benefits.

2See §III and §V for a discussion of the i.i.d. normally distributed traffic
variations used in these examples.
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Fig. 2. Static end-host pacing reduces packet loss %.

Fig. 3. Dynamic buffer-based pacing outperforms FIFO in terms of packet
loss and utilization.

ourselves to end-host only pacing, but that the results of §V
all employ dynamic end-host and in-network pacing.

Static End-Host Pacing: A common approach to traffic
pacing at end-hosts is to set a static rate limit – as such we
use the performance achieved by such static approaches as a
baseline upon which we seek to improve. The system shown
in Fig. 1a has link capacities of C1 = 23 Mbps, C2 = 18 Mbps,
both buffer capacities are 200 Kbits, and traffic demands arriv-
ing in S1 are i.i.d. normally distributed with mean 16 Mbps
and standard deviation 2.5 Mbps. For this system, we set a
static rate limit on the upstream link: the upstream buffer
therefore absorbs and dampens the variations in link rates
seen downstream. We assume that S2 is implementing a FIFO
strategy, and is thus trying to process packets as quickly as
possible by setting the service rate for link L2 to be equal to
its capacity C2, while S1 will select a constant service rate for
L1 from within [C2, C1]. Fig. 2 shows that smoothing traffic
to 19 Mbps (lower than C1) leads to minimal packet loss at
the expense of slightly longer average queue lengths.

Buffer Length Coordination: We next explore the benefits of
dynamic smoothing policies that vary as a function of down-
stream buffer occupancy. Such a coordinated approach spreads
congestion in space and time by making upstream buffers
slow their line-service rates when downstream buffers are
congested, and conversely, if downstream buffers are (nearly)
empty, then upstream buffers are more aggressive in alleviating
local congestion. Using the same example, we show how a
dynamic rate control policy implemented at S1 can lead to
superior performance. Figs. 3a-b show how such a buffer
occupancy based smoothing policy (computed as described

Fig. 4. Dynamic buffer and rate-based control improve packet loss % and
average throughput.

in §III) outperforms the optimal static policy described in the
previous example in terms of packet loss % at the expense of
slightly longer queue lengths – Figs. 3c-d show similar results
for the maximum utilization at which total loss rate is 0.1%.
As we demonstrate empirically in §V and prove in §VI, our
approach allows for a systematic exploration of this tradeoff
between packet loss % and average queue length.

Buffer Length and Link Rate Coordination: To illustrate that
further benefits can be achieved by coordinating based on both
buffer length and link rates, consider the system in Fig. 1b in
which two source-destination (SD) pairs must share link L3.
The links all have capacity 36 Mbps, all buffer capacities are
800 Kbits, and the traffic demands arriving at both S1 and
S2 are i.i.d. normally distributed with mean 17.5 Mbps and
standard deviation 4 Mbps. In this case the resulting control
policies at switches S1 and S2 (again obtained using the
optimal control based methods described in §III) depend on
the buffer lengths at S1 and S2 and the link service rates
at L1 and L2. Fig. 4 shows that a dynamic control policy
dramatically outperforms a static FIFO policy in terms of
packet loss % and average throughput (as measured by the
average transmission rate on link L3) at the expense of slightly
larger average queue size. This is another simple illustration
of how our approach allows for the systematic exploration of
such tradeoffs.

III. OPTIMAL RATE CONTROLLERS

In the previous simple examples, the correct way for
buffers to coordinate is somewhat intuitive, but it can be
difficult to identify such opportunities in large-scale networks.
We propose using optimal control to synthesize dynamic
pacing policies, as these methods automatically recognize and
exploit such opportunities for coordination. We later show
experimentally that by suitably varying certain parameters
at the design stage, this approach allows network operators
to explore a larger design space of congestion management
algorithms and optimally tradeoff between packet % loss (or
maximum utilization) and average queue length.

There are four components that need to be specified to
formulate the optimal rate control problem: (i) a dynamic
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model of traffic demands entering the network; (ii) a dynamic
model describing the evolution of these fluctuations through
the network; (iii) an objective function that can be used to
explore performance tradeoffs; and (iv) the information shar-
ing constraints, as defined by the implementation architecture,
imposed on the optimal pacing control feedback policy.

We adopt a fluid network model, and begin by introducing
a static model of the network operating under nominal con-
ditions, as is commonly used to solve TE problems. We then
introduce stochastic fluctuations in traffic demand, leading to
a dynamic model well suited to analyzing and controlling
undesirable transient behavior in network state. From this
model, we define the optimization objective as the weighted
sum of flow rate deviations (from the nominal rates specified
by the solution to a TE problem) and buffer occupancy, and
argue that it is a natural means of exploring tradeoffs between
packet loss % and average queue size.

Model and Notation: We consider a network consisting of
a set of switches V and a set of directed links L. We let
Lin

v and Lout
v denote the set of incoming and outgoing links

respectively for a switch v ∈ V . The network is shared by a
set I of source-destination (SD) pairs and the traffic demand
is denoted as di for SD pair i ∈ I . Let xi

l be the arrival
rate into the egress buffer associated with link l and let f i

l
be the transmission rate on link l due to SD pair i. The
total arrival rate and transmission rate on link l are defined
as xl =

∑
i∈I xi

l and fl =
∑

i∈I f i
l respectively. Here we

assume a switch-based routing scheme, in which each switch
v splits flows along outgoing links according to fixed split
ratios αi

l,v (as specified by the solution to a TE problem)
satisfying

∑
l∈Lout

v
αi

l,v = 1 for each SD pair i that utilizes
link l. Analogous formulations exist for other forwarding
schemes.

From Static to Dynamic Traffic Demands: An idealized
static flow model, as is typically used when solving a TE
problem, assumes that the SD traffic demands are static. For
each SD pair i, we denote this nominal static traffic demand
by d∗i , and assume that a TE solution provides a corresponding
set of split ratios αi

l,v such that (i) the traffic demands d∗i are
met for each SD pair i, and (ii) the arrival rate x∗

l := xl(t) =∑
i∈I(x

i
l)

∗ on each link l satisfies 0 ≤ x∗
l ≤ Cl, where Cl

denotes the capacity of link l, and (xi
l)

∗ = αi
l,v

∑
k∈Lin

v
(f i

k)∗.
Because the arrival rate does not exceed the link capacity at
any time, we have that f∗

l = x∗
l . Finally, we define

βi
l :=

(f i
l )

∗
∑

k∈I(f
k
l )∗

(1)

to be the fraction of packets due to SD pair i on link l.
In contrast to this idealized model, it is known [66] that

Internet traffic demands vary across several timescales ranging
from months to years (capturing constantly growing long
term trends in demand) to seconds to milliseconds (capturing
random fluctuations in traffic demand). Our focus is on those
fluctuations that occur on timescales large enough to lead to
packet losses, but on timescales short enough that traditional
TE and/or congestion control algorithms cannot prevent con-
gestion from entering the network — in particular, we address
fluctuations that occur on the scale of 10 to 100 milliseconds.3

3For more about traffic characteristics, see [67]–[70].

We therefore relax the assumption of static traffic
demands d∗i and model the now time-varying demand di(t)
of SD pair i at time t as

di(t) = d∗i + Δdi(t), (2)

where each demand fluctuation Δdi(t) is an independent and
identically distributed (i.i.d.) Gaussian random variable with
zero mean and standard deviation σi.4

To capture the effect of these fluctuations in the network,
we now write the arrival rates xi

l(t) and transmission rates
f i

l (t) as a linear superposition of their nominal values (xi
l)

∗
and (f i

l )
∗ and perturbations Δxi

l(t) and Δf i
l (t) induced by

the fluctuations in traffic demand, i.e.,

xi
l(t) = (xi

l)
∗ + Δxi

l(t),
f i

l (t) = (f i
l )

∗ + Δf i
l (t) (3)

We next derive a dynamic model that tracks the propagation
of these fluctuations through the network.

A Dynamic View of the Network: A consequence of this
dynamic model is that it is now possible for the arrival rate
xl(t) at time t into link l to exceed the transmission rate fl(t).
Assuming that each link l is equipped with an egress buffer
of capacity bmax

l , packet drops occur when the buffer length
reaches the buffer limit. It follows that the evolution of buffer
occupancy at time t at link l, denoted by bl(t), is given by5

ḃl(t) =

{
Δxl(t)−Δfl(t) if 0 ≤ bl(t) < bmax

l ,

min(Δxl(t)−Δfl(t), 0) if bl(t) = bmax
l .

(4)

The following properties then hold:

0 ≤ fl(t) =
∑

i∈I

f i
l (t) ≤ Cl, fl(t) ≤ xl(t) if bl(t) = 0,

Δxl(t) =
∑

i∈I

Δxi
l(t),

Δxi
l(t) =

{
Δdi(t) if edge link,

αi
l,v

∑

k∈Lin
v

Δf i
k(t− δk) otherwise.

for δk the propagation delay on link k ∈ Lin
v of switch v.

For the purposes of control, at each link l we introduce
a controllable buffer egress rate variable Δul, linearize the
above model around the nominal rates (xi

l)
∗, (f i

l )
∗ and empty

buffer states b∗l = 0, and sample it at interval τ to obtain the
following discrete time model:

bl(n + 1) = bl(n) + τ(Δxl(n)−Δul(n)), (5)

Δfl(n + 1) = Δul(n), Δxl(n) =
∑

i∈I

Δxi
l(n), (6)

Δxi
l(n) =

{
Δdi(n) if edge link,

αi
l,v

∑

k∈Lin
v

βi
kΔfk(n− nk) otherwise.

(7)

4Our choice of an i.i.d. Gaussian model for traffic demand fluctuations is
supported in [66], and as we show in §V is further supported by CAIDA
traces [71]. Modeling traffic demand fluctuations is in itself a very challenging
problem, and we do not claim our model to be exact, but rather a reasonable
first order approximation. To that end, we discuss and evaluate the robustness
of HFTraC algorithms to errors in the statistical model of the traffic demand
fluctuation process in §V.

5Here we use that (xi
l)

∗ = (f i
l )∗ and hence xl − fl = Δxl − Δfl.
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Here n is the discrete time index, satisfying τn = t and
τnk = δk for some integers nk. In Eq. (7) we make
the simplifying assumption that βi

l in Eq. (1) also spec-
ifies the ratio of fluctuations due to each SD pair, i.e.
Δf i

l (n) = Δfl(n)βi
l .

Objective Function: We propose computing dynamic pacing
policies that minimize the following objective function:

lim
n→∞

∑

l

[E[Δfl(n)]2 + λlE[bl(n)]2] (8)

which is the the weighted sum (specified by the weights
λl ≥ 0) of the steady state variance in traffic rate fluctuations
and buffer occupancy. Although the connection between this
objective function and packet loss rate, buffer occupancy and
utilization is not immediate, we show in § VI a natural
connection between this objective and standard buffer egress
policies. In particular, we show that taking the weights λl to
zero or infinity leads to, respectively, static smoothing or FIFO
policies. As we further demonstrate empirically in the §V (see
Fig. 6a), assuming sufficiently large buffers, static smoothing
policies minimize packet loss % at the expense of longer
average queue lengths; in contrast, FIFO policies minimize
average queue size at the expense of higher packet loss %.
Thus by sweeping the weighting parameters λl across a range
of values, network operators can trace out a tradeoff curve
in the now expanded packet loss % vs. average queue size
design space and select an appropriate pacing policy given
the constraints of their SLAs.

Information Sharing Constraints: When computing link-rate
control policies, it is important to explicitly model the delays
associated with the exchange and collection of network state
between routers. To take this latency into account during the
design process, for a controller located at link l we define its
available information set Il(n) at time n to be

Il(n) := {(bk(n− nlk))k∈L, (Δfk(n− nlk))k∈L}, (9)

where nlk is the communication delay associated with
exchanging information from link k to link l. This extra level
of detail allows us to quantify the effects of architectural
decisions at the design stage – in particular, we focus on four
different implementation architectures6:

1. GOD: The Globally Optimal Delay free (GOD) archi-
tecture assumes that a logically and physically centralized
controller can instantaneously access global network state
information as well as compute and execute control laws Δul

for each buffer, i.e., it assumes that the communication delays
defining the information constraints (9) satisfy nlk = 0 for all
l, k ∈ L. This architecture is not implementable in practice,
but the performance that it achieves is the best possible by
a feedback policy [15], and hence represents a benchmark
against which all other architectures should be compared.

2. Centralized: A physically centralized controller makes
control decisions. For simplicity, we assume that these deci-
sions are based on synchronized global information. The
latency of the control loop is determined by nmax =
maxl∈L nlk, the longest round-trip-time from any router to
the centralized controller: it takes 1

2nmax for the controller to

6See Fig. 5 for a specific instantiation of these architectures in our
experimental testbed.

collect the link-rate and buffer state of the network and another
1
2nmax for all routers to receive the control decisions.

3. Coordinated: The coordinated controller is logically and
physically distributed, with a local controller located at each
router. In this case, nlk is specified by the delay of collecting
network state from the router associated with link k by the
router associated with link l. Local actions are then taken
immediately by local controllers, which compute their line-rate
using both timely local and delayed shared information.

4. Myopic: This is a completely decentralized architecture,
in which local controllers compute their control laws Δul

using local information only, i.e., nll = 0, nlk =∞.
Putting It All Together: Given the dynamic model of traffic

fluctuations (2) and network dynamics (5) – (7), the speci-
fied objective function (8) and the information sharing con-
straints (9), we pose the optimal pacing control problem as

min
Δul(n)

lim
n→∞

∑

l

[E[Δfl(n)]2 + λlE[bl(n)]2]

s.t. network dynamics (5) – (7),

Δul(n) = γl(Il(n)) for all l ∈ L, (10)

which is a distributed optimal control problem. The final
constraint ensures that the service rates are constrained to be
a function γl of the available information Il(n), as specified
by the implementation architecture. We will discuss about
solving the problem with respect to the information exchange
constraints imposed by different architectures in §IV-A.

Why Distributed Optimal Control? Posing the dynamic
pacing synthesis task as the distributed optimal control prob-
lem (10) has many advantages. It defines a broader design
space than the existing FIFO and pacing solutions, and pro-
vides a systematic way of exploring it. Posing this problem
as a distributed control problem lets us quantify the effects
on performance of different implementation architectures.
Further, distributed optimal control naturally handles both
the stochastic nature of uncertain traffic demands, and the
information sharing delays inherent to spatially distributed
WANs. Finally, our approach is feedback based. The benefits
of feedback in providing robustness and performance guaran-
tees in the face of environmental and modeling uncertainty are
well-studied and substantial [15]. As we show in §V, in the
context of the problem at hand, using feedback provides us
with robustness to errors in estimated nominal traffic demands,
traffic fluctuation models, and delay jitter, as well as to the
other simplifying assumptions that we made in generating
our model, as is made clear by the success of our approach
on a production WAN. Feedback therefore allows us to use
simplified models for analysis and design and be confident that
the resulting guarantees carry through to real-world systems.

IV. DESIGN AND IMPLEMENTATION

A. Design

The distributed optimal control problem (10) can be solved
exactly when the information exchange constraints imposed on
the controller are given by the GOD, centralized or coordinated
implementation architectures using the methods described
in [15] and [24]. For the myopic architecture, the resulting
problem is in fact NP-hard, and we therefore resort to nonlin-
ear optimization and brute-force search to obtain a reasonable
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Fig. 5. Architectures implemented on experimental testbed. Lines connecting OVSs are tunnels for normal traffic, connecting OVSs and controllers
are communication tunnels between data and control planes, and connecting controllers are tunnels for control message exchange. (a) Centralized/GOD.
(b) Coordinated. (c) Myopic distributed.

candidate controller to be used in comparison. We highlight
that in all cases, pacing control actions can be computed in the
controller by multiplying a precomputed gain matrix K (for
centralized and GOD architectures) or gain matrices Kl (for
coordinated and myopic architectures) with a finite history of
link-rate and buffer occupancy states. The details of pacing
control actions computation can be found in Appendix -B.

Algorithm 1 Coordinated HFTraC Pseudocode
Input:
(xi

l)
∗, (f i

l )
∗: TE specified nominal flow rates;

λl: weight parameters defined in problem (10);
τ : time interval for measuring state variables;
Routing topology and resulting dynamics (5)-(7);
Offline initialization (at each TE upate):
Compute gain matrices Kl by soving problem (10) using
methods from [15] and [24]; this offline step requires
only knowledge of dynamics (5)-(7);
Online execution:
n← 0;
while TE solutions remain valid do

foreach link l ∈ L do
Measure Δfl(n) and bl(n);
Update Il(n) using new collected information
{bk(n− nlk), Δfk(n− nlk)}k∈L;
Compute Δul(n) using Kl and Il(n); see equation
(14) in Appendix B for how Δul(n) is computed
in our implementations.
Send Δfl(n), bl(n) and Il(n) to neighbors;
Transmit at rate f∗

l + Δul(n);
Wait τ sec;

end
n← n + 1;

end

B. Implementation

Our practical implementation of HFTraC consists of four
components: (i) the measurement of link rates and buffer
lengths; (ii) applying control actions via rate limiting; (iii) the
exchange of state updates and control decisions, as specified
by the implementation architecture; and (iv) the computation
of control actions within the controller(s). We now present an

instantiation of the different HFTraC architectures on our three
node experimental testbed.

Experimental Testbed Implementation: Fig. 5 shows the cen-
tralized, coordinated and myopic distributed network architec-
tures as implemented on our experimental testbed. Each node
runs Open vSwitch (OVS), with physical links connecting the
machines. We implement the different HFTraC architectures
as a modules in POX.

Communication: We enable communication between the
data and control planes by either sharing the same tunnels
with normal traffic, or by implementing dedicated control
tunnels. In the centralized architecture (cf. Fig. 5a), a single
controller runs on one of the machines and remotely connects
to the switches in the other machines. Although the GOD
architecture is not implementable in practice, it can be approx-
imated if the control tunnel propagation delays are negligible
compared to the delays of the data tunnels. In the coordinated
architecture (cf. Fig. 5b), each controller and its local switch
runs on the same machine, with additional communication
between controllers to exchange local state information. In the
myopic distributed architecture (cf. Fig. 5c), local controllers
compute control actions using only local state information,
therefore no communication between controllers is needed.

Measurement: HFTraC requires the link rate deviation Δfl

and the egress queue length bl on link l. Ingress/egress
packet amounts and queue lengths can be measured using
Linux Traffic Control (TC) tools. By querying the network
statistics periodically via TC, controllers gain access to timely
measurements of their local link rates and buffer lengths.

Rate Limiting: Rate limiting is needed in order to implement
the control actions specified by HFTraC. We use the Token
Bucket Filter (TBF) disciplines in TC to provide this function-
ality: in the TBF queuing discipline, each outgoing traffic byte
is serviced by a single token. The most important parameter of
the bucket is its size (the number of tokens that it can store).
In our implementation, each router, regardless of the system
architecture, must be able to perform rate-limiting control
in order to implement the HFTraC specified control action.
The frequency of rate control depends on the sampling rate.
In order to ensure the accuracy of the rate control functionality,
the bucket size should be set to be as small as possible, close
to Maximum Transmission Unit (MTU). This is because on
creation, the TBF initializes with a full bucket, which allows
this amount of traffic to burst from the TBF at its first release.
Therefore if the rate limit is changed rapidly, the average rate
may be skewed by this initial burst of traffic – in practice
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Fig. 6. (a) Tradeoff between loss rate and average queue length for different
architectures. (b) Loss rate for varying edge buffer limits under GOD control.

the real outgoing rate may be slightly larger than the desired
rate, unless the bucket size is set small enough to disallow
such bursts. In our experiments, we set the bucket size to be
1514Bytes, equal to the MTU.

Computation: Control actions are computed within the POX
controller using local and/or shared measurements and the
pre-computed gain matrix K or matrices Kl.

Pseudocode Implementation: Algorithm 1 provides a
pseudocode implementation of the coordinated HFTraC algo-
rithm operating under a fixed routing topology.7 In words,
the algorithm states that every time an update is made to
the routing topology, a new HFTraC controller with gain
matrices Kl needs to be computed. Once these gains are
computed, the algorithm implements the HFTraC controller by
having each switch: (i) measure and share its own flow and
buffer state, (ii) collect transmitted flow and buffer states from
other switches, and (iii) use this collected information and the
precomputed gain matrices to compute its egress rate. Of note
is that there is no notion of algorithmic convergence or termi-
nation here: we are implementing a feedback controller that
is reacting in real-time to flow-rate deviations Δdi(n) at the
ingress points of the network. We do note however, that the
controller that we compute is guaranteed to be stabilizing,
which means that if for all times n ≥ n0 for any n0 ≥ 0,
all flow rate deviations Δdi(n) = 0, then all of Δfk(n),
Δuk(n) and b�(n) tend to 0 asymptotically. We further remark
that although the theoretical framework assumes synchronous
updates of the link egress rates u�, by employing a feedback
based policy, we are robust to deviations from such simplifying
assumptions – we provide experimental validation of this
robustness in Section V.

V. EVALUATION

Using our testbed, Mininet emulations, and a production
WAN we show that HFTraC improves network utilization
in spite of rapidly varying traffic demands. We show that:
(i) the modeling choices made in §III are consistent with
experimentally observed behavior (§V-A); (ii) HFTraC simul-
taneously decreases packet loss rate by 80% relative to FIFO
average queue length 50% relative to static smoothing (Fig 6a);
(iii) HFTraC achieves an up to 8% increase in link utilization
(Fig 11) and 50% decrease in packet loss rate (Fig 12) on
our WAN and Backbone Network emulation, respectively,
(iv) HFTraC complements TCP and AQM schemes, yielding

7The pseudocode for the other implementation architectures is similar to
that shown, differing only in how information is exchanged between routers
and controller(s), and hence are omitted due to space constraints.

Fig. 7. (a): Experimental testbed setup. (b)/(c): Loss rate/average queue
length as utilization is increased.

up to 50% decreases in packet loss % when used in con-
junction with TCP Cubic, TCP Reno with PI or RED, and
TCP Vegas with CoDel or PIE (§V-D), (v) the coordinated
implementation of HFTraC decreases packet loss rates by up
to 30% as compared to the centralized HFTraC implementation
(Figs. 6a-7).

A. Validating Our Model

We begin by using our experimental testbed to validate the
modeling decisions made in §III. Namely, we provide empiri-
cal support for (i) the validity of the objective function (8) and
its ability to interpolate between FIFO (low buffer occupancy)
and smoothing (low packet loss) congestion management poli-
cies, (ii) HFTraC’s ability to increase maximum link utilization
in the face of variable demand, (iii) the Gaussian i.i.d. model
used for traffic demand fluctuations, and (iv) that the feedback
based implementation of HFTraC provides robustness to errors
in nominal traffic demand estimates and statistical models of
the traffic demand fluctuations.

Experimental Setup: Our lab testbed, shown in Fig. 5,
consists of three switches and three hosts: we overlay it with
the routing topology shown in Fig. 7a. Links between switches
have a capacity of 30 Mbps and 0.2 Mbits egress buffers. Edge
links that are connected with hosts have a larger capacity of
42 Mbps and 0.3 Mbits egress buffers. Unless otherwise stated,
all buffers use a Drop Tail scheme. We choose a sampling
time of τ = 10 ms for the control law update frequency.
Fig. 5 also shows the different implementation architectures:
most are self-explanatory, but we note that we approximately
implement the GOD architecture by adding dedicated control
tunnels between the centralized controller and switches. The
propagation delays are 0.2 ms, which are negligible compared
to workload traffic delays.

Workloads: Hosts send and receive UDP traffic via iPerf.
The traffic demand increments di(n), which we allow to vary
every 10 ms, are distributed i.i.d. N (d∗i , σ

2). TC rate limiting
is used in the hosts to realize the variation of source traffic in
real time. The average source traffic at Src1 is half of that at
Src2, and thus the flows from Src2 are split along two paths
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(S2 → S3 and S2 → S1 → S3 with split ratio 3 : 1), given
by the routing solution provided by standard TE methods.

Expanding and Exploring the Design Space: In §III,
we claimed that the objective function (8) allows the user
to explore tradeoffs that arise between packet loss % and
average queue length. Here we provide an experimentally
derived example of such a tradeoff curve by evaluating the
performance achieved by HFTraC algorithms designed for
various values of the weighting parameters λl. We begin with
the case where the host buffer limits are infinite, meaning that
packet loss can only occur at switch buffers. Fig. 6a shows
the empirically derived tradeoff curve between loss rate and
average queue length for each of the possible implementation
architectures. For these experiments, the traffic demands from
Src1 are distributed according to a N (19, 82) distribution, and
those from Src2 follow a N (38, 82) distribution.

The tradeoff curve demonstrates that there exists a “sweet-
spot” in the design space that optimally trades off between
packet loss % and average queue length: in particular, a well-
tuned coordinated implementation of HFTraC can simultane-
ously achieve an 80% decrease in packet loss rate relative
to FIFO and 50% decrease in average queue length relative
to static smoothing. It also shows that the combination of
responsiveness and coordination of the coordinated architec-
ture provides an advantage over the centralized and myopic
implementations, and nearly matches the idealized perfor-
mance of the GOD architecture. Finally, when the weights
λl are all set to 0, we recover a static pacing solution that
minimizes packet loss % at the expense of larger average
queue lengths; conversely, if the weighting parameters tend
to infinity, we recover a FIFO solution that minimizes average
queue length at the expense of larger packet loss %.

Edge Buffer Limits Matter: The previous experiment was
somewhat idealized, in that we assumed infinite buffers at
the network edge. We investigate the impact of edge buffer
limits, and Fig. 6b shows how the loss rate changes as a
function of the weighting parameter λ for three different
cases of host buffer limit sizes using the GOD controller.
The other architectures will exhibit qualitatively similar tra-
jectories. As expected, the more buffer resources available,
the more dramatic the performance improvements of HFTraC.

Network-Scale Coordination Increases Utilization: We now
show that an appropriately tuned HFTraC algorithm can allow
for higher link utilization than standard FIFO approaches. For
this experiment, we set traffic fluctuations to have a standard
deviation of σ = 8, and gradually increase the nominal values
d∗i to explore the behavior of HFTraC and FIFO schemes
as maximum link utilization increases. Fig. 7 shows that
HFTraC algorithms are able to reduce packet loss by suitably
spreading congestion due to traffic demand fluctuations across
buffers – not surprisingly, this in general leads to slightly
larger average queue lengths compared to FIFO policies. Thus
we see that HFTraC, regardless of architecture, effectively
reduces the packet loss %, especially at high maximum link
utilizations. The combined responsiveness and coordination of
the coordinated HFTraC implementation achieves very similar
performance to that of the idealized GOD architecture, both
of which provide up to 50% improvements in packet loss %
relative to FIFO.

Traffic Demand Fluctuations Can Be Modeled as i.i.d.
Gaussians: In the following set of experiments, we use internet

Fig. 8. (a) CAIDA trace sampled at three timescales: 10ms, 100ms, and
1000ms. (b) Histogram and Gaussian curve fitting of link rates at these
timescales.

Fig. 9. Loss rate and average queue length for data-driven experiment with
CAIDA traces. (a) Loss rate. (b) Average queue length.

traces extracted from the CAIDA anonymized dataset [71],
which are recorded with nanosecond scale timestamps. Fig. 8a
shows the averaged link-rates measured across different
timescales. The histograms in Fig. 8b show that the link-rate
values are all well described by Gaussian curves of the same
mean and with variances that increase with the sampling
period. It can further be verified that data points are approxi-
mately uncorrelated in time, with empirical cross-correlations
between neighboring time-points being two orders of mag-
nitude smaller than the mean link-rate.8 The CAIDA traces
capture the behavior of aggregate flows, which is the level
of granularity at which TE solutions typically operate (as in,
e.g., [1], [2]) – therefore although individual TCP or UDP
flows may not exhibit i.i.d. Gaussian behavior, the CAIDA
traces suggest it to be a reasonable first order approximation
for the behavior of aggregate flows. We repeated the exper-
iments of the previous section, shown in Fig. 7a, with these
CAIDA traces driving the traffic demand. We appropriately
scaled the rates to be meangingful for our testbed, resulting in
mean throughputs of 27.5 Mbps and 13.75 Mbps for Src1 and
Src2, respectively. Fig. 9 shows similar curves to the results
from our previous experiment. We show next that the feed-
back based implementation of HFTraC provides robustness to,
among other things, deviations from this statistical model.

HFTraC Is Robust to Modeling Errors: Our model is built
under the assumption that nominal traffic demand rates are
exactly known, and that traffic demand fluctuations follow
an i.i.d. zero mean Gaussian distribution. We claimed at the
end of §III that an advantage of the feedback based nature of
HFTraC is that it provides robustness to modeling errors: we
demonstrate this now using our experimental testbed.

8In particular, we compute the sample cross-correlation between neighboring
data-points for sampling times of 10 ms and 100 ms, and find it to be 1.3%
and .75% of the mean link rate, respectively.
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Fig. 10. HFTraC is robust to modeling errors. (a) Packet loss % as a function
of nominal traffic demand estimation error. (b) Packet loss % improvements
for Gaussian and Triangular fluctuation distributions.

Fig. 11. WAN testbed experiments. HFTraC leads to up to an 8% increase in
link utilization. (a) Network topology. (b) Experimental setup. (c) Maximum
link utilization.

For simplicity, we restrict ourselves to the GOD archi-
tecture, but later validate the claim for all architectures in
§V-B, by showing that HFTraC provides substantial benefits
when implemented on a production WAN that is subject to
delay jitter, control packet losses and other non-ideal behavior.
In Fig. 10a, we show the robustness of HFTraC to deviations
of up to 20% from the nominal traffic demand used to compute
the buffer egress line-rates. This shows that even when the
actual rate is 20% larger than the estimated nominal value,
HFTraC still provides an advantage over a FIFO strategy, and
in particular, when the actual value is larger than estimated,
HFTraC mitigates the effects of the unexpectedly larger traf-
fic demands, resulting in a lower packet loss %. Similarly,
in Fig. 10b, we illustrate the performance of HFTraC when
the source rate fluctuation is triangularly distributed – HFTraC
once again significantly outperforms the FIFO strategy. The
source rate is taken to be i.i.d. N (30, 62) and compared to
rates that are i.i.d. with a symmetric triangular distribution
between [0, 60].

B. WAN Experiments

We evaluate the performance of HFTraC on a WAN testbed
with 4 sites spread across 3 continents, as shown in Fig. 11(a).
Delays are specified on each link in Fig. 11a. The experimental
setup is shown in Fig. 11b, where capacities (Mbps) are also
labeled on each link. All buffer limits are 0.8 Mbits. Each site

Fig. 12. Abilene network emulation. (a) Network topology. (b) Loss rate.

has one virtual machine with OVS running as the WAN-facing
switch. The link delays used during the design phase are
estimated by running Ping between each pair of switches
and computing an average delay. The state information and
control decision messages are distributed to controllers using
the links shared with normal traffic – as such these control
packets are subject to delay jitter and the occasional drop.
The sampling/update period is 35 ms.

Our approach to handling dropped control packets is to
assume that the network is operating under nominal conditions
until updated information arrives. This means that when a
control packet is dropped, the corresponding buffer simply
transmits at its TE nominally specified rate f∗

l . Similarly,
if the state information (Δfl(n) and bl(n) for link l) is lost
at time slot n, it is assumed that Δul(n) = Δfl(n) = 0
and bl(n) = bl(n − 1). Notice that the effects of lost state
are only felt by the system until a fresh state is received by
the controller, after which it can reset itself immediately –
therefore the system is robust to control packet losses.

Because we are subject to physical propagation delays,
we cannot implement the GOD architecture – all other archi-
tectures are implemented and compared to a FIFO strategy.
We use standard deviations in the traffic sources of σ = 5 and
σ = 10, and empirically determine the maximum achievable
link utilization achieved subject to loss rates of 0.1% and
0.5%, respectively.9 Fig. 11c shows that all implementations
of HFTraC improve the link utilization over FIFO, with more
substantial benefits coming in the face of more volatile traffic
– when σ = 10, the coordinated HFTraC implementation leads
to a nearly 8% increase in utilization as compared to a FIFO
strategy. We emphasize that we do not enforce synchronization
in traffic rate updates across buffers, relying instead on the
inherent robustness of our feedback based implementation.

C. Backbone Network Emulation

We use Mininet to emulate the Abilene network, shown
in Fig. 12a, which has 11 nodes and 28 100 Mbps links with
propagation delays in ms specified by their labels. We use
UDP traffic to replay the demands extracted from the data
sampled in prior studies [66]. The maximum link utilization
is set to 85% and we evaluate the packet loss rate for traffic
demand fluctuations with standard deviations of σ = 5 and
σ = 10. Fig. 12b shows that all implementations of HFTraC
give a significant decrease in packet loss % relative to FIFO
control, and that the coordinated HFTraC implementation in
particular decreases packet loss rate by over 50%.

9The higher allowable loss rate for σ = 10 leads to higher link utilization.
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Fig. 13. TCP average bandwidth and total loss rate with/without coordinated
HFTraC. (a) TCP average bandwidth. (b) Total loss rate.

D. HFTraC and Congestion Control

Here we show that HFTraC is complementary to established
TCP/AQM congestion control strategies that operate at similar
timescales, leading to improvements in average throughput,
maximum utilization and packet loss %.

HFTraC Improves TCP Throughput: We evaluate the perfor-
mance of the coordinated HFTraC implementation working in
conjunction with TCP congestion control using the lab testbed
in Fig. 7a. We use iPerf to send TCP traffic from Src1 to
Dst, with Cubic [72] enabled in Src1. Different levels of
background UDP traffic from Src2 to Dst are introduced
using suitably scaled CAIDA traces as driving inputs. Fig. 13
clearly shows that the coordinated HFTraC implementation
reduces the total loss rate significantly (by over 50% when the
average background traffic is between 15 Mbps and 20 Mbps),
and thus the average throughput of the TCP flow is also
increased. The high loss rate at low-levels of background
traffic is expected: most losses occur at S1 when the TCP
rate increases above the capacity of link S1→ S3.

HFTraC Improves TCP Streaming Performance: We use the
lab testbed shown in Fig. 7a to study the effects of HFTraC
on per-packet delay in the context of a video streaming appli-
cation. The per-packet delay, as measured by its RTT, is a key
factor in the user-perceived performance of streaming and web
applications. We measure per-packet RTT as the time between
a packet is sent and its corresponding ACK is received. In the
case of packet retransmission, it is measured from the first time
the server sent the packet to the receipt of its ACK. We set up
a VLC server at Src1 with Cubic enabled, and a client at Dst
to retrieve the video stream: the video we use has frame size
720×406. With no background traffic in the network, the aver-
age throughput of the video flow is 3.16 Mbps. We inject
different levels of background UDP traffic from Src2 to Dst
using appropriately scaled CAIDA traces as driving inputs.
For each background traffic level, we measured the average
per-packet RTT and TCP retransmission rate over 10 minutes
by analyzing each TCP packet header. Fig. 14 demonstrates
that HFTraC largely reduces the average per-packet RTT and
TCP retransmission rate with different levels of background
traffic, which is consistent with the video streaming quality
we observed during the experiments.

HFTraC Improves TCP/AQM Link Utilization: For the fol-
lowing series of experiments, we use a discrete-event network
simulation of the experimental three-node topology to evaluate
HFTraC working in conjunction with TCP and AQM. In par-
ticular, we implement RED [4] or PI [73] AQM strategies in
the routers. We send 20 sessions of TCP flows from both
Src1 and Src2 to Dst. The packet size is 1 kBytes. ECN
is enabled and hosts implement TCP Reno. We evaluate the

Fig. 14. TCP per-packet RTT and retransmission rate with/without coordi-
nated HFTraC. (a) TCP per-packet RTT. (b) TCP retransmission rate.

Fig. 15. Maximum link utilization of RED and PI with/without HFTraC.
(a) Varying targeted queue length. (b) Varying background UDP traffic.

average queue length-utilization tradeoff for RED and PI
working with and without HFTraC by sending only TCP
traffic, and varying the minimum queue threshold of RED
and queue reference of PI. In the second simulation scenario,
we introduce varying background UDP traffic from Src2 to
Dst and fix the minimum threshold to 15 packets in RED and
queue reference to 10 packets in PI. Fig. 15 shows that in both
cases RED/PI + HFTraC achieves up to 5% more utilization
than RED/PI alone under the same levels of buffer occupancy,
and subject to the same background traffic.

Using the Backbone Network emulator, we show the com-
patibility of HFTraC with TCP Vegas and PIE or CoDel.
There are four TCP senders and one receiver, as is illus-
trated in Fig. 12a, with all traffic routed along the smallest
RTT path. We enable PIE and CoDel in the Linux Kernel
(4.2.0-42-generic) via the TC interface with the following
settings: tupdate = 30 ms for PIE, interval = 100 ms
for CoDel, and limit = 200 packets for both. We run the
tests for 100s in two congested schemes: light and heavy
traffic loads, corresponding to 5 and 30 TCP Vegas flows
per sender, respectively. We first use only TCP flows and
vary the target delay for PIE and CoDel. Figs. 16a and 16b
show the throughput of the bottleneck link (edge link for Dst)
with respect to the average queue length of all routers along
the path from Src1 to Dst as the target delay varies from
5 ms to 30 ms. We then fix the target delay at 20 ms and add
5 UDP flows from Src3 to Dst. We show the bottleneck link
throughput under various background traffic loads in Figs 16
(c) and (d). In all cases, HFTraC is compatible with PIE and
CoDel, leading to increased link utilization.

VI. DISCUSSION

Comparing Architectures: Notice that any centralized algo-
rithm can be implemented on a coordinated architecture, and
that likewise, any coordinated algorithm can be implemented
on the GOD architecture. Similarly any myopic algorithm can
be implemented on a coordinated architecture. This simple
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Fig. 16. Max utilization of TCP Vegas with PIE/CoDel with/without HFTraC
as a function of average buffer occupancy and background UPD traffic.
(a) PIE. (b) CoDel. (c) PIE. (d) CoDel.

observation lets us order the performance achieved by the
best control policy on each of these architectures. Let νGOD,
νcen, νcoord and νmyop denote the optimal cost achieved in
optimal control problem (10) by a control policy implemented
using the GOD, centralized, coordinated and myopic archi-
tectures, respectively. We then have that νGOD ≤ νcoord ≤
νcen and νGOD ≤ νcoord ≤ νmyop. This qualitative ranking
of architectures does not quantify their performance gap –
there may be situations where a centralized architecture is
preferable (perhaps because logically centralized algorithms
can be simpler to implement, debug and maintain). By com-
puting the optimal cost achieved by a centralized controller
and comparing to that achieved by a coordinated controller,
we can quantify the tradeoff between centralization and per-
formance. For the example in Fig. 7, the computed norms
were νGOD = 585.49 ≤ νcoord = 634.5 ≤ νmyopic = 791.48 ≤
νcen = 1009.269, which is consistent with the results of that
experiment. Although we can not identify conditions under
which the myopic architecture outperforms the centralized
architecture, our experimental validation and computational
examples show that this is indeed the case. In the examples
we have considered, this means that taking myopic action
based on fresh information is better for performance than
taking centralized action based on delayed/stale information.
The coordinated architecture can then be seen as leveraging
the benefits of both architectures: global centralized actions
are taken based on shared but delayed information, and local
corrective actions are taken based on fresh local information.

Recovering FIFO and Pacing Algorithms: When the λl tend
to infinity, the cost function only penalizes buffer size variance,
and not link rate deviations. Now given that at a specific
buffer, bl(n + 1) = bl(n) + τ(Δxl(n) − Δul(n)) (Eq. (5))
it is clear that the optimal policy with respect to this cost
function is simply to set Δul(n) = Δxl(n) + 1

τ bl(n), that is
to say, to empty out the buffer immediately, thus recovering
a FIFO approach. This policy is optimal as the resulting
cost of optimal control problem (10) is 0. Conversely, when
the λl are set to zero, the cost function only penalizes link
rate deviations, and not queue occupancy. Now given that

Δf i
l (n) = Δul(n − 1)βi

l , we achieve a cost of 0 if we set
Δul(n) = 0 for all time n. Recall that setting Δul(n) = 0
means that the optimal policy specified in this case is simply
to set ul(n) = f∗

l for all time n, hence recovering a static
smoothing policy – this is a good model for the rate limiting
used in [1]. Thus by varying λ between 0 and ∞, one traces
out a Pareto-optimal curve in which buffer size is traded off
against “flow smoothness,” as we showed in §III & §V.

Incremental Deployment: This suggests an incremental
deployment strategy for HFTraC: set the appropriate weights
λl to either 0 or very large depending on whether a
non-HFTraC buffer is implementing a FIFO or smoothing
policy.

VII. CONCLUSION AND FUTURE WORK

This paper proposes HFTraC, which is a dynamic gen-
eralization of standard buffer policies such as FIFO and
static smoothing at the network layer. It can also be used to
explore architectural tradeoffs between delay and utilization.
Our results show that HFTraC allows for higher bandwidth
utilization in the face of rapidly varying traffic demand relative
to traditional static approaches. HFTraC explicitly uses buffer
space as a network resource by dynamically coordinating link
service rates so that the demand fluctuation is best handled by
the right buffers in the network. Promising future directions
include understanding how to allocate such egress buffers
throughout a network, and integrating HFTraC with dynamic
approaches to traffic engineering.

APPENDIX

A. Tractability of Distributed Optimal Control Problems

Here we summarize relevant results from [17], which pro-
vides conditions on the propagation and communication delays
of a distributed system and controller, respectively, such that
the resulting distributed optimal control problem admits a con-
vex reformulation. We note that although Rotkowitz et al. [17]
address distributed optimal control in the model-matching
framework, there is a standard equivalency between the LQR
problems considered in this paper and the H2-optimal control
problem considered in the model-matching literature [15].

Consider a distributed system described by a collection
of subsystems, each with its own controller. In our setting,
the subsystems are switches, each with their own egress rate
controllers. We define pij to be the propagation delay from
subsystem j to subsystem i, i.e., the amount of time it takes
for a control action taken at subsystem j to be detectable at
subsystem i. In our setting, as the subsystems are switches
interconnected by links, the pij are determined by link delays.
For example, if switch j feeds directly into switch i via a link

 with delay n�, then we have that pij = n�. Further, if we
assume a routing topology that is a directed graph with no
loops, then pji =∞, as switch i is downstream of switch j.

Similarly, we define tkl to be the communication delay from
the controller at subsystem l to the controller at subsystem k,
i.e., tkl is the minimum amount of time before the controller at
subsystem k can use information collected by the controller at
subsystem l. We further make the assumption that these com-
munication delays satisfy the following triangle-inequality:

tki + tij ≥ tkj ∀i, j, k. (11)
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This assumption is satisfied if communication between con-
trollers follows a shortest delay path, as measured with respect
to the communication topology between controllers.

The main result from [17] says that if pij ≥ tij for all
i, j, then the resulting distributed optimal control problem
admits a convex formulation. We consider two settings for our
communication between controllers. In-band communication
controllers use the same routing topology as that used for data-
exchange, but make the assumption that controller packets are
given priority. Thus for all i, j we have that tij = pij , and
hence the resulting control problem is tractable. In particular,
this means that when the routing topology is a directed graph
with no self-loops, then the coordinated architecture only
requires that information be shared downstream. We do note
that in order to apply the results of [17], we must have that
the routing topology specifying the pij is one coming from a
shortest-path algorithm.10

Out-of-band communication the conditions stated above
tell us that we need to ensure that our communication topology
allows controllers to communicate with each other at least as
quickly as data propagates through the network, thus ensuring
that pij ≥ tij for all i, j.

B. LQR Optimal Control

The discrete-time Linear Quadratic Regulator (LQR)
problem [15] is described as follows. Given a discrete-time
linear system with dynamics of form

x(n + 1) = Ax(n) + Bu(n) + w(n),

z(n) =
[
Cx(n)
Du(n)

]

, (12)

where x(n), u(n), z(n), and w(n) are the state, control input,
controlled output and process noise, respectively, at the nth
sampling time.

The goal of the LQR optimal control problem is to deter-
mine a control policy u(n), 0 ≤ n ≤ N so as to minimize
the steady-state variance of the controlled output z, i.e., to
minimize the objective function

lim
n→∞ E‖z(n)‖22 = lim

n→∞ E
[
x�(n)Qx(n) + u�(n)Ru(n)

]
,

for Q := C�C and R := D�D. It is well known [15] that
in the centralized setting, assuming the system is stabilizable,
that the solution to this problem is a static feedback policy
u(n) = Kx(n), where K can be computed by solving a
Discrete-Algebraic Riccati Equation (DARE). In the distrib-
uted setting, so long as the resulting system satisfies certain
assumptions (see Appendix -A), the resulting problem can
be reformulated as a convex problem that admits an efficient
solution.

In order to implement the HFTraC algorithm, we need to be
able to compute the solution to optimal control problem (10).
We summarize here how the dynamic model described in
Section III can be used to cast this problem (10), subject to the
GOD constraints (i.e., no information sharing constraints on
the controller) as a classical LQR problem as described above.
We then show how a minor extension allows us to compute

10The more general setting where this assumption does not hold can still
be addressed, but needs to be considered on a case-by-case basis to ensure
that information is exchanged between controllers at least as quickly as data
propagates through the network.

the centralized controller, and then explain how results from
the distributed optimal control literature can be leveraged
to solve the LQR problem subject to information exchange
constraints imposed by the coordinated architecture.

We now show how to map network flow model described in
Section III to the linear-time invariant dynamics (12) needed
for the LQR problem. Let N be the number of links l ∈ L
in the system, and select the control update interval τ such
that δl = nl × τ for some integer nl for all links l ∈ L,
where δl is the propagation link associated with link l. Let
Δfl(n) denote the link rate change at timestamp n on link l.
We use ΔFl(n) to denote the history of link rate changes
from n to n−nl in reverse chronological order, i.e. ΔFl(n) =
(Δfl(n), Δfl(n−1), . . . , Δfl(n−nl))�. We further let vectors
Δf(n) and b(n) denote the rate changes and buffer lengths
for all links :

Δf(n) = (ΔF1(n), . . . , ΔFl(n), . . . )�,

b(n) = (b1(n), . . . , bl(n), . . . )�, ∀l ∈ L.

The lengths of the column vectors are Nf =
∑

l∈L (nl + 1)
and Nb = N respectively.

Therefore the state variable x(n) ∈ R
Nf+Nb consists of the

stacked vector of link rate changes and buffer lengths, i.e.

x(n) = (Δf(n),b(n))�.

Similarly the control variable u(n) is the stacked vector of
service rate changes for all links, i.e.,

Δu(n) = (Δu1(n), . . . , Δul(n), . . . )�, ∀l ∈ L,

and the disturbance variable w(n) is the stacked vector of
ingress flow rate deviations, i.e.,

w(n) = (Δd1(n), . . . , Δdi(n), . . . )�, ∀s ∈ I,

This allows us to the network dynamics in the form (12):
[
Δf(n + 1)
b(n + 1)

]

= A

[
Δf(n)
b(n)

]

+ BΔu(n) + HΔw(n), (13)

for appropriately specified matrices (A, B, H).
From equation (6) we have that ΔFl(n + 1) ∈ R

nl+1 for
any link l only depends on the previous link rate ΔFl(n) and
the control variable Δul(n). Hence we can write

ΔFl(n + 1) = AlΔFl(n) + BlΔul(n),

where the matrix Al ∈ R
(nl+1)×(nl+1) and vector Bl ∈

R
(nl+1) are given by

Al =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
0 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎦

, Bl =

⎡

⎢
⎢
⎢
⎢
⎣

1
0
0
...
0

⎤

⎥
⎥
⎥
⎥
⎦
.

So we can write the general expression for vector Δf(n+1)
as

Δf(n + 1) = Afx(n) + BfΔu(n),
Af = [Af1, 0Nf ,Nb

].

The matrices Af1 ∈ R
Nf×Nf and Bf ∈ R

Nf×Nb are block
diagonal matrices with blocks Al and Bl respectively, and
0Nf ,Nb

is an Nf ×Nb zero matrix.
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Similarly, from equation (5), we have that

b(n + 1) = Abx(n) + BbΔu(n) + Hbw(n),
Ab = [Ab1, INb

], Bb = −τINb
, Hb = τENb

where INb
is an Nf × Nf identity matrix, Ab1 depends on

the routing topology and split-ratio coefficients, and ENb
is

an Nb × Nb diagonal matrix with Eii = 1 if bi is an edge
buffer, and 0 otherwise.

It then follows that if we define

A :=
[
Af1 0
Ab1 I

]

, B :=
[
Bf
Bb

]

, H :=
[

0
Hb

]

,

then the LTI dynamics (12) are consistent with the dynamic
network model described in Section III.

The objective function in (10) can then be written as

minimize
Δu(n)

lim
n→∞ E [cost(Δf(n),b(n), Δu(n))]

where the cost is defined as a quadratic function of the form

cost(Δf(n),b(n), Δu(n))
= Δf(n)�SfΔf(n) + b(n)�Sbb(n) + Δu(n)�RΔu(n),

where Sf , Sb and R are symmetric and positive-semidefinite
matrices, and we set R ≈ 0. The parameter λ introduced in
our original problem (10) is applied here in matrix Sb.

Thus we have shown how, in the absence of communica-
tion constraints, one can pose the HFTraC optimal control
problem (10) as a centralized LQR optimal control problem.
Therefore, we can compute the controller for the GOD archi-
tecture via the solution to a DARE, as described above. For
the centralized architecture, we leverage the famed separation
principle of the LQG optimal control problem that states that
the solution to the output-feedback (i.e., where only a subset of
the state can be measured) version of the described problem
is given by the LQR optimal controller acting on estimates
produced by a Kalman filter. In the case of the centralized
architecture, the Kalman filter takes a particularly simple form,
as we have access to the entire state, but with delay. In par-
ticular, the state-estimate is given by x′(n) = E[x(n)|x(n −
nk)] = Ankx(n−nk)+

∑nk−1
i=0 AiBΔu(n− i−1), where nk

is the largest RTT from a router to the centralized controller.
To address computing the optimal controller subject to the

information exchange constraints imposed by the coordinated
architecture, we leverage the recently developed localized opti-
mal control framework [24] to solve control problem (10).11

This framework allows the control law ul(n) to be imple-
mented using finite impulse response(FIR) filter banks. In par-
ticular, the localized solution to (10) outputs two collections
of matrices, {M(t)}Tt=1 and {R(t)}Tt=1, for T a user specified
horizon,12 such that the control action ul(n) of buffer bl at
time instant n can be computed according to the following set
of equations

δ(n) = x(n)− x̂(n)

Δul(n) =
∑T−1

τ=0
Ml(τ + 1)δ(n− τ)

x̂l(n + 1) =
∑T−2

t=0
Rl(τ + 2)δ(n− τ), (14)

where x�(n) = [Δf�(n) b�(n)].
11Alternative approaches exist to solving these control problems, but we

choose the localized approach due to its simple implementation via FIR filter
banks.

12See [24] for details on how to choose this value.

From equation(14) we see that to enforce information
sharing constraints consistent with the coordinated architec-
ture, it suffices to impose suitable sparsity constraints on the
matrices {M(t)}Tt=1 and {R(t)}Tt=1 defining the necessary
filter banks. We note that in this framework, such constraints
are convex and hence the solution can be efficiently computed.
Finally, we remark that although the controller is implemented
via FIR filter banks, it is still a solution to the infinite-horizon
optimal control problem. The FIR horizon T corresponds to
the controller memory, and is a design parameter.
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