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Abstract— This paper analyzes fast adaptive traffic engi-
neering from a feedback control perspective. We provide a
model that characterizes the system parameters’ effects on
the performance of the dynamic routing system. This allows
quantitative analysis of adaptive traffic engineering control
laws and its design parameter choices. We then specialize the
general framework in two representative network topologies
and derive the stability conditions for their dynamic routing
systems. Experiments are carried out to compare against our
theoretical predictions considering two forms of adaptive traffic
engineering control law as examples. Together they provide
systematic insights on the relations among several network
factors and the intrinsic tradeoff among different network
control objectives.

I. INTRODUCTION

Traffic engineering (TE) aims at improving the network
performance by effectively mapping the traffic demand onto
the network topology. In recent years, SDN [1] makes it more
feasible to update routing frequently, and thus motivates
the fast adaptive TE which gradually adjusts the routing
decisions at high frequency according to the network states
and loads in real time [2], [3]. Fast adaptive TE solutions [4],
[6], [5], [7], [8], [9] become increasingly attractive because
of their potential ability to fast react to the time-varying
traffic demand as well as network failures and better utilize
the network resources.

Any fast adaptive TE technique introduces more than one
system parameters into their design. This is mainly due
to the consideration of the intrinsic performance tradeoff
between stability and responsiveness. On one hand, adaptive
TE is expected to react to any network changes and traffic
fluctuations as quickly as possible; on the other hand, it is
supposed to keep the system stabilized in the steady state to
prevent routing oscillation. In the real networks, the stability
and responsiveness are affected by multiple factors, from
design parameters in the control laws to engineering factors
such as propagation delay, measurement noise. Moreover, a
systematic understanding of how the factors interact with
each other is nontrivial. Therefore, it is challenging to
quantitatively analyze the impacts of the system parameters
on the performance metrics for a given adaptive TE solution,
let alone to best strike the performance tradeoff.

In this paper we provide a framework for analyzing the
performance of any given adaptive TE solutions. We take
a comprehensive approach and form a model that charac-
terizes three critical parameters: (i) the step size in the TE
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control law which determines how much to move along the
descending direction at each iteration; (ii) the update interval
of the routing computation which defines how frequently the
routing strategy changes; and (iii) the physical propagation
delays on the network. Being reactive benefits from large
step size and frequent update, whereas maintaining stability
requires cautious steps and small system noise which is sen-
sitive at high frequency. We analyze the intrinsic interactions
of these parameters in two representative case studies. Our
experimental results further provide insightful observations
of their effects on the network performance.

The rest of the paper is organized as follows. In Section
II, we describe the general model of the fast adaptive TE
system, taking the system parameters into consideration. In
Section III we specialize the model to two typical exam-
ples of network topology: single-link case and shared-link
case, and analyze the internal relations of the parameters.
In Section IV, the model and analysis are validated with
the experimental results from Mininet [10] emulations, and
based on the results we further discuss how the network
performance is affected by the parameters. We conclude in
Section V.

II. MODEL

In this section, we propose the model that is used to
analyze the fast adaptive TE system. In general, any real-time
adaptive TE solutions can be viewed as a feedback control
system (as is illustrated in Figure 1): the network itself is the
plant which evolves with varying traffic demand input as well
as the routing strategy being updated by some routing engine
as the controller; periodically the metrics of the network state
is measured and fed back to the routing engine; the routing
engine then computes the TE routing solutions based on the
state information obtained and configures the new routing
strategy to the network.
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1Fig. 1. Adaptive TE control diagram.



Suppose a network consists of a set of users (pairs of
ingress-egress nodes) I, and a set of links L. Each link l
has a capacity cl. We assume the packets are routed based on
source routing, meaning that the ingress router of a packet
determines the specific path for the packet among all pre-
defined paths. Each user i ∈ I has demand di to send from
source to destination via a set of paths P where a subset
Pi ⊆ P consists of all feasible paths that belong to user i.
Each path k ∈ P is composed by a set of directed links,
denoted as Lk. Suppose the number of paths and links in
the network is K and L respectively. We further denote an
L×K matrix R0 = (rlk) to represent the link composition
of each path such that

rlk =

{
1, if l ∈ Lk,
0, otherwise.

For the traffic belonging to user i, the routing engine de-
ployed in its ingress router decides on how much percentage
of di is routed to each path k ∈ Pi. The routing decisions
are made according to the path metrics and the control law
defined by the adaptive TE algorithm. Let the state vector
be x ∈ RK×1 where the component xk represents the path
metric for path k. The control vector is denoted as u ∈ RK×1
where the component uk is the split ratio for path k. The split
ratios of paths for user i satisfy that

∑
k uk(t) = 1,∀k ∈ Pi.

The control law for adaptive TE follows some function f(·)
such that

u̇(t) = f
(
u(t), x(t)

)
.

The path metrics are defined based on some performance
objectives such as the sum of the utilization of all links on
the path, the maximum link utilization on the path, or the
total latency along the path, etc. The performance of a link is
affected by the aggregated traffic from different user’s paths
that share the same link, which in turn determines the path
metrics. Thus depending on the performance objective, the
path metrics can be expressed as a function g(·) of the split
ratios for each path:

x(t) = g
(
u(t)

)
.

We consider a specific path metric that is defined as the
maximum utilization of all the links along a path. In the
delay-free case, the utilization of link l at time t, denoted as
wl(t), is given by

wl(t) =

∑
j:l∈Lj uj(t)di(t)

cl
, i : j ∈ Pi,

where user i is the owner of path j. So the metric for path
k is given by

xk(t) = max
l∈Lk

wl(t)

cl
.

We further consider a specific control law as follows

u̇k(t) = α

(∑
j∈Pi xj(t)

Ki
− xk(t)

)
,∀k ∈ Pi, (1)

where α is the step size as a tunable parameter, and Ki is
the number of paths that belong to user i. We introduce the
Ki×Ki symmetric matrix Mi = (mi

j,k) for user i such that

mi
j,k =

{
1− 1

Ki
, if j = k,

− 1
Ki
, otherwise.

To express the system in matrix form, let P0(t) = (pk,l(t))
be the K × L matrix of the path metric function, with
pk,l(t) = 1 if utilization of link l is the maximum along
path k, and 0 otherwise. Furthermore, let Di(t) ∈ RKi×Ki
be the Ki × Ki diagonal matrix of demand for user i’s
paths, i.e. Di(t) := diag(di(t)), and D(t) ∈ RK×K be the
K ×K diagonal matrix of demand for all users’ paths, i.e.
D(t) := diag(Di(t)). Finally, let M := diag(Mi) ∈ RK×K ,
C := diag( 1

cl
) ∈ RL×L. Then the state space equations are

in the following form:

u̇(t) = −αMx(t),

x(t) = P0(t)CR0D(t)u(t).

To compute the path metrics, the ingress node of each user
need to collect the information of link states by periodically
sending the probing packets through all its paths. When the
probing packet travels through each node along the path,
the router will push the link states (the link utilization in
our case) information in the probing packet. The destination
router of the path then sends it back to the source router
once receiving the probing packet. In real network, it takes a
round-trip time (RTT) for the probing packet to come back,
and thus we here incorporate delay into the model. Let δlk
denote the propagation delay from the source of path k to
link l, and let βlk denote the backward delay from link l back
to the source of path k for probing packets. The utilization
of link l at time t is

wl(t) =

∑
j:l∈Lj uj(t− δ

l
j)di(t− δlj)

cl
. (2)

The path metric for any path k ∈ P at time t is determined
by the feedback link utilization collected from each link, i.e.

xk(t) = max
l∈Lk

wl(t− βlk), ∀k ∈ P. (3)

III. ANALYSIS

In this section, we analyze the stability of the model,
and specialize the general methodology in two representative
network topologies [4], single-link and shared-link.

A. Stability analysis

One common feature for any adaptive TE method is
that it can only be implemented in discrete time. This fact
imposes an important factor into the practical system that the
continuous-time model does not capture: the update interval
of routing computation. In the following, we discretize the
system and study the effect of step size, update interval and
system delay, as well as their internal relations.

Let τ be the update interval of the routing computation
that defines how frequently the routing strategy changes. We



assume the link utilization values being collected at each
router is measured during the period of τ . In Section III-B,
we deeply investigate the internal relations of update interval
τ and round-trip time T , and derive the stability condition
for arbitrary value of τ/T in the case of single user with
single bottleneck link. However, for the general network,
we simplify the discrete-time model by assuming that βlk =
nlβ,kτ and δlj = nlδ,jτ , where nlβ,k and nlδ,j are integers.
We assume the synchronization of all ingress nodes for each
update at each time stamp nτ, n = 0, 1, 2, · · · . Furthermore,
assuming that the demand matrix D(t) is not changed within
the time scale of our interest, i.e. di(t) = di,∀t, we focus
on the stability analysis in the steady state.

Discretizing Eq. 2 and Eq. 3, we have

wl(n) =

∑
j:l∈Lj uj(n− n

l
δ,j)di

cl
, (4)

xk(n+ 1) = max
l∈Lk

wl(n− nlβ,k), ∀k ∈ P. (5)

Taking the z transform of Eq. 4 and Eq. 5 yields

xk(z) = max
l∈Lk

∑
j:l∈Lj

z−(n
l
δ,j+n

l
β,k)uj(z)

di
cl
, i : j ∈ Pi.

The control law follows from discretizing Eq. 1:

uk(n) = uk(n− 1) + α

(∑
j∈Pi xj(n)

Ki
− xk(n)

)
,∀k ∈ Pi.

Thus the discrete-time model with feedback delays in fre-
quency domain is given by

u(z) = z−1u(z)− αMx(z), (6)

zx(z)− zx(0)− x(1) = P (z)CR(z)Du(z), (7)

where the matrices R(z) and P (z) in frequency domain are
written as:

(R(z))jl :=

{
z−n

l
δ,j , if the path j uses link l,

0, otherwise,

(P (z))kl :=

{
z−n

l
β,k , if l is the bottleneck link for path k,

0, otherwise.

The stability condition can be developed based on basic
control theory. The system is stable if the poles of the closed-
loop transfer function have magnitude less than 1, i.e. the
roots of det

(
(z − 1)(I + G(z))

)
= 0 have magnitude less

than 1, where

G(z) =
αMP (z)CR(z)D

z − 1
.

Intuitively, the larger step size α and the smaller update
interval τ make the system more responsive. However, the
stability condition is also dependent of the value of α, as
well as the relation of τ and delays. As a result, it is critical
to determine the region of the parameter choices under the
constraint of the stability condition so that the stability is
guaranteed when seeking for the best solutions of achieving
responsiveness.

B. Case study I: single link

In the first case study, we consider a topology consisting of
a single pair of ingress-egress nodes with two paths as shown
in Figure 2. The demand from ingress node to egress node is
D. We assume all links are identical with the same capacity
C and the same forwarding and backward delays. Suppose
the link between the host and edge node is also restricted
by capacity C, then we have D ∈ [0, C]. We further assume
initially all traffic are routed through the upper path l1 → l2,
which we denote as path 1 and thus path 2 is the lower path.
Either l1 or l2 can be viewed as the bottleneck link. In our
following discussion, l2 is assumed as the bottleneck link
before the load on the two paths are balanced.

I0 E0
l1

l3

l2

l4

1
Fig. 2. Single user with two paths.

1) Delay-free: In the ideal case, the propagation delay and
backward delay are negligible. In the discrete-time model,
we still use α for the step size, while it is worthwhile noting
that the step size α in continuous-time model is equivalent
to ατ when we discretize the system. Considering the fact
that u1(n) + u2(n) = 1, the system can be simplified as

x(n+ 1) =
D(n)u(n)

C
,

u(n) = u(n− 1) + α(
D(n)

2C
− x(n)),

where we let x(n) and u(n) be the state and control variable
for path 1. For a given demand D ∈ [0, C], the state evolution
is given by

x(n+ 1) = (1− αD
C

)x(n) +
α

2
(
D

C
)2.

To ensure that the closed-loop system is stable, the following
condition need to hold:

|1− αD
C
| < 1,∀D

C
∈ [0, 1].

When 0 < α < 2, the system can be stablized and will
converge to the state x̄ = D/2C, ū = 1/2. In the single
link case, when the delay is negligible, the stability constraint
for the system is independent of any parameters other than
the step size.

2) With delay: We now consider the delay of the closed-
loop system. When the link propagation delay is not neg-
ligible, one significant variation from the ideal model is
the fact that once the control decisions (i.e. the new split
ratios) are updated at the source node, the state variables
(the link utilization) in the downstream nodes do not change
with the new update instantaneously. In other words, the link
utilization measured by the nodes at each step within the



measurement period τ may be affected by both the current
and historical control variables. This fact is not reflected by
the previous analysis of delay-free case. Furthermore, since
any adaptive TE solution is implemented in discrete time,
the effect of propagation delay on the system also depends
on the update interval.

Let δ be the identical propagation delay from ingress node
to link l2. Let β be the identical backward delay that takes
for the ingress node to receive the latest state information
from link l2. The instantaneous link utilization at time t for
link l1 and l2 are given by

w1(t) =
u(t)D(t)

C
,

w2(t) = w1(t− δ) =
u(t− δ)D(t− δ)

C
.

Since we assume the measurement time interval for the
link utilization is τ , the actual link utilization of l2 that is
fed back to the ingress node is the averaged value w̄2(t) over
the past time period τ , i.e.

w̄2(t) =
1

τ

∫ t

t−τ
w2(η)dη =

1

τ

∫ t−δ

t−τ−δ
u(η)

D(η)

C
dη.

To implement the control law in discrete time, we sample
the state variable and compute the control law every τ ,
starting from t = 0. Once the control law is updated, the
control variable u(t) keeps unchanged within time interval
τ until the next update is triggered, i.e.

u(t) = u(nτ), n = b t
τ
c.

As the bottleneck link, l2’s actual measured link utilization
w̄2 will be the path metric. Since it takes β for the feedback
message to travel back to the routing engine, the path metric
computed at time nτ is w̄2(nτ − β), n = 0, 1, 2, · · · , which
is given by

x(nτ) = w̄2(nτ − β)

=
1

τ

∫ nτ−δ−β

(n−1)τ−δ−β
u(η)

D(η)

C
dη

=
1

τ
u
(
(n− 2− bT

τ
c)τ
) ∫ (n−1)τ−bTτ cτ

(n−1)τ−T

D(η)

C
dη

+
1

τ
u
(
(n− 1− bT

τ
c)τ
) ∫ nτ−T

(n−1)τ−bTτ cτ

D(η)

C
dη,

where T = δ + β is the RTT of the path.
In the steady state where D(t) is a constant value D, we

derive the discrete time state space equations with feedback
delays and update interval:

x(n) =
D

C
[(k − bkc)u(n− 2− bkc)

+ (1 + bkc − k)u(n− 1− bkc)], (8)

u(n) = u(n− 1) + α(
D

2C
− x(n)), k =

T

τ
. (9)

Figure 3a shows the block diagram of the system, where
we define

H(z) =
αz

z − 1
,

G(z) =
D

C

(
k − bkc
z2+bkc

+
1 + bkc − k
z1+bkc

)
, R =

D

2C
.

The transfer function of the closed-loop system follows that

Q(z) =
H(z)G(z)

1 +H(z)G(z)
.

To ensure that the system is stable, all the roots of the
following equation should have magnitude less than 1:

z2+bkc − z1+bkc +α
D

C
(1 + bkc − k)z +α

D

C
(k− bkc) = 0.

R ∑
+

-
H G

u
X

(a)
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Fig. 3. (a) Feedback control block diagram. (b) Nyquist plot of G(z)H(z)
for different τ/T . (c) Stability region of step size when τ/T varies.

Figure 3b shows the Nyquist plot of G(z)H(z) for some
values of τ/T . Figure 3c shows the range of α as the value
of τ/T varies when D/C ∈ [0, 1]. One way to understand
why the stability region of step size changes in this form is to
consider the effect of averaging state variables with different
levels of historical states. When τ is much larger than T
meaning that propagation delay is negligible, x(n) depends
on u(n − 1) only, so the region of α is independent of τ .
This is also consistent with the result we have derived in
the ideal delay-free case. With a certain level of averaging,
the state variables are smoothed, thus enlarging the range of
α. When τ = T , the state variables obtained are out dated
relying completely on historical data u(n−2). As T becomes
much larger than τ , i.e. τ/T becomes much smaller than 1,
the system relies on older data. Therefore, it is more likely
to oscillate and the stability region for α is narrower.

C. Case study II: shared links

In the following section, we study the case in which links
are shared by multiple users. Consider the network topology
shown in Figure 4, there are 4 users, namely I1 − E1,
I1− E2, I2− E1, I2− E2. Each user has two paths. The
bottleneck links are l5 and l6 which are the common links
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Fig. 4. Multiple users with shared links.

for four paths. x(n) and u(n) are 8 × 1 vectors. The state
space equations of the system are described in Eq. 6 and
Eq. 7, where the matrix M and P (z) are specifically in the
following forms:

M =
1

2



1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1 1


,

P (z) =



0 0 0 0 z−n
5
β,1 0 0 0 0 0

0 0 0 0 0 z−n
6
β,2 0 0 0 0

0 0 0 0 z−n
5
β,3 0 0 0 0 0

0 0 0 0 0 e−n
6
β,4 0 0 0 0

0 0 0 0 z−n
5
β,5 0 0 0 0 0

0 0 0 0 0 e−n
6
β,6 0 0 0 0

0 0 0 0 z−n
5
β,7 0 0 0 0 0

0 0 0 0 0 z−n
6
β,8 0 0 0 0


.

The 1th to 4th column of R(z), as an example due to the
space limitation, is

Rj,1−4(z) =



z−n
1
δ,1 0 z−n

1
δ,3 0

0 z−n
2
δ,2 0 z−n

2
δ,4

0 0 0 0
0 0 0 0

z−n
5
δ,1 0 z−n

5
δ,3 0

0 z−n
6
δ,2 0 z−n

6
δ,4

z−n
7
δ,1 0 0 0

0 0 z−n
8
δ,3 0

0 z−n
9
δ,2 0 0

0 0 0 z−n
10
δ,4


.

According to the multivariable Nyquist criterion [11], the
stability condition is equivalent to the following statement:
the eigenvalues of G(ejω), for ω from 0 to 2π, should not
encircle the point −1. Let λ

(
G(ejω)

)
denote any eigenvalue

of G(ejω). Suppose the RTT for all paths are identical so
that nlδ,j + nlβ,k = nT for all users sharing link l, then the

eigenvalues of G(ejω) is given by

λ
(
G(ejω)

)
= λ

(
αMP0CR0D

) e−jωnT
ejω − 1

= αλ(H)
e−jωnT

ejω − 1
,

where H = MP0CR0D. H has all eigenvalues of real
number. Let ||A||∞ denote the matrix ∞- norm ||A||∞ =
maxi

∑
j |Aij | which is the maximum row sum. The mag-

nitude of any eigenvalue of H is upper-bounded by

|λ(H)| ≤ ||H||∞ ≤ ||M ||∞||P0CR0||∞||D||∞. (10)

Note that

||M ||∞ = 2− 2

Kmax
, ||D||∞ = dmax,

||P0CR0||∞ ≤
Nmax

cmin
,

where Kmax ≥ 2 and dmax are the maximum values of
Ki and di among all users i, Nmax ≥ 1 is the maximum
number of users sharing a link, and cmin is the minimum
link capacity.

Furthermore, when Im{ e
−jωnT

ejω−1 } = 0, Re{ e
−jωnT

ejω−1 } is
lower bounded by

Re{ e
−jωnT

ejω − 1
} ≥

(
e−jωnT

ejω − 1

)
ω=π/(2nT+1)

=
sin ω

2

cosω − 1
= − 1

2 sin ω
2

= − 1

2 sin π
4nT+2

.

Therefore the sufficient condition for the closed-loop system
stability with homogeneous RTT is given by

α <
sin π

4nT+2K
maxcmin

(Kmax − 1)dmaxNmax
.
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Fig. 5. (a) The upper bound of step size for homogeneous RTT as nT

varies. (b) The upper bound of step size for heterogeneous RTT. m =
nδ,5
nδ,6

.

Figure 5a shows the theoretical upper bound of α derived
from the sufficient condition above in homogeneous RTT
case as nT varies from 0 to 9, and the numerical results
computed for the necessary condition of stability. In the
theoretical computation, we set cmin = 20Mbps, dmax =



5Mbps, Nmax = 4 and Kmax = 2. In the numerical
computation of homogeneous RTT case, we set the demand
for all users to be 5Mbps, all links capacity to be 20Mpbs
except c5. When c5 = c6, the numerical results are exactly
the same as our theoretical derivation because |λ

(
H
)
| =

2(Kmax−1)dmaxNmax

Kmaxcmin . When c5 > c6 = 20Mbps, as is shown
in the case of c5 = 2c6 and c5 = 3c6, cmin = 20Mbps
still holds, but |λ

(
H
)
| becomes strictly less than its upper

bound. So in these two cases we can see α’s upper bound
derived from sufficient condition is less than the numerical
computation for necessary condition.

We further show the step size upper bound for some
heterogeneous RTT cases in Figure 5b. In the computation,
we ignore all the backward delay and make the forwarding
propagation delay identical for all the links from any path
using this link, i.e. npδ,l = nδ,l,∀p ∈ Ll. We set nδ,6 =
1 and vary nδ,5 to obtain the upper bound of α as the
propagation delay difference between two bottleneck links
changes. Comparing with Figure 5a, the theoretical result
for sufficient condition will also hold for heterogeneous RTT
cases with nT being the maximum nT , while the sufficient
condition of stability for heterogeneous RTT remains to be
further studied.

IV. EXPERIMENTS

In this section, we describe our emulation setup, and
demonstrate the validation results for our model and analysis.

A. Validating our model
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Fig. 6. Model validation. (a) Link rate for l1 in time domain. (b) Amplitude
spectrum of link rate for l1. τ = 100ms, T = 10ms.
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Fig. 7. Validation of stability region for single-link.

A four-node topology, as is shown in Figure 2, is set up on
Mininet for model validation. Each node is associated with an
Open vSwitch [12]. The two paths are pre-configured in the
network so that the switches forward the packets accordingly.
A customized controller with our control law 1 is deployed
on the ingress node. The routing computation is triggered
every τ and then the updated routing rules will be installed
to the ingress switch. The ingress switch uses group table
to realize the multi-path routing with unequal weights. The
switch in each node measures the link throughput within a
measurement period τ . A probing packet is created and sent
along each path to collect the link states every τ . We set
C = 100Mbps for all links.

In the model validation experiments, 100 Mbps traffic
destined to E0 are generated at I0 via iPerf. The initial
routing strategy is configured to be forwarding all traffic
through the upper path. Adaptive TE implemented in the
controller collects the statistics of path metrics and dynami-
cally adjusts the split ratio for each path. The actual evolution
of transmission rate on link l1 shown in Figure 6 validates
the predictions from our model. With different values of
the step size,the experimental curves for the measured link
rate of l1 in both time domain and frequency domain show
good agreement with the ideal curve predicted by the model.
On the experimental curve, the noise effect produced by the
measurement can also be observed.

B. Validating our analysis

Our analysis is validated with respect to single-link and
shared-link topologies. Two representative adaptive TE con-
trol laws are considered in the experiments: the general form
specified in Eq. 1 and a particular routing strategy proposed
by TeXCP [5].

On the testbed with four-node topology, we intro-
duce 60Mbps background traffic on link l4, and generate
100 Mbps traffic for user I0−E0. Therefore, the split ratios
for user I0 − E0 are expected to be stabilized around 0.8
and 0.2 for the upper path and the lower path respectively.
To judge whether the system is stabilized, we record the
measured transmission rate of link l1. Since our analysis in
Section III-B indicates that the stability is dependent of the
step size, feedback delay and update interval, experiments
are carried out with different values of the three parameters.
The results in Figure 7a and Figure 7b show the agreement
on the stability region of α with the theoretical results for
single-link in Figure 3c. When α = 1.3, the throughput of l1
is stable in the case of T = 20ns. The oscillation is larger
for τ/T = 2 than τ/T = 4. In Figure 7b, α = 1 is not
within the stability region of τ/T = 1 (T = 100 ms). In
both of the experiments, we fix the value of τ which is large
enough to maintain the effect measurement noise input small
and identical when T varies.

We proceed to validate our analysis for shared-link case
with multi-user (Section III-C) by setting up an eight-
node topology shown in Figure 4 on the same testbed.
A centralized controller is implemented which controls the
routing update for all users. Each user starts a session of
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Fig. 8. Validation of stability region for shared-link with identical RTT
= 60ms. c5 = c6 = 20Mbps in (a) (b) and (c); c5 = 3c6 = 60Mbps
in (d) (e) and (f).
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Fig. 9. Validation of stability region for shared-link with heterogeneous
RTT. c5 = c6 = 20Mbps in (a) and (b); c5 = 2c6 = 40Mbps in (c) and
(d).

5 Mbps traffic transfer to its destination asynchronously.
The capacity for each link except l5 is fixed at 20 Mbps.
In the case of homogenous RTT, the RTT for each path
is 60 ms. To justify the stability region in Figure 5a with
different nT , we consider three values of the update interval
τ (600 ms, 60 ms and 30 ms) and two values of link capacity
c5 (20 Mbps and 60 Mbps). Figure 8 shows in each case,
when the transmission rate of l5 exhibits periodic oscillation,
the corresponding value of the step size is outside the
stability region predicted in Figure 5a. For the experiments
with heterogenous RTT, the paths using link l6 have RTT
= 60 ms, and the paths using link l5 have RTT of either 0 or
120 ms. The update interval is configured to be τ = 60 ms
so that m is either 0 or 2 with nδ,6 = 1. We consider two

values of m (0 and 2) and two values of c5 (20 Mbps and
40 Mbps). Figure 9 provides the validation for the stability
region in Figure 5b.

We finally validate the stability region analysis of TeXCP
[5] using our proposed methodology. TeXCP mainly consists
of two layers of control functions: the outer layer is the
adaptive TE update, and inside there is a feedback congestion
control loop operating at least 5 times within one TE update.
We simplify the process by ignoring the inner loop of
congestion control and only consider the feedback loop of
TE updates. Since the congestion control strategy guarantees
the state variables x(n) obtained have been stabilized to
at least 95% of the latest control variables u(n), we wait
for long enough time to make sure the transmission rates
have become stable. Therefore, we set τ = 5T in all of the
following experiments. According to the method of routing
computation described in TeXCP, its TE control law for path
k ∈ Pi is in the following form

uk(n) = uk(n−1)+uk(n−1)[
∑
j∈Pi

uj(n−1)xj(n)−xk(n)].

In the single-link case, the routing rule can be written as

u(n) = u(n− 1) + 2u(n− 1)
(
1− u(n− 1)

)( D
2C
− x(n)

)
.

Compared with Eq. 9, the step size of TeXCP follows that
α = 2u(n)(1−u(n)), which is a varying number in the range
of [0, 0.5] because u(n) ∈ [0, 1]. Based on the stability region
we derived in Figure 3c, the range of step size [0, 0.5] will
guarantee the stability regardless of the feedback delay and
update interval, as is shown in Figure 10a. By imposing an
additional parameter a on the TE control law such that

u(n) = u(n−1)+a ·2u(n−1)
(
1−u(n−1)

)( D
2C
−x(n)

)
,

we can investigate the impact of step size on stability. In this
case, the step size is written as α = a·2u(n)(1−u(n)) and it
is easy to compute its boundary α ∈ [0, 0.5a]. Note that with
the parameter a adding in the control law, the original design
in TeXCP is a special case where a = 1. In Figure 10b, when
a = 4 indicating that the step size could be as large as 2, the
system becomes unstable. It is consistent with our analysis
in Figure 3c that when τ/T = 5, the upper bound of step
size is less than 2.

In the shared-link case, the specific control law for the
given network topology in Figure 4 follows that

u(n) = u(n− 1)− 2U(n− 1)
(
I − U(n− 1)

)
Mx(n),

where U(n) := diag(uk(n)) ∈ RK×K . Note that the step
size in the control law is considered as a scalar in Eq.
6, whereas TeXCP attaches a specific step size αk(n) =
2uk(n)

(
1 − uk(n)

)
to each control variable uk. We run

a set of experiments on the testbed with 8-node topology,
including the cases of homogeneous/heterogenous RTT and
link capacities. δ5 and δ6 are defined as the RTT of the
paths that use link l5 and l6 respectively. The update interval
remains to be τ = 5δ5, so that nT = 0.2 holds in
homogeneous RTT case, while in heterogenous RTT case
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Fig. 10. Validation of stability region for TeXCP. (a) (b) Single-link case;
(c) (d) Shared-link case.

nδ,5 = 0.2, nδ,6 = 1. Figure 10c demonstrates that the
original TeXCP control law ensures the routing update to
be stabilized in all cases. We again impose the parameter
a on the original control law and experimentally seek for
the new stability region by tuning the value of a. Figure
10d shows that with homogeneous RTT, a = 4 makes the
system unstable, which validates the upper bound of step
size for nT = 0.2 in Figure 5a. Furthermore, it also provides
justification of the stability region for heterogeneous RTT in
Figure 5b when m = 0.2 and c5 = 2c6.

C. Stability versus responsiveness

Our comprehensive experiments above have shown that
the critical system parameters and their internal relations
play significant roles on the system stability. Figure 10
for single-link case and Figure 11 for shared-link case
are good examples of illustrating how the choices of step
size α, update interval τ and feedback delay T affect the
performance tradeoff between stability and responsiveness.
Observation from Figure 10a indicates that the system is
more responsive when the feedback delay is smaller. Figure
10b shows that a larger step size leads to faster convergence
to the set point, however, too large a step size will cause the
routing oscillation. In Figure 11a, more frequent update can
make the system respond and converge more quickly, while
it turns out in Figure 11b that smaller update interval may
result in a smaller stability region for choices of the step
size. Our quantitative analysis for the model helps to restrict
the boundary of the parameters based on stability condition,
and thus facilitates the systematic evaluation of parameters’
effects on the performance.
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Fig. 11. Tradeoff between stability and responsiveness.

V. CONCLUSIONS AND FUTURE WORKS

A control theoretical model is proposed for fast adaptive
traffic engineering. The model incorporates several important
factors including physical propagation delay, routing update
interval and step size. In particular, it formalizes the intrinsic
tradeoff between being reactive, hence tending to use large
step size and frequent sampling, and maintaining stability,
which benefits from adopting more cautious steps as well
as larger measurement duration to better filter out the high
frequency noise. We analyze the model to provide guiding in-
sight for network operators to set those important parameters.
Furthermore, experiments are carried out to quantitatively
verify the predictions from the model. Our model covers
related existing work as special cases and therefore can
serve as a basis for further combination with different traffic
models.
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