
Acceleration of Multipath TCP
by Letting ACKs Take the Shortest Path

Jiangnan Cheng, Jaehyun Hwang, and Ao Tang
School of Electrical and Computer Engineering

Cornell University, Ithaca, NY
Email: {jc3377, jaehyun.hwang, atang}@cornell.edu

Abstract—Multipath TCP (MPTCP) can improve overall

throughput of an end-to-end connection by leveraging different

network paths. However, the heterogeneity of these paths can

significantly hamper MPTCP’s performance. In this paper, we

propose to send acknowledgments (ACKs) along the lowest-

latency path. This can help improve the performance of MPTCP

when subflow throughput is constrained by packet loss by

reacting to loss events faster. An active probing module is also

developed to dynamically select the lowest-latency path against

the potential change of path condition. Experiments demonstrate

that overall throughput improvement generally ranges from 10%

to 50%.

I. INTRODUCTION

Single-path TCP (SPTCP) is a widely used transport layer
protocol in today’s Internet. However, it is often unable
to provide sufficient throughput especially for long distance
transfer. With this background, multipath TCP (MPTCP) [1]
emerges, which can improve overall throughput of an end-to-
end connection by leveraging multiple network paths [2].

It is well known that the heterogeneity (especially the RTT
difference) of available paths can significantly hampers the
performance of MPTCP. For example, when different paths
have different RTTs, data packets delivered on different paths
can be out of order, leading to receiver-side buffer blocking
problem [3]–[7].

Interestingly, such latency heterogeneity can also bring
opportunities. More specifically, we propose to send acknowl-
edgments (ACKs) of all subflows of a MPTCP connection
along the shortest path. It helps increase throughput by re-
ducing RTTs of subflows that do not use the shortest path.
Furthermore, an active probing module is also developed to
select the shortest path when path condition changes due
to link congestion or failure. Theoretically, this method can
improve the overall throughput by as much as 100% for
certain cases. Experiments demonstrate that overall throughput
improvement generally ranges from 10% to 50% in practice.

II. SENDING ACKS ON THE SHORTEST PATH

Consider a sender-receiver pair connected by several hetero-
geneous paths with different latencies. In the standard MPTCP
protocol, different subflows are built upon different paths.
Hence ACKs of different subflows go through different paths
with different latencies. We propose that MPTCP receiver uses
the shortest path to deliver all the ACKs. Since ACKs are much

Path0: 10ms

Path1: 20ms

Path2: 30ms

ACK0
ACK1
ACK2 DATA0

Receiver Sender

DATA1

DATA2

Fig. 1. ACKs on Lowest-Latency Path

smaller packets compared to normal data packets, our method
will have only a small overhead for the lowest-latency path,
as long as the number of ACK packets shifted to the lowest-
latency path at one time is not too large. Besides, when an
ACK is lost, follow-up ACKs can still acknowledge the data
packets associated with the lost ACK. So occasional loss of
ACKs is not a problem even if the lowest-latency path has a
higher (but still reasonable) loss rate.

Fig. 1 shows an example. The MPTCP connection has three
available paths. A distinct subflow is built upon each available
path. Same as the standard MPTCP, data packets of each
subflow are sent on its associated path. But since path 0 has
the lowest one-way latency, the ACKs of all the three subflows
are delivered on the path 0 from the receiver to the sender.

The main benefit of the proposed method is that RTTs
of subflows built on high-latency paths will decrease. For
example, in Fig. 1, the RTTs of subflow 1 and 2 (which are
built upon path 1 and 2) decrease from 40 and 60ms to 30
and 40ms, respectively.

III. ANALYSIS

In this section we analyze the overall throughput improve-
ment by sending ACKs on the shortest path.

Consider a sender-receiver pair connected by N +1 hetero-
geneous paths, which are indexed as 0, 1, · · · , N , respectively.
Let di denote the one-way latency of path i, 8i. Without loss
of generality, let path 0 be the one with the smallest one-way
latency, i.e.,

d0 di, 8i (1)

978-1-7281-2847-2/19/$31.00 c�2019

2019 IEEE 40th Sarnoff Symposium

978-1-7281-2487-2/19/$31.00 ©2019 IEEE

And subflow i is built upon path i, 8i. Let pi denote the loss
rate of subflow i.

Now suppose that a large file is transferred from sender
to receiver. Let Ti and T 0

i be the average throughput of
subflow i when using standard MPTCP protocol and ACKs
on lowest-latency path method, respectively; and let T and
T 0 be the average overall throughput when using standard
MPTCP protocol and ACKs on lowest-latency path method,
respectively. Let I denote the relative throughput improvement
by adopting ACKs on lowest-latency path method, i.e.,

I =
T 0

T
� 1 =

P
T 0
iP

Ti
� 1 (2)

If we only consider the effect of RTT decrement for those
subflows built on high-latency paths, theoretically, on average
we should have I � 0. This is because, other conditions being
equal, RTT decrement for some subflows is at least not harmful
(and should be helpful in most cases).

However, how much we can improve also depends on path
condition (including the value of RTT and loss rate) and the
congestion control algorithm we are using. In the remainder of
this section, the throughput improvements of TCP-Reno and
MPTCP-Lia are analyzed in details, and some other congestion
control algorithms are also discussed.

A. TCP-Reno

If we specify TCP-Reno as our MPTCP congestion control
algorithm, it actually means that each subflow uses TCP-
Reno as its subflow-level congestion control algorithm inde-
pendently. So the throughput improvement of each subflow is
also independent.

Consider a TCP-Reno connection whose RTT is rtt and
loss rate is p. We increase window size by 1/w packet when
a data packet is correctly delivered (where w is the current
window size), and we decrease window size by half when a
data packet is lost. If there is no timeout event, the long-time
average window size w̄ is determined by

(1� p) · 1
w̄

= p · w̄
2

(3)

and hence we have w̄ ⇡
p
2/p (since p is generally small).

Thus in the long time, the average throughput is

C

rtt

r
1

p
(4)

where C is a constant determined by the TCP maximum
segment size (MSS).

So for ACKs on lowest-latency path of MPTCP, if each
subflow has the same MSS, the throughput improvement I is:

I =

P
T 0
iP

Ti
� 1 =

P C
d0+di

q
1
pi

P C
2di

q
1
pi

� 1 =

P 1
d0+di

q
1
pi

P 1
2di

q
1
pi

� 1

(5)

Fig. 2. Maximum improvement under different ↵ (TCP-Reno)

In order to determine the maximum improvement when the
loss rates p0, p1, · · · , pN are fixed, we calculate the partial
derivatives of I with respect to dk, 8k 2 {1, 2, · · · , N}:

@I

@dk
=

� 1
(d0+dk)2

q
1
pk

P 1
2di

q
1
pi

+ 1
2d2

k

P 1
d0+di

q
1
pi

(
P 1

2di

q
1
pi
)2

(6)

Let the numerator be zero, we have:

2d2k
(d0 + dk)2

=

P 1
d0+di

q
1
pi

P 1
2di

q
1
pi

(7)

8k 2 {1, 2, · · · , N}. This implies that we have maximum
improvement when d1 = d2 = · · · = dN . Let d1 = d2 =
· · · = dN = �d0, where � � 1, then we have

I =

1
2d0

q
1
p0

+
P

i>0
1

d0+di

q
1
pi

1
2d0

q
1
p0

+
P

i>0
1

2di

q
1
pi

� 1 (8)

=

q
1
p0

+
P

i>0
2

1+�

q
1
piq

1
p0

+
P

i>0
1
�

q
1
pi

� 1 (9)

=

q
1
p0
/
P

i>0

q
1
pi

+ 2
1+�

q
1
p0
/
P

i>0

q
1
pi

+ 1
�

� 1 (10)

Let ↵ =
p
1/p0/

P
i>0

p
1/pi, we have

I =
↵+ 2

1+�

↵+ 1
�

� 1 =
� � 1

↵�2 + (↵+ 1)� + 1
(11)

When � = 1+
p
2
p

1 + 1/↵, I has maximum value 1/(3↵+
1 + 2

p
2
p

↵(↵+ 1)).
Fig. 2 shows the maximum improvement under different

↵’s. 1) When ↵ ! 0, i.e., either path 0 has much higher loss
rate or N is large enough, path 0 has trival effect on overall
throughput. In the meantime, � ! 1, i.e., path 0 has a much

2019 IEEE 40th Sarnoff Symposium

smaller one-way latency, which implies the RTT of path i
(8i > 0) will decrease by nearly one half and throughput will
increase by nearly 100%. So the maximum improvement can
be as large as 100%. 2) When ↵ ! 1, path 0 has much
smaller loss rate and it dominates the overall throughput. So
the maximum improvement can be as small as 0.

B. MPTCP-Lia / MPTCP-Olia

MPTCP-Lia (Linked increase algorithm) [2] and MPTCP-
Olia (Opportunistic linked increase algorithm) [8] are two con-
gestion control algorithms designed specifically for MPTCP,
for the purpose of satisfying the following two requirements:

• An MPTCP flow should have at least as much throughput
as an SPTCP flow on the best path;

• An MPTCP flow should take no more capacity on any
collection of paths than an SPTCP flow on the best of
these paths.

So when a data packet associated with a subflow is deliv-
ered, unlike TCP-Reno, MPTCP-Lia/MPTCP-Olia increases
the window size by a factor depending on not only the status of
this subflow, but also the statuses of other subflows. Ideally, if
these two requirements are satisfied, we can expect an MPTCP
connection to have the throughput as same as an SPTCP flow
on the best path under our assumptions in the beginning of
this section. So

T = max
i

C

2di

r
1

pi
(12)

T 0 = max
i

C

d0 + di

r
1

pi
(13)

if each subflow has the same MSS. Thus

I =
T 0

T
� 1 =

maxi
1

d0+di

q
1
pi

maxi
1

2di

q
1
pi

� 1 (14)

Suppose m 2 argmaxi
p
1/pi/(d0 + di). Then we have

I =

1
d0+dm

q
1
pm

maxi
1

2di

q
1
pi

� 1 (15)

1

d0+dm

q
1
pm

1
2dm

q
1
pm

� 1 < 2� 1 = 1 (16)

So here the maximum improvement is also upper bounded
by 100%. When the best path for SPTCP is always the same
one (other than path 0), and d0 is small enough, we have
I ! 100%. And if the best path for SPTCP is always path 0,
or always has the same one-way latency as path 0, we have
I = 0.

C. Other congestion control algorithms

Some TCP congestion control algorithms are designed
carefully in order to leverage all the available bandwidth and
packets rarely get dropped. This holds true for nearly all the
rate control algorithms, such as TCP-Vegas [9]. So they may

Path0
(lowest-latency path)

Path1

Receiver
(Client)

MPTCP

TCP0
10.0.0.1:41000

ACK
src:10.0.1.1:41001
dst:10.0.1.2:50034

TCP1
10.0.1.1:41001

IP Layer

Sender
(Server)

MPTCP

TCP1
10.0.1.2:50034

TCP0
10.0.0.2:50034

Transport
Layer

ACK
src:10.0.0.1:41001
dst:10.0.0.2:50034

ACK
src:10.0.1.1:41001
dst:10.0.1.2:50034

ACK
src:10.0.0.1:41001
dst:10.0.0.2:50034

NAT NAT

Fig. 3. Network address translation

not be the congestion control algorithms we want to consider
under the context of this section.

For some other congestion control algorithms, it is not easy
to determine the improvement mathematically. For example,
TCP-Cubic [10] increases window size by a factor based
on a cubic function where the time since last data packet
loss is the argument. In this case, the long time average
throughput for fixed RTT and loss rate is hard to be determined
mathematically, hence the theoretical improvement is also
unclear.

IV. DESIGN

To design a system that always sends ACKs through the
shortest path, there are two major functions need to be enabled.
In order to shift ACKs to another path, the source and
destination IP address of ACK packets should be modified
before being sent, and port numbers can be used to determine
the subflows they originally belong to; In order to ensure
that lowest-latency path is always selected, the RTT of each
subflow need be sampled periodically. In our design, network
address translation (NAT) and real-time active probing are
used to realize these two functionalities.

A. Network address translation

Fig. 3 illustrates the principle of our NAT program. The
standard MPTCP protocol itself is not changed at both receiver
and sender side. However, MPTCP receiver needs to launch
an NAT program to monitor all the packets passing through
its IP layer. As shown in Algorithm 1, when the NAT program
detects a packet that belongs to our MPTCP connection, and
it is a normal ACK packet (not SYNACK or FINACK), it will
modify its source and destination IP address to match with
the lowest-latency path. This way, the lower layer can deliver
this ACK packet on lowest-latency path, instead of its original
path. In Fig. 3, ACK packet spawned by receiver-side TCP

2019 IEEE 40th Sarnoff Symposium

Algorithm 1 MPTCP Reciver-Side NAT program
1: // Subflow info of MPTCP connection
2: SFs = [(sip 0, dip 0, sport 0, dport 0, prot 0),

(sip 1, dip 1, sport 1, dport 1, prot 1),
· · · ,
(sip N, dip N, sport N, dport N, prot N)]

3: // index of lowest-latency path
4: llp idx = · · ·
5: // the following function is called whenever an IP packet

p passes IP Layer
6: ReceiverNATFunc(p):
7: if (p.sip, p.dip, p.sport, p.dport, p.prot) 2 SFs and

(p.SY N == 0 and p.FIN == 0 and p.ACK == 1)
then

8: p.sIP = sip {llp idx}
9: p.dIP = dip {llp idx}

10: end if

Algorithm 2 MPTCP Sender-Side NAT program
1: // Subflow info of MPTCP connection
2: SFs = [(sport 0, dport 0, prot 0) : (sip 0, dip 0),

(sport 1, dport 1, prot 1) : (sip 1, dip 1),
· · · ,
(sport N, dport N, prot N) : (sip N, dip N)]

3: // the following function is called whenever an IP packet
p passes IP Layer

4: SenderNATFunc(p):
5: if p.ACK == 1, and (p.sip, p.dip) == (sip k, dip k)

for some k, and SF [(p.sport, p.dport, p.prot)]! = null
then

6: p.sip, p.dip = SF [(p.sport, p.dport, p.prot)]
7: end if

socket of subflow 1 are detected by the NAT program, and
its source and destination IP address are reset to 10.0.0.1 and
10.0.0.2, respectively. Similarly, MPTCP sender also needs to
launch an NAT program. As shown in Algorithm 2, when
the NAT program detects that an ACK packet belongs to
our MPTCP connection, it will set its source and destination
IP address back, based on the subflow information (more
specifically, source and destination port numbers) we saved
earlier. This way, the ACK packet can be delivered to the
correct TCP socket. In Fig. 3, for the ACK packet received on
the lowest-latency path at the sender side, the NAT program
sets its source and destination IP address back to 10.0.1.1 and
10.0.1.2, respectively.

The correctness of our design is guaranteed by a simple
fact: MPTCP client uses different port numbers for different
subflows. So even though we may change the source and
destination IP address of an ACK, we can still recognize it by
its source (when client is receiver) or destination port number
(when client is sender).

B. Real-time active probing

In practice, the shortest path llp idx may change when
network link fails in real time or some paths suddenly become
congested. So active probing is needed to measure the real-
time RTT of all paths and further select the shortest path
among them.

The active probing module is designed as follows. The
lowest-latency path is updated per time interval ⌧ . At each
time interval, MPTCP receiver sends out several probing
packets, and response packets are sent back by the remote
side to measure RTT. In our design, we use ICMP protocol
for this functionality. Once we discover the lowest-latency
path changes from one to another, and the latency difference
between the old one and the new one is greater than a threshold
value �, we will update llp idx in Algorithm 1, so that
following ACK packets can be sent on the up-to-date lowest-
latency path as soon as possible. At MPTCP receiver side,
however, we don’t necessarily need to know which one is the
lowest-latency path. We passively apply the NAT rule to all
the ACK packets that belong to our connection.

If the lowest-latency path fails, the communications of other
subflows may suspend for some time. At the receiver side, the
active probing module needs some time (⌧) to discover the
failure of path 0 and then update the lowest-latency path; at
the sender side, we also need to wait one RTO (2⌧) for the
next retransmission. In different tests the suspension time may
vary, but it should be upper bounded by 3⌧ .

There is a tradeoff between responsiveness and stability
when choosing the value of ⌧ and �: small ⌧ and � means
module is sensitive to small changes and the lowest-latency
path is updated quickly, while large ⌧ and � means the lowest-
latency path is updated in a stable yet slow way.

V. EXPERIMENTS

Our experiments are based on Multipath TCP Linux kernel
implementation (kernel version 4.14.70 and MPTCP version
0.94) [11]. We implement MPTCP receiver-side/sender-side
NAT program as two kernel modules. We set up three inde-
pendent paths: path 0, path 1 and path 2 between the sender
and the receiver. The bandwidth of each path is set to 1Gbps
full duplex.

In the first experiment, to verify our analysis in Section III,
we let network condition be static. In the second experiment,
we change network condition in real time, to test the effec-
tiveness of real-time active probing. In the last experiment, to
test the robustness of real-time active probing, we let lowest-
latency path fail in real time and measure the time it takes for
recovery.

A. Static network condition

We first measure the performance of our ACKs on lowest-
latency path idea when network condition is static. For path
0, we let p0 = 1%, d0 = 10ms; for path 1, we let p1 =
0.02% and change the value of d1 (� 10ms) in different tests
(latency and loss are simulated by netem functionality [12]
provided by Linux tc tool). And we consider three different

2019 IEEE 40th Sarnoff Symposium

Fig. 4. Improvements for different congestion control algorithms (p0 = 1%, p1 = 0.02%)

Fig. 5. Throughput under dynamic network condition (TCP-Reno)

congestion control algorithms in our experiment: TCP-Reno,
MPTCP-Lia and TCP-Cubic. The throughput improvements
for different congestion control algorithms are shown in Fig.
4, where blue curves and red curves show the theoretical and
real improvements, respectively.

1) TCP-Reno: The average real improvements are a little bit
higher than theoretical computations. When 2 d1/d0 20,
the average real improvement ranges from 30% to 50%, while
the corresponding theoretical improvement should be 20% to
40%. The gap is believed to be due to the randomness of our
tests and the small discrepancy between mathematical model
and reality.

2) MPTCP-Lia: The average real improvements do not
match with theoretical computations. When d1/d0 = 3, the
average real improvement reaches its maximum value 77%;
when 4 d1/d0 20, the average real improvement is around
15-50%. On the other hand, the theoretical improvement
reaches its maximum value 75% when d1/d0 = 7.07. This
gap is believed to result from MPTCP-Lia algorithm itself,
who has the following two deficiencies in practice:

• it makes approximations when tries to satisfy the two
requirements (in Section III-B);

• its average throughput converges much slower than

Fig. 6. Real-time throughput before/after link failure (TCP-Reno)

SPTCP congestion control algorithms, since multiple
congestion windows are changing in real time simulta-
neously.

So in practice, when we transfer a file of hundreds of MBs
or several GBs, MPTCP-Lia’s throughput deviates from the
two requirements significantly, and hence (14) can be quite
inaccurate.

3) MPTCP-Cubic: Generally, when 2 d1/d0 20, the
average real improvement is within 10-25%.

On average, we generally have a positive real improvement
ranges from 10 to 50% in most cases. This shows the effec-

2019 IEEE 40th Sarnoff Symposium

tiveness of sending ACKs along the shortest path.

B. Dynamic network condition

Next, we measure the performance of real-time active
probing. Our experiment contains two phases: in phase 1,
we let d0 = 10ms; in phase 2, we let d0 = 30ms. And
we let p0 = p1 = 0.1% and d1 = 20ms for both of these
two phases. We measure the throughput when three different
MPTCP versions are used: standard MPTCP, MPTCP with
ACKs on static lowest-latency path (which is fixed to path 0),
MPTCP with ACKs on real-time lowest-latency path (which
is determined by active probing). And the congestion control
algorithm used in this experiment is TCP-Reno.

Fig. 5 shows the throughputs of different versions dur-
ing different phases. In phase 1, MPTCPs with ACKs on
lowest-latency path have 10% higher throughputs than stan-
dard MPTCP. However, when d0 increases from 10ms to
30ms, fixed lowest-latency path performs worse than standard
MPTCP, since the real lowest-latency path is no longer path
0. On the other hand, our real-time active probing is able
to detect this change and correctly update the lowest-latency
path to path 1, so that in phase 1 we still have a throughput
improvement of 5% compared to standard MPTCP.

This experiment verifies the effectiveness of real-time active
probing.

C. Link failure

In the end, we let lowest-latency path fail in real time
to test the robustness of real-time active probing. In this
experiment, we let d0 = 10ms, d1 = 20ms, d2 = 30ms, and
p0 = p1 = p2 = 0.1%. We let path 0 fail in the middle of the
communication (for convenience, the time that path 0 fails is
set as zero), and observe the changes of real-time throughput of
each subflow. Two different MPTCP versions are compared:
standard MPTCP, MPTCP with ACKs on real-time lowest-
latency path. For ACKs on real-time lowest-latency path, we
consider two different real-time active probing intervals: ⌧ =1s
and ⌧ =200ms. The congestion control algorithm used in this
experiment is TCP-Reno.

Fig. 6 shows the real-time throughputs of different tests
before/after link failure. For standard MPTCP protocol, the
failure of path 0 doesn’t affect the other two subflows at
all, since each subflow operates independently. However, for
MPTCP with ACKs on real-time lowest-latency path, when
⌧ =1s and ⌧ =200ms, the failure of path 0 makes the com-
munications of the other two subflows suspend for 1.8s and
600ms, respectively. After the resumption of transmissions,
subflow 2 has a higher average throughput (8.4Mbps) than
its counterpart in standard MPTCP protocol (7.4Mbps), which
benefits from ACKs on lowest-latency path (which is path 1
after failure).

This experiment verifies the robustness of real-time active
probing: our module is able to discover the new lowest-latency
path after link failure and resumes the transmissions of other
subflows.

VI. CONCLUSION

In this paper, we propose to send all MPTCP’s ACKs along
the lowest-latency path to increase throughput. The throughput
improvement is examined analytically which depends on path
condition and the congestion control algorithm used with its
maximum approaching 100%. Experiments then show that the
average improvement generally ranges from 10% to 50% for
usual conditions.

There are several directions along which we can extend this
study. For example, in Section II, it is assumed that the path
lantency will not be affected by ACK traffic. However, This
may not hold when there is enough ACK traffic along a certain
link which can become congested and introduce significant
latency. It is therefore worthwhile characterizing the condition
under which such a problem can happen and the corresponding
consequences. Another direction concerns the complexity of
NAT in Section IV which grows linearly in the number of
packets that pass through the IP layer. It is conceivable that
such overhead can be significantly reduced by adding our
functionality directly into the MPTCP protocol.

REFERENCES

[1] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing and
implementing a deployable multipath tcp,” in Proceedings of the 9th

USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012, pp. 29–29.

[2] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath tcp.”
in NSDI, vol. 11, 2011, pp. 8–8.

[3] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
“Daps: Intelligent delay-aware packet scheduling for multipath trans-
port,” in Communications (ICC), 2014 IEEE International Conference

on. IEEE, 2014, pp. 1222–1227.
[4] H. Shi, Y. Cui, X. Wang, Y. Hu, M. Dai, F. Wang, and K. Zheng, “Stms:

Improving mptcp throughput under heterogeneous networks,” in 2018

USENIX Annual Technical Conference (USENIXATC 18). USENIX
Association, 2018.

[5] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath tcp,” in Advanced Information

Networking and Applications Workshops (WAINA), 2014 28th Interna-

tional Conference on. IEEE, 2014, pp. 749–752.
[6] T. Kurosaka and M. Bandai, “Multipath tcp with multiple acks for

heterogeneous communication links,” in Consumer Communications and

Networking Conference (CCNC), 2015 12th Annual IEEE. IEEE, 2015,
pp. 613–614.

[7] C. Xu, P. Wang, C. Xiong, X. Wei, and G.-M. Muntean, “Pipeline
network coding-based multipath data transfer in heterogeneous wireless
networks,” IEEE Transactions on Broadcasting, vol. 63, no. 2, pp. 376–
390, 2017.

[8] R. Khalili, N. Gast, M. Popovic et al., “Opportunistic linked-increases
congestion control algorithm for mptcp,” 2013.

[9] L. S. Brakmo and L. L. Peterson, “Tcp vegas: End to end congestion
avoidance on a global internet,” IEEE Journal on selected Areas in

communications, vol. 13, no. 8, pp. 1465–1480, 1995.
[10] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp

variant,” ACM SIGOPS operating systems review, vol. 42, no. 5, pp.
64–74, 2008.

[11] C. Paasch, S. Barre, and et al., “Multipath tcp in the linux kernel.”
[Online]. Available: https://www.multipath-tcp.org

[12] “Netem.” [Online]. Available: https://wiki.linuxfoundation.org/
networking/netem

2019 IEEE 40th Sarnoff Symposium

