
End-to-end Network Throughput Optimization
Through Last-mile Diversity

Ning Wu, Ao Tang
School of Electrical and Computer Engineering

Cornell University
Ithaca, USA

nw276@cornell.edu, at422@cornell.edu

Abstract—In this paper we propose a platform that optimizes
the available end-to-end throughput in real time through overlay
networks. With the knowledge the network topology and con-
ditions, it strives to achieve the optimal end-to-end throughput
by exploring the last-mile diversity. It allows the flexible and
responsive per-end-user selection of the edge node for the overlay
networks, and thus can fast recover from network failures and
performance degradation. We present our design of the end-to-
end throughput optimization system with detailed discussion of
each component including dynamic routing engine, performance
monitor and information exchange. Our experimental results
from a real-world deployment show that compared to the
performance-oblivious routing, it not only brings up to 5 times
throughput gains in the presence of 0.05% loss, but also improves
20% throughput when facing delay increase in the original path.

Index Terms—End-to-end Throughput; Routing; Overlay Net-
works

I. INTRODUCTION

Internet is known to be unreliable. In spite of various levels
of Service Level Agreement (SLA) offered by Internet Service
Providers (ISP), most individual users and enterprises still
suffer from performance degradation from time to time such
as low speed, large delay and high packet loss rate. To improve
the reliability of user’s network experience, the very first
question is how to realize a global end-to-end control without
which any effort to seriously boost network performance is
bound to fail. This however has been a highly complex issue
in the Internet, for two reasons. First, the current Internet is
an aggregation of a large number of networks owned by many
ISPs with different economic interests [2]. The standard way to
obtain end-to-end SLAs is to create private networks through
business contracts among them. This obviously is costly and
takes lots of time to realize. Second, the management and con-
figuration complexity of Internet hardware routers produced
by major vendors is substantial. The flexibility, availability
and cost efficiency is increasingly limited by those hardware
routers. The prevailing routing protocols being used in today’s
Internet such as the Border Gateway Protocol (BGP) [1] are
known to have limitations in realizing any performance-aware
dynamic routing solution such as [4]–[7]. BGP routing neither
incorporates the information of path performance or link
capacity, nor allows fine-grained overriding of BGP-specified
forwarding behavior [3]. With these two severe constrains,

network providers and operators face great difficulties in
realizing reliable, high-performance routing control.

In face of the above mentioned challenges in the Internet
infrastructure, overlay is an enabler of achieving flexible con-
trol of routing, requiring no changes in the underlay Internet.
Overlay network architecture places a virtual network over
the physical infrastructure, leveraging the dynamic control
of network resources on an abstraction layer. Although there
exist various overlay-based techniques of performance-aware
routing on fast timescale [8], [9], they focus on routing inside
the overlay network whereas the performance of the upstream
and downstream path in the last mile for the end users is
beyond their control. In the case where the communication
between the end user and the edge node is through the
public Internet, the end-to-end performance can still be largely
affected by any unpredicted delay and congestion over the
Internet. In spite of lacking control with the last-mile route,
more reliable end-to-end throughput is possible if there exists
diversity and flexibility in selecting the edge node.

In this paper, we propose the design of a platform that
allows flexible and responsive routing control of the end-
to-end path. We present that exploring the geographical and
physical diversity in the last-mile can effectively avoid the
failure and congestion in the last-mile once being detected, and
thus to a large extent provide end-to-end reliability and high
performance. Furthermore, the throughput performance can be
jointly optimized if we combine the real-time traffic conditions
of both the core network and the last-miles to make the end-to-
end routing decisions. The remainder of the paper is organized
as follows: Section II discusses the background of overlay
network and the technical challenges in achieving our design
goals. Section III describes the overall system architecture
together with the design of each component. Section IV
presents experimentally the throughput improvement over an
overlay network with the system deployment we proposed.

II. BACKGROUND

A. Overlay Network

Various overlay networks have been designed and developed
for different purposes since a few decades ago [10], [11], [13].
Figure 1 shows an example of the end-to-end path through an
overlay network. The Point of Presence (PoP), as the interface
point in each location between the overlay network and the end

2018 52nd Annual Conference on Information Sciences and Systems (CISS)

978-1-5386-0579-0/18/$31.00 ©2018 IEEE

users, is responsible for assisting the application traffic to enter
or leave the overlay core network. Traffic from end users are
directed into the ingress PoP, forwarded through the virtual
overlay networks to the egress PoP, and ultimately delivered
to the destination. Naturally, we break down the end-to-end
path into three parts: the virtual overlay network and the two
last-miles referring to the connections between the edge PoPs
and the end users on both sides.

[13] proposed the Resilient Overlay Network (RON) that
could fast recover from failures and performance issues of
the Internet by taking advantage of underlying Internet redun-
dancy. Although the overlay network is well developed, the
existing performance-aware routing techniques via the overlay
network are mostly dedicated to the core network without
jointly considering the last miles. As overlay network is widely
used particularly in Content Delivery Networks (CDN), end-
to-end reliable performance is a major design goal that most
CDNs focus on. However, their techniques are not applicable
to the end-to-end performance problem with a pair of end
users, because the servers under this context belong to a part
of the CDNs which are controlled within the core networks
rather than end hosts outside. Furthermore, thee solutions to
CDNS only apply to web-based applications traffic.

B. Last Mile

Routing within the core network is managed by the routing
protocols implemented in the overlay networks, whereas the
routes for the last-mile are beyond the control of the overlay
network. Therefore, it is nontrivial for the overlay network
to react to the congestion or failure occurred in the last-mile
and guarantee the end-to-end performance. For example, if the
end user in Figure 1 experiences much lower throughput and
the congestion is detected to be in the last-mile connection
between the ingress PoP and the end user, then changing the
last-mile path may possibly improve the end-to-end perfor-
mance. [8] and [9] explore the diversity of the routes between
the end user and a fixed PoP in peering edge architecture.
Our approach selects the route among multiple PoPs and
jointly considers the performance of the last miles and the
core, which is not only different but also complimentary with
their solutions. Moreover, it is applicable to other architectures
without multiple routes options between the end user and one
PoP. To achieve the design goals, the main technical challenge
lies in how to flexibly control the route for the last-mile.

The state-of-art approaches to attracting end-user traffic
to the core network include DNS [12], [14] and Anycast
[16], [17]. Most DNS services do not consider the real-
time performance when deciding the ingress PoP. Even for
those who consider performance metrics such as latency, the
measurement is done on coarse scale in both temporal and
spatial dimension (at most once per day, only measure latency
between regions). Furthermore, the DNS service is not aware
of the end-user rather than the local DNS resolver on behalf
of the end user which could be geographically far away or
experience completely different performance.The server will
make decision on the ingress POP for each resolver rather than

	

Ingress	PoP

egress	PoP

Fig. 1. End-to-end path through an overlay network.

the actual clients, so the performance information for the client
is not possible to be mapped to the resolver. One solution is the
EDNS client-subnet-prefix standard (ECS) [18] that allows the
resolver to specify a prefix of the client’s IP when requesting
domain name translations on behalf of a client. This enables
the end-user mapping on the level of client subnet, but it does
not consider the specific end-to-end performance for each end
user [15]. Moreover, the proposed protocol is far from being
adopted by all ISPs. Anycast approach makes the end user’s IP
address to be transparent. However, it lacks the flexibility of
performance-aware routing control because the performance
metrics used in BGP protocol do not represent the real-time
performance information.

III. DESIGN

The goal of our work is to optimize the end-to-end through-
put per end user among the last-mile diversity. In particular,
when the available throughput of the current path becomes
consistently lower than some other path, the system is expected
to quickly detect it and switch to the better path no matter
the issue is caused by the core network or the last mile.
This requires the system to have the ability of fine-grained
performance monitoring, flexible routing control, and highly
responsiveness to performance degradation. We make the
following assumptions in our design. First of all, we focus our
attention on the throughput performance for a single TCP flow.
Multiple flows can always achieve high aggregated throughput
at the price of packet loss due to bandwidth competition.
Secondly, we assume there are multiple end-to-end paths that
satisfy the customer’s performance requirement. Without this
assumption, it is not possible to explore the last-mile diversity
to guarantee reliable performance when the initial path fails.
Furthermore, the routing for the last mile between the end
user and a given ingress/egress PoP is via the Internet which
is beyond our control. Last but not least, we assume the
connection of any application is through the domain name.
The application of the traffic is not limited by web content,
but arbitrary application such as file transfer, remote login, and
real time streaming.

A. Overall Architecture

Figure 2 shows the overall architecture of our end-to-end
throughput optimization design. It consists of two critical

Core	network

Edge	Server

Data	Forwarding

Core	Monitor

Communication

End-user	Agent
Last-mile	Monitor

Routing	Engine

Communication

Source
End-user	Agent
Last-mile	Monitor

Communication

Destination

Edge	Server

Data	Forwarding

Core	Monitor

Communication

Edge	Server
Edge	Server

Fig. 2. End-to-end throughput optimization system design.

components: the end-user agent and the edge server. The edge
server distributed in each PoP monitors the performance of
the core and shares the statistics with the end-user agent.
It also performs data forwarding on the overlay network.
The end-user agent is deployed in the end user’s device,
responsible for controlling the route, monitoring the last-mile
performance, and communicating with the core network. The
last-mile performance statistics monitored at the destination
agent is propagated backward to the source end-user agent.
As the end-user agent communicates with the edge server,
decisions on which ingress and egress PoP to select can be
made by the source agent based on the real-time understanding
of the network.

Our design of monitoring three segments separately has
the following advantages: it requires less overhead for perfor-
mance monitor in the core network because the edge server
only need to measure the performance per overlay link but not
per flow in the core; it takes less time to respond to outage and
performance failure occurred in between the end user and the
ingress PoP; it does not impose any limitations on the routing
in the core, so routing in the core network can be flexibly
controlled and customized by the overlay network.

B. End-to-end Dynamic Routing

Consider a core network with a set P of PoPs worldwide.
For a given user with a pair of source s and destination d, we
define a set of ingress PoP candidates Is ∈ P for the source s
and a set of egress PoP candidates Ed ∈ P for the destination
d. The end-to-end path denoted as ps,d is a composition of
three subpaths ps,i, pi,e and pe,d. We assume that inside the
overlay network the route between any ingress and egress PoP
is controlled by specific performance-aware routing algorithm
deployed. Note that the route of the last mile is beyond the
control of the overlay network, so controlling the end-to-end
routing turns to be determining the ingress PoP and egress
PoP for a given source-destination pair.

We aim to ensure reliable performance of available TCP
throughput and dynamically update the routing to react to any
performance failures in the currently selected path. It is known
that TCP exhibits complex behavior under window control
and congestion control. The available bandwidth is affected by
multiple factors including buffer limits, physical capacity and

link characteristics. In path selection, only link conditions of
latency and loss rate vary among multiple paths while holding
all the physical conditions to be identical. As a result, the
performance metrics we use in path selection is the relative
evaluation of the available bandwidth given the current delay
and loss conditions in each path. The performance metrics are
based on the following well-known Mathis model [19]

Throughput =
MSS × C

RTT ×
√
loss

,

where C is a constant that incorporates the loss model and the
acknowledgment strategy. The throughput is linearly propor-
tional to 1/RTT ×

√
loss in the presence of packet loss. Here

we only evaluate the TCP relative performance to compare
among candidate paths, rather than computing the precise
value. To find the optimal path that achieves highest TCP
throughput, we consider RTT ×

√
loss as the cost estimation

for each end-to-end path. The performance cost from s to d is
dependent of the choice of the ingress PoP i and egress PoP
e, denoted as wi,e

s,d. The optimal path is selected by finding
the optimal ingress and egress PoP, denoted as i∗ and e∗, that
result in the least path cost:

wi∗,e∗

s,d = min
i∈Is,e∈Ed

wi,e
s,d.

For any i ∈ Is and e ∈ Ed, the end-to-end path cost from s
to d is given by

wi,e
s,d = T i,e

s,d

√
Li,e
s,d,

where T i,e
s,d and Li,e

s,d is the latency and loss metrics of the
end-to-end path given the ingress PoP i and egress PoP e.
Let tx,y and lx,y denote the latency and loss rate that are
actually measured between any arbitrary node x and y. The
latency metrics T i,e

s,d are additive on the end-to-end path in the
following form:

T i,e
s,d = ts,i + ti,e + te,d.

The delay and loss rate in the last miles are monitored by
the end-user agents in the source and destination end hosts.
They use active probing to measure the loss and latency in
real time for each ingress/egress PoP candidate. Note that a
limit exists in the granularity of loss rate being measured. If
the interval of each probing is τ , then the loss rate that can
be detected during probing time period ∆p is no smaller than
τ/∆p, which we denote as σ. As a result, any loss rate below σ
is reported as 0. Since the throughput is linearly proportional
to 1/RTT in the case of zero packet loss, we set a lower
bound for the end-to-end aggregated loss rate to characterize
the cost evaluation for zero loss:

Li,e
s,d = max{1− (1− ls,i)(1− li,e)(1− le,d), σ}.

In the core network, edge servers do not measure the
performance metrics for a particular user pair or application,
but rather the performance of the overlay link between two

PoPs which is determined by the current aggregated traffic.
Routing in the core relies on the specific implementation of
the overlay networks which is independent of the selection of
ingress and egress PoPs for end-to-end path routing. Being
unaware of how traffic is routed in the core network, the end-
user agent at the source determines the ingress and egress PoP
based on the three sets of statistics collected.

C. End-user Agent

End-user agent is the key component in order to realize
flexible fine-grained routing control and real-time monitoring
in the last mile of the end-to-end path. The agent is deployed
in the end user’s device, performing mainly three functions:
end-to-end routing control, last-mile performance monitor, and
communication with edge servers. We here describe each of
the functions in detail.

Routing control: The agent in the source end user controls
the route for the end-to-end path, excluding the sub-route
between the ingress PoP and egress PoP which is controlled
within the core network independently. The routing control on
the end-user agent involves three steps: determining the ingress
and egress PoP, directing traffic to the correct ingress PoP
and notifying the core network with the correct egress PoP.
The ingress and egress PoP are determined by consulting the
solutions for the optimal path described in Section III-B. The
source agent stores the delay and loss rate metrics collected
for each subpath, as are required in the routing computation.
Table I shows an example of the routing table maintained by
the source agent with an update interval of ∆r. It contains
the Current Route being used with respect to the ingress and
egress PoP, as well as the Proposed Route that has the least
end-to-end path cost. In order to avoid path flipping, the new
routing decision is made in a conservative and cautious way
such that the Proposed Route becomes the Selected Route only
if either of the two conditions holds: it has a cost below 80%
of the Current Route’s cost; or it is consistently the Proposed
Route for the last three update cycles. Otherwise the Selected
Route remains to be the Current Route. Furthermore, we insert
the Backup Route into the routing table which represents the
best egress PoP for each given ingress PoP other than the one
associated with the Selected Route.

If an update of Selected Route involves the change of the
ingress PoP, the end-user agent in the source will modify the
local DNS hosts file with the corresponding ingress PoP IP
address so that any traffic destined to the given destination
are redirected to the ingress PoP provided. Besides attracting
traffic to the correct ingress PoP, the agent need to notify the
selected ingress PoP about the selected egress PoP, and notify
each alternate ingress PoP about its corresponding Backup
Route to have a default route installed. This notification
messages are transmitted through the communication channels
between the agent and edge servers.

Performance Monitor: End-user agent uses active probing
to measure the RTT and loss rate between the source and
ingress PoP, and between the destination and egress PoP.
Originating the probing packets at the end-user agent for

TABLE I
ROUTING TABLE MAINTAINED IN THE END-USER AGENT.

Ingress
PoP

Egress
PoP

Cost Current
Route

Proposed
Route

Selected
Route

Backup
Route

i1 e1 wi1,e1 × × × ×
i1 e2 wi1,e2 X × × X
i2 e1 wi2,e1 × X X
i2 e2 wi2,e2 × × ×

the last-mile measurement prevents the probing from being
blocked by the firewall in the end user. The edge server
deployed in ingress and egress PoP is responsible for replying
to the received probing packets. The probing packet is sent
once every τ time interval. By checking the sequence numbers,
the end-user agent measures the RTT and the round-trip loss
rate based on the reply packets every ∆p time period. ts,i and
te,d are computed by averaging the RTTs among all probing
packets. ls,i and le,d are viewed as the fraction of lost probing
packets over all sent packets. Since we set symmetric routing
for the forward and backward paths, it is reasonable to estimate
the loss rate for the round trip.

Communication: The communication between the end-
user agent and the edge servers include three types of control
messages: handshake messages, measurement statistics and
notification of egress PoP selection. At the startup stage of
the end-user agent, the source agent discovers the alive edge
servers via ping packets and selects the K closest PoP into
the ingress PoP set Is based on the RTTs of the ping packets.
Similarly, the destination agent selects the set of egress PoP
Ed. The relationship of source and ingress PoP is confirmed by
handshake messages exchange between the end-user agent and
the edge server of the selected PoP. Once the control channel
is established in the last miles, the source agent periodically
pulls the measurement statistics of the core network from the
edge servers of the ingress PoPs, and pushes notification of
egress PoP selection to the corresponding edge servers. The
last-mile performance statistics measured by the destination
end user are propagated back to the source end user via the
current returning path.

D. Edge Server

The edge server is distributed in each edge PoP of the
core network. It monitors the latency and loss rate between
itself and each other PoP using active probing. Because the
underlying physical infrastructure is invisible for the overlay
network, it is even more important to be responsive to failures
or changes in the network conditions. The performance of the
overlay link between any two PoPs is expected to be measured
on fast timescale. Once receiving pull request from the source
ingress PoP, the edge servers immediately reply back with the
latest statistics. The other job of the edge servers is to perform
data forwarding. Various techniques exist in realizing data
forwarding through overlay networks. One approach being
widely adopted is to encapsulate the IP packets with an
overlay header that contains the address information of the

2018 52nd Annual Conference on Information Sciences and Systems (CISS)

overlay node. Another way is to manipulate the IP addresses
in the original packet without inserting additional header. By
changing the destination IP address of the original packet to
the proper edge nodes, the traffic from end users are directed to
the overlay network. Since the original destination is missing
in the packet header, this approach requires a mapping between
the source and the edge nodes to be stored in the edge nodes
before user’s traffic arrive. We use the latter mechanism in
our experiments to avoid the additional overhead caused by
encapsulation and decapsulation.

IV. EVALUATION

In this section, we evaluate our design of end-to-end
throughput optimization. We describe the testbed setup and
testing scenarios in Section IV-A, and present the experimental
results in Section IV-B that show the throughput improvements
achieved.

A. Testbed Setup

We set up an overlay network testbed worldwide shown in
Fig on Microsoft’s Azure cloud platform. The overlay network
topology consists of 8 PoPs in different geographical locations,
being connected via vxlan tunnel. Software switch is running
in each of the PoP, and Open Shortest Path First (OSPF) is
implemented as the routing protocol within the core network.
As we mentioned above, routing inside the core network is
invisible to the end-user agent. The end-user agent is deployed
in the end users located in Ithaca and San Francisco, and the
edge server is running in each PoP. We set probing interval
τ to be 3ms, and both the measurement duration ∆p and the
agent’s routing update interval ∆r to be 3 minute. Therefore
the minimum detectable loss rate σ is 1/60000.

We measure the throughput for a single TCP flow in the
form of the file transfer speed via scp from the end user
in Ithaca to the end user in San Francisco The file of size
2Gbits is transferred every 30 minutes. We further choose
the size of ingress PoP set to be 3, and egress POP set to
be 2, to reasonably bound the last-mile delay. At the startup
stage, the source agent discovers its ingress PoP set Is to
be {Richmond, Toronto and Chicago}. The destination agent
discovers its egress PoP set Ed to be {San Francisco, Seattle}.
Our evaluation of the end-to-end throughput optimization
considers network condition changes in either the last mile or
the core network. We compare the throughput of our routing
solutions against the throughput using the geographically
closest ingress and egress PoP which is Richmond and San
Francisco respectively.

B. Experimental Results

Loss in the last mile: We evaluate the effectiveness
of our system when facing loss in the current last mile.
Internet is possible to suffer from loss at any point of the last
mile, but here we simplify the testing scenarios by simulating
the loss at the interface of the edge PoP to present the
proof of concept. The loss is simulated using the netem [21]
functionality provided by Linux tc tool. The measurement of

Chicago

San	Antonio

Sao	Paulo

Toronto

Richmond

Seattle

Denver

San	Francisco

Ithaca

Fig. 3. Network topology.

00:00 02:00 04:00 06:00 08:00

time

0

10

20

30

40

50

60

T
C

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Dynamic reroute

Static route

(a)

00:00 02:00 04:00 06:00 08:00

time

0

10

20

30

40

50

60

T
C

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Dynamic reroute

Static route

(b)

Fig. 4. End-to-end throughput in the presence of loss in the last mile: (a)
between the source and the ingress PoP, (b) between the egress PoP and the
destination.

TCP throughput for the current selected path is sampled every
30 minutes by performing the file transfer.

In the first scenario we imposed loss onto ingress PoP.
Figure 4a shows the throughput results of each measurement
sampling. At the beginning, the selected ingress PoP was
consistently Richmond. 0.05% loss was added to Richmond
at time 2:15. In the presence of loss, the throughput of the
original path significantly dropped down to less than 10 mbps.
With the ability of monitoring the real-time performance and
exploring the route diversity, our system changed the ingress
PoP from Richmond to Toronto. Around 15% performance
degradation after reroute was mainly caused by the delay
increase in the new path. We removed the simulated loss rate
at time 6:15. Fig 4a further demonstrates that our system is
also able to improve the performance by finding better path if
existing.

In the second scenario, we considered adding 0.05% loss
on the current egress PoP (San Francisco) between time 2:15
and 6:15. As illustrated in Fig 4b, the above 80% throughput
drop for the static path is similar to that in the first scenario.
The destination agent detected the loss in the last mile within 3
minutes. With the knowledge of the loss increase in the current
path, the source agent selected an alternate path with Toronto
as the ingress PoP and Seattle as the egress PoP, resulting in
around 20% throughput decrease on average due to the delay
growth.

Loss and failure in the core: We next evaluate how

00:00 02:00 04:00 06:00 08:00

time

0

10

20

30

40

50

60

T
C

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Dynamic reroute

Static route

(a)

00:00 02:00 04:00 06:00 08:00

time

0

10

20

30

40

50

60

T
C

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Dynamic reroute

Static route

(b)

Fig. 5. End-to-end throughput in the case of: (a) loss increase in Denver PoP,
(b) failure in San Antonio PoP.

our system reacts to network condition changes in the core
network. Although the routing inside the core network is
uncontrollable and invisible for the end-user agent, it strives
to select the best pair of ingress and egress PoP among all
candidates, with the real-time information of latency and loss
rate between each pair collected from the edge servers. Our
evaluation in this part involves the cases of unexpected loss
increase and link failure in the core network. Fig 5a shows the
throughput results when we simulated 0.05% loss in Denver
PoP from time 2:15 to 6:15. Our end-user agent in the source
learned about the loss increase in the subpath and selected
an alternate path with Toronto as the ingress PoP and San
Francisco as the egress PoP.

Lastly, we failed San Antonio PoP and assumed the routing
strategy implemented in the core network was able to detect
failures and reroute accordingly. In Fig 5b, the line of static
failover represents the case that the ingress and egress PoP
remained statically to be Richmond and San Francisco, while
the core network rerouted traffic from Richmond PoP to San
Francisco PoP through Toronto to avoid the failed node. With
dynamic reroute, the source agent updated the ingress PoP to
be Toronto once finding this path had a smaller end-to-end
path cost. The new path selected by the agent outperforms the
static failover solution by 20% higher throughput.

V. CONCLUSION

We propose a platform for last-mile route control in overlay
network architecture. It aims at optimizing the end-to-end
throughput by exploring the last-mile diversity based on the
network topology and conditions. In this paper we present our
design of each component in the system. We further carry out
experiments in an overlay networks with the deployment of
our end-to-end throughput optimization solutions. The experi-
mental results demonstrate that the end-to-end throughput can
be significantly improved in face of network condition changes
in both loss and latency.

REFERENCES

[1] Rekhter, Yakov and Li, Tony and Hares, Susan, “RFC 4271: A Border
Gateway Protocol 4 (BGP-4),” RFC 4271, Internet Engineering Task
Force, 2006.

[2] Clark, David, “The Design Philosophy of the DARPA Internet Proto-
cols,” ACM SIGCOMM Computer Communication Review, 1988.

[3] Caesar, Matthew and Rexford, Jennifer, “BGP Routing Policies in ISP
Networks,” IEEE Network, 2005.

[4] Elwalid, Anwar, Cheng Jin, Steven Low, and Indra Widjaja, “MATE:
MPLS adaptive traffic engineering,” INFOCOM 2001.

[5] Kandula, Srikanth, Dina Katabi, Bruce Davie, and Anna Charny, “Walk-
ing the tightrope: Responsive yet stable traffic engineering,” ACM
SIGCOMM Computer Communication Review, 2005.

[6] Alizadeh, Mohammad, et al., “CONGA: Distributed congestion-aware
load balancing for datacenters,” ACM SIGCOMM Computer Commu-
nication Review, 2014.

[7] Michael, Nithin, and Ao, Tang, “Halo: Hop-by-hop adaptive link-state
optimal routing,” IEEE/ACM Transactions on Networking (TON) 23.6
(2015): 1862-1875.

[8] Yap, Kok-Kiong et al., “Taking the Edge off with Espresso: Scale, Re-
liability and Programmability for Global Internet Peering,” Proceedings
of ACM SIGCOMM, 2017.

[9] Schlinker, et al., “Engineering Egress with Edge Fabric: Steering Oceans
of Content to the World,” Proceedings of ACM SIGCOMM, 2017.

[10] Hagens, R. A., M. T. Rose, and N. E. Hall. “Use of the Internet as a
Subnetwork for Experimentation with the OSI Network Layer,” Internet
Engineering Task Force, Feb 1989. RFC 1070.

[11] Eriksson, Hans. “Mbone: The multicast backbone,” Communications of
the ACM 37.8 (1994): 54-61.

[12] Guardini, Ivano, Paolo Fasano, and Guglielmo Girardi. “IPv6 Opera-
tional Experience within the 6bone,” Proc. Internet Society (INET) Conf,
2000.

[13] Andersen D, Balakrishnan H, Kaashoek F, Morris R. “Resilient overlay
networks,” ACM, 2001.

[14] Nygren E, Sitaraman RK, Sun J. “The akamai network: a platform
for high-performance internet applications,” ACM SIGOPS Operating
Systems Review, 2010.

[15] Chen F, Sitaraman RK, Torres M. “End-user mapping: Next genera-
tion request routing for content delivery,” ACM SIGCOMM Computer
Communication Review, 2015.

[16] Ballani, Hitesh, and Paul Francis. ”Towards a global IP anycast service.”
ACM SIGCOMM Computer Communication Review, 2005.

[17] Katabi, Dina, and John Wroclawski. ”A framework for scalable global
IP-anycast (GIA).” ACM SIGCOMM Computer Communication Re-
view, 2000.

[18] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari. “Client
Subnet in DNS Requests,” IETF Draft draft-vandergaast-edns-client-
subnet-02, July 2015.

[19] Mathis, Matthew, et al. “The macroscopic behavior of the TCP conges-
tion avoidance algorithm.” ACM SIGCOMM Computer Communication
Review, 1997.

[20] https://azure.microsoft.com/.
[21] https://wiki.linuxfoundation.org/networking/netem.

2018 52nd Annual Conference on Information Sciences and Systems (CISS)

