2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)

Allerton Park and Retreat Center
Monticello, IL, USA, October 2-5, 2018

Accurate Rate-Aware Flow-level Traffic Splitting

Ning Wu, Shih-Hao Tseng, Ao Tang
School of Electrical and Computer Engineering
Cornell University, Ithaca, NY 14850
Email: {nw276, st688, at422} @cornell.edu

Abstract—This paper aims to accurately realize given traffic
split ratios in switches with small performance degradation.
For given traffic split ratios calculated mathematically by TE
algorithms in the control plane, the load distribution mecha-
nisms in the data plane implement such splits without breaking
flows. Treating all flows equally, the state-of-the-art approaches
deployed in switches do not provide enough accuracy especially
when facing non-uniform flow size distribution. We instead
propose a dynamic load distribution scheme based on the
collected load sharing statistics. It finds the most accurate
traffic splits with minimum route changes. We implement our
solution in Open vSwitch (OVS). Trace-driven and end-to-
end experiments demonstrate that 1) our approach effectively
adjusts load distribution in real time to mitigate the inaccuracy
of splits caused by the variation of flow size distribution, 2)
it outperforms the existing approaches with respect to both
higher accuracy and lower level of route changes, and 3) it
requires path changes for less flows when routing strategies
are reconfigured, hence leads to better flow experience such as
higher goodput.

I. INTRODUCTION

Traffic Engineering (TE) targets at controlling routing and
bandwidth to achieve high reliability, utilization and per-
formance in computer networks [13], [5], [10], [17]. Based
on demand information, network state and other operational
constraints, routes are computed periodically in the control
plane by certain TE algorithms. The solutions are then
realized in the data plane by properly updating forwarding
tables in switches. Multipath TE technologies that allocate
traffic among multiple paths are widely used to provide better
load balancing across the network. Once TE determines the
optimal paths for each commodity flow !, the corresponding
split ratios associated with each outgoing interface at each
switch are then set to split the traffic over multiple paths as
the solution requires.

There are two important issues involved in the above
described picture. First, how well can a switch realize given
traffic split ratios? TE algorithms usually take commodity
traffic demand or aggregate link loads as input and then
solve certain mathematical optimization problems assuming
traffic can be split arbitrarily. However, in practice, individual
flows are not split over multiple paths to avoid potential out-
of-order arrivals which can cause significant performance

'The exact meaning of commodity depends on the granularity of the
routing schemes. Usually each commodity corresponds to traffic with the
same source-destination pair, or just with the same destination subnet.

978-1-5386-6596-1/18/$31.00 ©2018 IEEE

degradation such as TCP goodput drop. This flow-level
granularity constraint can well force the actual split ratios
deviate from the ones that are demanded by TE. This is
particularly true when flows have vastly different rates while
current solutions treat all flows equally when it comes to
decide which flows should be moved to another path.

Such inaccurate load distribution deviating from target
TE solutions can result in negative effects such as network
performance degradation due to imbalanced resource utiliza-
tion or even link capacity violation. We here illustrate such
consequences with a simple example (Fig. 1). The demand
matrix consists of two commodities of traffic: 60 units from
node 1 to node 4 and 20 units from node 3 to node 4 (Fig. 1a).
Considering the objective of TE as to minimize the maximum
link load, one optimal routing scheme (Fig. 1b) is to forward
2/3 of the traffic from node 1 to node 4 through the upper
path and 1/3 through the lower path. Suppose the traffic are
divided into three individual flows based on 5-tuple hash.
Being unaware of the flow sizes, path selection module may
assign 2 flows with size 10 to the upper path (Fig. 1c). The
resulting link load imbalance deviates from the objective of
TE and can violate the link capacity constraint if the capacity
is no more than 60 units.

PECNPES-ON PO
0 pcYo oJo ®
Tyl \ (((7 “\ 10,.-3
1010+ 40 @. ~'~.@. -
gm” el e
(a) Demand (b) Optimal solutions (c) Actual results
Fig. 1. Example of inaccurate splitting.

Second, how much performance cost does realizing traffic
splits incur? Here we are not discussing the cost that are
caused by the control plane, such as transient loops, but
focusing on the cost that is associated with moving a flow
from one path to another in the data plane, which can lead
to out-of-order packet arrivals when those two paths have
different latency. Fig. 2 demonstrates an example of such
packets reordering. Initially at time ¢ = t(, packets starting
with sequence number 1 were forwarded through the lower
path from node 1 to node 4 (Fig. 2a). After 10 ms, its routing
path was changed from the lower path to the upper one.

774

Packets with sequence number 1 to 1000 were already sent
out during the past 10 ms and were traveling on the lower
path (Fig. 2b). It took around 20 ms for the first packet on
the upper path with sequence number 1001 to reach the
destination. At time ¢ = ¢y + 30 ms, the packets with smaller
sequence number were still on the way between node 2 to
node 4 (Fig.2c), so out-of-order packets were encountered at
the receiver.

RO

(c)t =Szt0+30ms

(@t=t, (b) t=t,+10ms

Fig. 2. Example of out-of-order packets.

As traffic demand rapidly grows in both volume and varia-
tion, to meet with the Quality of Service (QoS) requirements
at high data rates, TE techniques need to become finer, both
in terms of adjustment precision as well as update frequency.
These in term directly require better solutions in the data
plane to deal with the above mentioned two issues, i.e., load
balancing mechanisms that can produce traffic splits that are
close to what TE algorithms demand with small update cost.
Finally, it is worth noting that these two requirements are of
competing nature since updating to new traffic splits more
precisely usually needs to shuffle more flows. This paper
incorporates such tradeoff in a weighted sum optimization.

The rest of the paper is organized as follows. After
providing necessary background on how load balancing over
multi-path is done in the data plane (Section II), we state
the design constraints, formulate our problem and provide
a solution (Section III). We then proceed to implement the
solution in Open vSwitch (OVS) (Section IV) and evaluate
its performance through trace-driven and end-to-end tests
(Section V). A brief summary of related existing work is
provided by the end of this paper (Section VI).

II. BACKGROUND

The general process of forwarding traffic over multiple
paths is shown in Fig. 3, which mainly comprises of two key
components: traffic division and path selection. The arrival
packets are first classified into traffic units in the traffic
division module. The outgoing interface for each traffic unit
are then determined independently by the path selection
module, while all packets from the same traffic unit follow
the path identically.

The aggregated traffic are divided into units at a certain
level of granularity [12]. The smallest scale of division is a
single packet. Since the path for each packet is determined in-
dependently, packet-level division achieves the finest-grained
splitting but will cause the packet-reordering problems that
severely degrades the throughput of transport layer protocols
such as TCP. To preserve packet ordering, flow-level traffic

Buffers

Paths

Aggregated
traffic Traffic

Path
Division Selection

Fig. 3. Multipath forwarding system

division is widely used. In flow-level division, packets that
share the same value of some fields in IP packet header
are grouped together as a flow with a unique identifier. The
granularity of flow unit depends on the fields to be matched
in the packet header. Packets from a particular flow can be
further grouped into subflows, referred to as flowlets, by
considering the inter-arrival time of the packets [6].

The path selection module selects the path for each traffic
unit independently. The path is determined based on the
target split ratios with or without additional information of
the traffic load. Being unaware of the traffic load information,
the path selector either selects the path in a round robin
manner for individual packets which is not desirable due
to packet reordering issues, or performs the hash-based
path selection for flows/subflows assuming a uniform flow
size distribution. This type of path selection schemes in
general has low computational complexity and overhead. It
is, however, not able to control the actual split ratios when the
flow size distribution is skewed. The other type of schemes
collects the traffic load information and dynamically adjusts
the existing paths assignment in real time to make the actual
split ratios close to the target ones.

In many today’s commodity routers, equal-cost-multipath
(ECMP) is implemented which splits traffic evenly over each
path. Weight-equal-cost-multipath (WCMP) is offered by
some type of routers with a coarse granularity of split ratios
being supported. Those models being implemented nowadays
do not collect the information on traffic or network condition
in the path selection process, and therefore cannot provide
accurate traffic splitting over multiple paths.

III. FORMULATION AND SOLUTION

In this section, we discuss our design choices in detail.
Those then become the constraints of our mathematical
formulation. An algorithmic solution to the formulation is
provided and will be mapped back to the system in the
next section. We focus on the flow-level path reassignment
problem for one commodity and assume that there are
multiple paths available with corresponding target split ratios
provided by TE.

A. Key Features

Fig 4 illustrates our design of traffic splitting mechanism.
In this subsection, we first present some important design

775

decisions and key features.

Table-based hashing: Our flow-level traffic splitting ap-
proach bases on table-based hashing. A flow is first identified
by five-tuple in the hash function H and then assigned to a
bin among M bins according to its hash value. Each bin
is mapped to one of the L paths. We choose table-based
hashing for three main reasons: 1) It provides the flexibility
of remapping between bins and paths; 2) Path reassignment
is scalable because the number of bins is limited and does
not change as the number of flows increases; 3) Table-based
hashing makes it possible to separate traffic with different
routing rules required by different classes of service of
priorities. For example, if the high priority traffic are required
to be forwarded strictly through the single shortest path,
then they need to be excluded from the multipath routing
process. It can be realized by assigning this particular type
of traffic to a dedicated set of bins which do not allow bin-
path remapping.

Rate-aware dynamic path reassignment: The path se-
lection process determines the remapping between bins and
paths. Dynamic remapping is proposed to minimize the real-
time error between the actual load distribution and the target
split ratio for each path. We effectively reassign some of the
bins to different paths with the knowledge of the current load
sharing statistics.

Direct control of reassignment level: In order to quan-
titatively control the degree of packets reordering caused by
path reassignment, we consider a limit for the amount of
traffic that are shifted to a different path.

Valuable reassignment only: In addition to the limited
level of reassignment, we also consider a weighting param-
eter to evaluate the tradeoff between splitting error and the
reassignment level. A certain level of remapping is adopted
only if it is valuable. We target at finding the best strategy
to minimize the error of splitting with only necessary and
worthwhile path reassignments.

Table-Based Hashing

Path Selection

Fig. 4. Design of traffic splitting.

B. Problem Formulation

We now formulate the problem of bin-path remapping.
Suppose there is a set M of M bins being assigned to a
set £ of L different paths. Let r; be the traffic arrival rate
of bin i. Let oy be the target split ratio of path [that is

provided by TE solution. x! denotes the mapping decision
between bin ¢ and path [, and we have xﬁ = 1 if bin ¢
is assigned to path [and 0 otherwise. We further define
the overflow fraction p; to be the difference between actual

load fraction and the target split ratio for path [, given by

> riz
Pl = leg — —ay. Therefore the maximum overflow fraction
i

amongieaﬁ/ll available paths is p = max;es{p;}. Assuming
the current assignment strategy is determined by a set of
{2y}, we aim at finding the optimal {x}} that minimizes
the weighted sum of the maximum overload fraction p and
the degree of reassignment fraction. The weighting parameter
is denoted as \. To quantify the degree of reassignment, we
define A to be the number of bins being remapped. We add
an additional constraint that the number of bins allowed to be
reassigned is limited by K. Putting all together, the problem
formulation is given by

min p+ AA (D
s.t. Z rixé <(p+a) Z r, VieLl (1a)

ieM iEM
doai=1 Vie M (1b)

lel
zt e {0,1} Vie M,le L (lc)
M=) "> alaly=A (1d)
leL ieM

A<K (le)

In the objective function, the parameter A\ determines the
tradeoff between maximum overflow and the number of
bins being reassigned. Condition la defines the maximum
overflow fraction p such that the overflow fraction for each
path should not exceed. Condition 1b and lc require that
one bin can only be assigned to one path. Condition 1d de-
scribes the number of bins that are selected to be remapped.
Condition le restricts the number of bins to be remapped.
One underlying rule based on the objective function is if
the initial maximum overflow pg satisfies py < A, then the
optimal value is opt* = py with A* = 0, meaning that we
prefer to not reassign any bins because any path change costs
more price than benefits. Another intuitive rule following that
is any optimal solution of A* satisfies A* < pg/\.

Our problem formulation differs from the canonical bin-
packing problem in two main aspects. Firstly, we consider
the price of the bin reassignment, and the solutions are
constrained by the number of bins being reallocated. Further-
more, overflow is mostly possible in our reallocation strategy
while it is not allowed in the original bin-packing problem.

C. Algorithm

In this subsection, we propose an efficient algorithm that
computes the approximate reassignment solutions to the
optimization problem. The idea behind the algorithm is
to first estimate a lower bound of the maximum overflow

776

fraction, to position the goal of accuracy at an achievable and
reasonable level with the limit on the reassignment degree.
Based on the lower bound, we then select the set of bins
from a candidate pool and reassign them to new paths.
1) Lower bound of the maximum overflow:

We obtain a lower bound of the maximum overflow fraction
by finding the optimal solution to the following Linear
Programming (LP) relaxation:

min p 2)
s.t. Z ri:cé <(p+a) Z T Vie L
ieM iEM
in =1 Vie M
leL
zt € [0,1] VieM,leL

S-Sty <s Y n
ieM leL iEM

d = K/M is the limit of the reassigned load fraction,

given the limited number of reassigned bins K in problem
(1). Let p? be the initial overflow fraction for path [, i.e.,

— «y. Assuming the paths are sorted in the
descending order of p?, we then have the following

Theorem 1. The optimal value p* of the LP relaxation (2)
is

I o 5
= max{Zl:%?l, 0}, 3)
where [is defined as
. P05
l:min{ieﬁzzzlzlf,pl > pia) 4)
Proof. First note that the sum of overﬁowl fraction for all
> 2 iy
paths is zero because > p; = % - > a = 0.
leL & leL

Hence by definition p* is nonnegative. Let £1 be the set
of paths being overloaded initially, i.e. p) > 0,V] € L*,
and assume L7 is a sorted set in the descending order of p).
Similarly, let £~ be the sorted set of paths being underloaded
initially.

a) If 3, .1 pf < 6, then Zi st <0forVie L. In
this case, Eq. 3 results in p* = 0. This can be easily
achieved with total reassignment fraction no larger than
& by moving exactly p! load fraction on each path I € £
to paths in L.

b) If Zle“ p? > J, then by Eq. 4, [is no less than the last-

indexed path in £T. So Eq. 3 results in p* = M >
0. It can be achieved by shifting load from each path
I=1,---,l to paths in £~ with the amount of pQ — p*.
We prove its optimality by contradiction. Suppose there

exists a feasible solution resulting in p’ < p*, then the
reassigned load fraction is

i i i
Yot >Y = —0)=0
=1 =1 =1

This contradicts the constraint of reassigned load limit ¢.
i o_

Therefore, in this case p* = M

value.

is the optimal

- s ot iy pf =5
Overall, the optimal value is p* = max{===—,0}.
O
We here present a procedure to construct a set of reas-
signed bins and show that it leads to an optimal solution to

the LP relaxation (2).

Procedure 1:

(i) Starting from the first path [in £+, we define a critical
bin s; for path [such that s, = min{i € B
diea i > (pF) Yo i}, Where By is the set
of bins initially assigned to path [.

(ii) For Vi € B, we set the variable z! to be

1 if 7 < sy,
s;p—1
l o) Y, R DL U R
i = w)267’,\4 T2 T if i = s,
S
0 otherwise.

(iii) Repeat Step (i) and (ii) for each [€ £ until [. Define
a set D for partially or completely disconnected bins
suchthat D={ic By:zl <1, 1=1,---,l}.

Theorem 2. The set of reassigned bins obtained by Proce-
dure 1 results in the optimal value p* of the LP relaxation

(2).

Proof. The current load for path [=1, - - - ,i after Procedure
1 is exactly (p* + o) > r;, and thus we have that the
iEM
current overflow fraction p; = p* forl = 1,--- ,[. According
to Eq. 4, p) < p* forl =1+1,---, L. Given that) p{ =0
lec
and the reassignment fraction is no larger than §, we have

i i
DD <= pHs==> p=—lp*<0
1 =1

leL— leL— I=

Hence there always exists a remapping solution between the
bins in D and paths in £~ such that p; <0 forall [€ L.
So the maximum overload fraction among all path [€ L is
p*. Based on Theorem 1, p* is the optimal value of the LP
relaxation (2). Therefore, the set of reassigned bins following
Procedure 1 leads to the optimal value of (2). O

2) Bins selection and reassignment:
The optimal value p* provides a lower bound for the opti-
mization problem (1), guiding us to target at the reasonable
level of accuracy without unnecessary reassignment. Let D*
be the set of bins that we select to be remapped. We follow
the procedure described above to find the set of disconnected

77

bins D and put the items from D into D* excluding the sets
of critical bin s; for each path =1, -- | [. Then we compute
the current overflow fraction p; for path{ =1, - -- ,f and sort
the set of path in descending order in terms of p;. We select
one bin from each of these paths to be further put into D*
until the number of reassigned bins exceeds K. Once D* is
complete, we use Best Fit algorithm to reconnect the bin set
D*. Algorithm 1 illustrates the pseudocode of our algorithm.

Input: {z! .}, {au}, {ri}, po, A\, K, Vi e M, Vi€ L
Output: {z!}
begin
opt = pg, D* <)
for j = 1toK do
§ < j/M;
Find p* and Zusing Eq. 3 and Eq. 4;
Get D and {s;} by following procedure (i) -
(iii);
D* + D\ {si};
Compute {p;} for Il =1,--- ,I;
foreach | € {p,} sorted in descending order do
Find bin b; in path [such that

lor — p* —r¢/ > 74| is minimum;

€M

if Sizeof(D*)+ 1 < K then

| D* & D*Uby:
else

| Break;
end

end
Reassign bins in D* among all paths in £ using
Best Fit algorithm;
Compute {z'}; and p;;
if p; + X - Sizeof(D*) < opt then
opt < pj + X - Sizeof (D*);
{zi} + {=i}s:
end

end
end
Algorithm 1: Pseudocode.

D. Complexity

The time complexity of sorting set £ with L paths is
O(LlogL). For a set of M with M bins and K maximum
number of reassigned bins, the runtime complexity of bins
selection and reassignment is O(M + KlogK). So the
worst-case time complexity of our proposed algorithm is
O(LlogL + K(M + KlogK)). Note that the computation
complexity is not increased with the amount of flows, and
thus the splitting scheme is scalable. L is determined by
the number of available paths in the network. The value
of M and K affect the granularity of the traffic splitting.
With the reasonable values of M and K to achieve desired
accuracy in practice, both the computation complexity and
the implementation complexity of the algorithm is marginal.

IV. IMPLEMENTATION

Open vSwitch (OVS) is used here as the platform for
implementation. We will first explain how traffic splitting is
done in OVS including why it cannot provide accurate splits
even when all flows are of the same size (Section IV-A).
Implementation details are provided in Section IV-B.

A. Splitting Approach in OVS

The weighted traffic splitting is realized in group table in
OVS. Multiple buckets with corresponding weights can be
added to one entry of the group table. Buckets are associated
with specific actions such as forwarding the packets to a
particular output port, so that the traffic splitting among
multiple outgoing links/paths is realized by the bucket se-
lection process. The bucket selection in OVS group selects
the bucket on flow level identified by the 5-tuple.

The algorithm of flow-level weighted splitting imple-
mented in OVS is the following. Suppose one group ta-
ble entry contains L buckets. Let b; and w; denote the
bucket id for the ith bucket and its corresponding weight,
i =1,2,---, L. When processing one packet p; belonging
to this group, it first obtains its hash value a = H(py) by
applying hash function H with 5-tuple as the input; then gets
a hash value associated with each bucket 8% = M (b;, a) via
hash function M; finally selects the bucket with the highest
hash value of 5%

It’s worth to point out that the OVS’s approach cannot
produce accurate ratios, regardless of the quality of hashing
function, the amount and heterogeneous of flows. To see
that, consider the case of two buckets. Assuming there are
enough amount of flows, the hash function M(-) for the
two buckets can be viewed as choosing two independent
integer random variables from the interval [0,2%% — s]. We
now compute the probability that the value of B} x wy is
greater than the value of 55’ X wy. Let X and Y be the
two independent random variables from the interval [0, a]
and [0, b] respectively with uniform probability density. The
problem to be solved becomes computing Prob(X —Y > 0),
the probability that X is larger than Y. Let fx(x), fy(y),
fz(z) denote the density functions for X, Y,and Z = X -Y
respectively. We have

1

= 0<xr<a

€T = a - - ’

fx(@) {0 otherwise.
1

+ 0<y<b

= b - - ?

Fry) {O otherwise.

+o0 b
fro) = [axer s = [i

—o0
Because fx(z+y)is Ounless 0 < z+y <a, ie. —z <
y < a— z, assuming a > b, we have

Lt ay=t=z p<o<o,
fz(z) = ﬁfobdy:% 0<z<a-—b,
0 otherwise.

778

We can easily compute Prob(X —Y > 0) = Prob(Z >

0) = 22=%, which is not equal to -4 unless a = b.

One optional revision with minimum modifications of the
2'17:1 wy

e 18 o select | T
QT’LI), which will be considered as a compared scheme in
Section V.

code is to select by such that [= 7 :

max; (

B. Implementation

The implementation of the traffic splitting mechanism is
broken down into three components: initial path assignment,
load statistics update and bin reallocation. Our implemen-
tation is based on the original mechanism of group table’s
weighted buckets in OVS with minimum modification in user
space. Under the structure of a group, we insert a list of 32
bins. Each bin is associated with a bin id, a counter and a
bucket.

Initial path assignment: When the first packet of a flow
arrives, it is assigned to a specific bin. If the bin is already
mapped to a bucket, then packets from this flow are for-
warded through the path specified in the bucket. Otherwise,
a bucket having the largest underload will be assigned to the
bin.

Load statistics update: Our dynamic traffic splitting relies
on the updated statistics from each bucket and bin. In OVS
the datapath in user space polls the accumulated number of
bytes information for each flow from the kernel space once
every 0.5s. Our load statistics update requires the minimum
implementation complexity by only additionally updating
the counter of each bin according to the flow’s statistics
information. Then the rate (bytes per second) for each bin
and each bucket are calculated.

Bin reallocation: The function of bin reallocation can be
triggered by two events. A timer fires the bin reallocation
process once every ' seconds. It aims at improving the
accuracy of splitting for existing flows. In addition, it can
be triggered immediately by any reconfiguration of target
split ratios caused by TE routing re-computation. Once the
bin reallocation process is triggered, it first collects the load
information from bins and buckets, as well as the current
bin assignment. Then either the ILP problem (1) is structured
and solved by the GLK solver, or the implemented algorithm
described in Section III-C will be called. The output as the
new assignment strategy will be configured.

V. PERFORMANCE EVALUATION
A. Evaluation Environment

Testbed setup: We build a network topology in Mininet
consisting of two source subnets S7 and S5, one destination
subnet D and four paths between them as shown in Fig.
5. Each subnet represents multiple hosts. The propagation
delay (millisecond) is labeled on the corresponding link.
The bandwidth of each link is 100 Mbps. OVS with the
implementation of our traffic splitting mechanism is used
as the virtual switch.

Traffic trace: To study the flow-level Internet traffic
characteristics, we analyze the statistics of traces collected

Fig. 5. Network topology.

from CAIDA [1] and WIDE [2]. We select three destination
subnets and extract the corresponding packets for 60 seconds.
Before the performance evaluation, we would like to verify,
based on the traces, that the inaccuracy of splitting indeed
exists and there is enough room to improve the accuracy.
It was noted in [3], [14] that the skewness of flow size
distribution is the main cause of splitting inaccuracy. The
three traffic traces have different mean flow size and mean
throughput as illustrated in Table I, but their flow size
distribution and flow arrival rate distribution follow a similar
pattern. Fig. 6a shows that for each of the trace, over 70%
of the flows have size less than the mean flow size, while
the maximum flow size could be as large as 2000 times of
the mean (for trace 1 and 2). The small portion of super
large flows makes it hard for static traffic splitting to perform
accurately. We also plot the cumulative distribution function
of flow’s arrival rate in Fig. 6b. The x-axis shows the ratio
of the flow arrival rate to the mean throughput. Note that
the mean throughput of a trace is the aggregated arrival rates
for all flows over 60 seconds, and thus it is possible for a
particular flow’s arrival rate to exceed the mean throughput.
We observe that for each trace there exists a small number
of flows having arrival rates higher than 5% of the mean
throughput.

We replay the traffic trace using the tool tcpreplay which
reproduces the packet-level synthetic traffic of the collected
trace, both in terms of packet arrival time and packet size.
We use tcprewrite to overwrite the IP Address and Ethernet
Address of the packet’s header with the appropriate addresses
in our emulation network. The port numbers on the transport
layer are kept unchanged in order to maintain the entire flow
characteristics of the original trace. The traffic replay are
injected into the network from the source host.

Testing scenarios: Our experiments are conducted in two
scenarios. The path reassignment is necessary and valuable in
either of the two cases: 1) when facing non-uniform flow size
distribution, or 2) when the target split ratios are changed.
In the first scenario, we assume the target split ratios are
not updated so that our reassignment process dynamically
improves the accuracy of splitting caused purely by the
existing flows in the network. In the second scenario, we
take into account the update of target split ratios which is
reconfigured by dynamic TE and evaluate how our scheme
reacts in real time.

Compared splitting schemes: We consider 5 splitting
schemes in our evaluation.

779

TABLE I

FLOW-LEVEL PROFILE OF TRAFFIC TRACES

Trace 1D # total flows Flow size (Kbytes) l(\g/fgns;hroughput Flow arrival rate (Kbps) # flows 122 ;:;gt }?;wal rate
Mean Min. Max. ’ Mean Min. Max. 3% of mean 10% of mean
throughput throughput
1 6611 4.96 0.044 10655 4.37 5.46 0.016 | 5483.8 9 5
2 8403 128.04 | 0.06 | 233869 143.45 133.68 | 0.021 | 95946.4 19 6
3 3993 166.54 | 0.06 52069 88.67 163.16 | 0.017 | 17039.3 55 22

RA-alg: the algorithmic approach to our rate-aware traffic
splitting proposed in III-C.

RA-opt: the approach that finds the optimal solution by
solving the optimization problem (1).

OVS: the original weighted-splitting mechanism in group
table implemented in OVS.

OVS-revised: the revised algorithm for OVS we described in
Section IV-A.

MBD-/ADBR: a representative scheme of dynamic traffic
splitting based on the load statistics [9]. It first disconnects
multiple bins in the order of decreasing size from each
overloaded path until all paths are underloaded, and then
reconnects each of the disconnected bins to the path with
the largest underloaded.

Performance metrics:

The maximum overflow p and reassignment fraction A
are considered as the two primary performance metrics. p is
obtained by finding the maximum overflow fraction among
the four paths. The reassignment fraction A is measured by
summing up the fraction of traffic being shifted to a different
path at each time when the reassignment is triggered. We also
consider goodput and packet re-ordering fraction to evaluate
the network performance. Goodput measures the application-
level throughput that excludes retransmitted packets. Packet
reordering fraction is the percentage of packets that do
not advance the sequence number when arriving at the
destination.

1 —
7 —Trace-1

- Trace-2|
Trace-3)

—Trace-1
~~Trace-2

0.8

Trace-3

0.6

CDF
CDF

0.4

0.2

ol

10 103 10° 107 10° 10 102 10°
Flow size (bytes) Flow arrival rate

(ratio to the mean aggregated throughput)

(@ (b)

Fig. 6. CDF of flow size and flow arrival rate for packet traces.

B. Constant Splits

Equal splitting: We first evaluate the performance for
equal splitting which targets at splitting the traffic among the
four available paths evenly. The desired split ratio for each

path is 0.25. We replay the three 60-second traces and send
all traffic from the source host subnet S; to the destination
host subnet D;. In RA-opt and RA-alg, we set A to be 0.05
and K to be 6. The update time interval for RA-opt, RA-alg
and MBD-/ADBR are all 1 second.

Fig. 7 shows the maximum overflow fraction and reassign-
ment fraction over time for trace 1. The average performance
of accuracy among all three traces are shown in Fig. 9. OVS
and OVS-revised do not readjust the paths for existing flows.
Due to the flow dynamics and skewed flow size distribution,
the maximum overflow in these two schemes can be up
to 0.4, as shown in Fig. 7a. The other three schemes dy-
namically readjust the path assignment based on the current
load statistics, so the maximum overflow is significantly
reduced when they are used. Fig. 7b shows the fraction of
load being reassigned to different paths for MBD-/ADBR,
RA-opt and RA-alg. MBD-/ADBR reassigns as much as
4.51% of total load on average because it redistributes the
traffic load in a greedy manner and involves unnecessary
reassignment. RA-opt redistributes the load based on the
optimal solution, so it minimizes the maximum overflow
with only around 2.11% load being reassigned. Compared
to the optimal solution provided by RA-opt, RA-alg is more
conservative and shows the least reassignment fraction of
1.95%. It still achieves similar level of accuracy as RA-opt
and MBD-/ADBR but moves much fewer flows to different
paths than MBD-/ADBR.

o
®
N

c —
2 —ovs & ~RA-opt
© ---OVS-revised 510 —RA-alg
w06 MBD-/ADBR = MBD-/ADBR
H —RA-alg g s
T - -RA-opt L g
004 " € 6f
© £
1S c 4
502 2
£ @ 2f
3 ¥ S
= 0 o o
2

0 25 30 35 40
Time (s)

Time (s)

(a) Maximum overflow fraction. (b) Reassignment fraction.

Fig. 7. Equal splitting.

Unequal splitting: We next consider unequal splitting
amongst the four paths with split ratio 0.1: 0.2: 0.3: 0.4. As
we discussed in Section IV-A, the current splitting algorithm
implemented in OVS fails to perform correctly for weighted
splits even when the flow sizes are homogeneous. This is

780

verified in Fig. 8a and Fig. 9 which show much larger
maximum overflow and split ratio deviation for OVS than
OVS-revised in the case of unequal splitting. We observe the
similar performance comparison results as the equal splitting
case: RA-opt achieves the lowest maximum overflow with
around 1.87% reassignment fraction; the splitting accuracy
for MBD-/ADBR is close to RA-opt but causes 3.15%
reassignment on average; RA-alg has the lowest degree of
reassignment which is about 1.75% and a bit larger maximum
overflow and deviation of load distribution than RA-alg and
MBD-/ADBR.

d
™
o

c —
i<l ~ovs B ~RA-opt
8 ---OVS-revised 510 —RA-alg
o6 MBD-/ADBR £ MBD-/ADBR|
g —RA-alg S 8
= - -RA-opt w
004 £ 6
O £
£ E 4
502 >
E D @ 2
= o T o

20 25 30 35 40

Time (s) Time (s)

(a) Maximum overflow fraction.

(b) Reassignment fraction.

Fig. 8. Unequal splitting.

N
=]

[Jovs Clovs

g
230} [Jovs-Revised S [Jovs-Revised
2 [ERA-opt T 15 [ERA-opt
2251 [WRA-alg 3 MRA-alg
© EMBD-/ADBR © MBD-/ADBR
320 S
S
£ 510
3 a
E® 2
s10 3
£ 5 5
. EREREN | | mllm
Equal split Unequal split Equal split Unequal split

(a) (b)

Average reassignment fraction (%)

RA-opt RA-alg MBD-/ADBR
Equal split 2.11 1.95 4.52
Unequal split 1.87 1.75 3.15

(©)

Fig. 9. Performance comparison: a. Average maximum overflow fraction;
b. Average deviation of load distribution meausres the sum of the load frac-
tion’s deviation from each path’s target split ratio; c. Average reassignment
fraction.

Impact of parameters: Two parameters in our model
play important roles in the tradeoff between accuracy and
reassignment degree: the reassignment time interval 7' and
the weighting parameter A\. We evaluate their effects on the
performance by tuning one parameter while fixing the other.
The experiments are based on unequal splitting scenario with
RA-opt and the traffic trace replay.

The parameter A quantitatively determines how much
price the reassignment pays when reducing the level the
overflow. A = 0 means we do not consider any cost of
reassignment. The larger A, the more cautions to pay when

781

making changes to the original assignment. Table II shows
that as A increases, the average maximum overflow and
thus the deviation of average load distribution become larger
because it is more expensive to change the assignment. The
average reassignment fraction consequently is decreased. The
splitting accuracy and reassignment fraction is also affected
by the reassignment time interval 7', as is demonstrated in
Table III. Higher frequency helps to achieve smaller splitting
errors at the price of causing more load to be reassigned.

TABLE 11
IMPACT OF A WHEN T = 1s

X 0.01 0.05 0.08 0.1
Average maximum 2.02 6.23 731 8.75
overflow (%)
Average deviation of
load distribution (%) | 63 15 2.76 3.21
Average reassignment | ¢ g 1.87 1.14 0.76
fraction (%)
TABLE III
IMPACT OF T WHEN A = 0.05
T 0.5s 1s 5s 10s
Average maximum 375 6.23 8.52 9.34
overflow (%)
Average deviation of
load distribution (%) | O34 15 2.97 3.35
Average reassignment 5.46 1.87 0.66 0.29
fraction (%)

C. Dynamic Splits

We further evaluate the end-to-end performance when dy-
namic TE is adopted. We consider the objective of dynamic
TE as to balance the loss rate among multiple paths. To
simplify the dynamic TE behavior, we use two paths with
40ms and 100 ms round-trip time (RTT) in Fig. 5. Trace-
driven experiments capture the characteristics of Internet
traffic, but do not suffice to show the end-to-end network
performance of traffic splitting schemes. We generate 50 TCP
flows via iPerf from different hosts at the host subnet S; to
the destination subnet D;. Additional delays ranging from 0
to 20 ms are randomly added for these flows in order to make
the TCP flows heterogenous. Each buffer size is 3000 bytes.
We further inject a 60 Mbps UDP flow as the background
traffic at the host subnet So with the dynamic pattern shown
in Fig. V-C. Dynamic TE collects the packet loss information
for each interface and updates the target split ratios every 2
seconds via the group table API supported by OVS.

Fig. 10b and Table IV show the end-to-end performance
when dynamic TE works with different traffic splitting
schemes. We also compare with static TE which does not
react to the real-time loss to verify that dynamic TE indeed
brings benefits. The static TE configures constant target split
ratios 0.5:0.5 to be realized by OVS-revised in data plane.

It is observed in Fig. 10b that when the large background
flow is injected, the goodput under static TE scheme shows
considerable degradation because it does not move away any
TCP flows from the congested path. With dynamic TE, the
goodput also drops as soon as the background traffic is added,
but is able to climb up gradually since dynamic TE tries to
maintain the loss fairness by changing the split ratios. It is
further verified in Table IV. The aggregated loss rate sums
up the loss rate of the buffer associated with each interface.
The static TE has a much larger aggregated loss rate than the
dynamic TE. The nonzero packets reordering rate for static
TE shown in Table IV is due to the multicore design of OVS.

When new target split ratios are configured by dynamic
TE, OVS-revised redistributes the flows accordingly but the
error between the actual load distribution and the target
ones is not controlled. Therefore, the actual behavior that
dynamic TE observes deviates from expected. This triggers
the dynamic TE to further adjust the load distribution which
makes the target split ratios possibly fluctuate in a large
range. That is mainly why the goodput of OVS-revised is
lower and its loss rate and packets reordering rate is higher
than other splitting approaches, as is shown in Table IV. RA-
opt performs the most accurate splitting so the aggregated
loss rate is the minimum and it achieves the highest goodput
among all schemes. RA-alg has the minimum packets re-
ordering rate, but its goodput is slightly lower than RA-opt
because its splitting is not as accurate as RA-opt. MBD-
/ADBR invokes more path reassignment than necessary, so
high packets reordering rate is the main cause of its goodput
degradation.

o
o

m
5y _ ~ Static TE
= 2 150 —OVS-revised
o Ke) -
% g RA-alg
= 50 5 MA ol P £
o 2100 M’/A/ Mﬂ/y
3 B A ARV
o o N S
S 0] P VA VA
[}
crg 0 50

100 150 200 100 150 200

Time (s) Time (s)

(a) Background traffic pattern. (b) Goodput of the TCP flows.

Fig. 10. Goodput when background traffic are added.
TABLE IV
END-TO-END PERFORMANCE
Static OVS- MBD-
TE | revised | /ADBR | RA2g | RA-opt
Average
goodput 86.2 95.6 98.5 102.6 103.4
(Mbps)
Aggregated | ¢35 1.225 1.051 0998 | 0963
loss (%)
Reordering
packets (%) 0.374 1.252 1.143 0.805 0.829

VI. RELATED WORK

We classify the existing traffic splitting models into two
categories based on whether the current load information are
required in their path selection methods.

Load-Unaware:

Packet-By-Packet Round-Robin: The simplest model of
info-unware traffic splitting is packet-by-packet load balanc-
ing that selects individual packets amongst the alternative
paths in round-robin [16] and weighted round-robin fashion
[11].

Fast Switching: Cisco proposed fast switching [8] which
restricts the size of lookup table by only storing recently
seen flows in a cache. When the cache is used up, the oldest
entry is deleted in favor of the new one. The performance of
splitting varies depending on the size of the cache.

Hash-based: Hash-based approaches identify flow by ap-
plying hashing function to packets such that packets from
the same flow have an identical hashing value. With the
packet’s hashing value, direct hashing approaches select the
path taking modulo of the number of multiple paths [3]. Its
main limitation occurs when a path is added or removed
from the original path set, then a certain amount of flows
are redistributed.

Masking Operations: [7] and [15] both exploit the bit-
masking operations to achieve traffic splitting with finer
granularity, relying on the the matching entry feature of
OpenFlow.

Load-Aware:

Flowlet Aware Routing Engine (FLARE): [6] proposed
FLARE that split a flow into flowlets based on the inter-
arrival time of the flow. The timeout of a flowlet forwarding
rule is set on the level of path RTT. The amount of traffic
being reallocated mainly depends on the parameter of time
threshold. In wide area networks, the inter-arrival timeout
need to be large enough to maintain low risk of packet
reordering, resulting in limited quantity of flowlets and
limited room to adjust the load distribution.

Table-based Hashing with Reassignments: [4] performs
adaptive load reallocation based on the table-based hashing.
The redistribution decision is made by considering both the
traffic load information and the inactive time for each bin.
Only one bin being remapped at each time interval restricts
the improvement of splitting accuracy.

Single/Multiple Bin Disconnection and Reconnection: [9]
considers the bin disconnection and reconnection process
separately. A set of greedy algorithms are proposed and
evaluated that dynamically adjust the load distribution by
bin disconnection and reconnection for single or multiple
bins either in progressive or conservative manner.

REFERENCES

[1] The CAIDA UCSD Anonymized Internet Traces - February 2012.
http://www.caida.org/data/passive/passive_2012_dataset.xml.

[2] Wide backbone traffic traces. http://mawi.wide.ad.jp/mawi/
samplepoint-F/2017/201701101400.html.

782

[3] Z. Cao, Z. Wang, and E. Zegura. Performance of hashing-based
schemes for internet load balancing. In INFOCOM 2000. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE. IEEE, 2000.

[4] T. W. Chim, K. L. Yeung, and K.-S. Lui. Traffic distribution over
equal-cost-multi-paths. Computer Networks, 2005.

[5] S. Kandula et al. Walking the tightrope: Responsive yet stable traffic
engineering. In SIGCOMM, 2005.

[6] S. Kandula, D. Katabi, et al. Dynamic load balancing without packet
reordering. ACM SIGCOMM Computer Communication Review, 2007.

[7]1 N. Kang, M. Ghobadi, et al. Efficient traffic splitting on commodity
switches. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies. ACM, 2015.

[8] K.-C. Leung and V. O. Li. Generalized load sharing for packet-
switching networks. i. theory and packet-based algorithm. [EEE
Transactions on Parallel and Distributed Systems, 2006.

[9]1 R. Martin, M. Menth, and M. Hemmkeppler. Accuracy and dynamics
of hash-based load balancing algorithms for multipath internet rout-
ing. In Broadband Communications, Networks and Systems, 2006.
BROADNETS 2006. 3rd International Conference on. IEEE, 2006.

[10] N. Michael and A. Tang. Halo: Hop-by-hop adaptive link-state optimal
routing. IEEE/ACM Transactions on Networking (TON), 2015.

[11] A. K. Parekh and R. G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case. IEEE/ACM transactions on networking, 1993.

[12] S. Prabhavat, H. Nishiyama, et al. On load distribution over multipath
networks. I[EEE Communications Surveys & Tutorials, 2012.

[13] A. Shaikh et al. Load-sensitive routing of long-lived IP flows. In
SIGCOMM, 1999.

[14] W. Shi, M. H. MacGregor, and P. Gburzynski. Load balancing for
parallel forwarding. IEEE/ACM Transactions on Networking (TON),
2005.

[15] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou. Flexible
traffic splitting in openflow networks. IEEE Transactions on Network
and Service Management, 2016.

[16] C. Villamizar. Ospf optimized multipath (ospf-omp). Work in Progress,
1999.

[17] H. Wang et al. COPE: traffic engineering in dynamic networks. In
SIGCOMM, 2006.

783

