
790 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Routing Stability in Hybrid Software-Defined
Networks

Shih-Hao Tseng, Ao Tang , Senior Member, IEEE, Gagan L. Choudhury, Fellow, IEEE, and Simon Tse

Abstract— Software-defined networks (SDNs) facilitate more
efficient routing of traffic flows using centralized network view.
On the other hand, traditional distributed routing still enjoys the
advantage of better scalability, robustness, and swift reaction to
events such as failure. There are therefore significant potential
benefits to adopt a hybrid operation where both distributed and
centralized routing mechanisms co-exist. This hybrid operation
however imposes a new challenge to network stability since a
poor and inconsistent design can lead to repeated route switching
when the two control mechanisms take turns to adjust the routes.
In this paper, we discuss ways of solving the stability problem.
We first define stability for hybrid SDNs and then establish
a per-priority stabilizing framework to obtain stable routing
patterns. For each priority class, we discuss three approaches to
reach hybrid SDN stability: global optimization, greedy, and local
search. It is argued that the proposed local search provides the
best tradeoff among cost performance, computational complexity,
and route disturbance. Furthermore, we design a system on a
centralized controller, which utilizes those algorithms to stabilize
the network. The design is implemented and extensively tested
by simulations using realistic network information, including a
trace of the Abilene network and data from a tier-1 Internet
service providers backbone network.

Index Terms— Stability, hybrid SDN.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN, an acronym
also for software-defined network) has gained momen-

tum among providers of network services, including data
centers [1]–[3], wide-area networks (WANs) [4], [5], and
cloud computing [6]–[8], as it utilizes resources more effi-
ciently by decoupling the control plane from the data plane
and introducing a (logically) centralized controller [9]. On the
other hand, the advantages of adopting a centralized controller
are accompanied by potential implementation challenges such
as compatibility and scalability: Not all devices support full
SDN functionality and the centralized controller can be over-
loaded when the network scales beyond its computational
power [10]–[12]. Furthermore, centralized controllers cannot
react to events as fast as a local router, especially for WANs.

Manuscript received October 22, 2017; revised June 18, 2018 and
November 22, 2018; accepted January 25, 2019; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor T. Spyropoulos. Date of publica-
tion March 11, 2019; date of current version April 16, 2019. (Corresponding
author: Ao Tang.)

S.-H. Tseng is with the Division of Engineering and Applied Science,
California Institute of Technology, Pasadena, CA 91125 USA (e-mail:
shtseng@caltech.edu).

A. Tang is with the School of Electrical and Computer Engineering, Cornell
University, Ithaca, NY 14853 USA (e-mail: atang@ece.cornell.edu).

G. L. Choudhury and S. Tse are with AT&T Labs, Middletown,
NJ 07748 USA (e-mail: gc2541@att.com; st2196@att.com).

Digital Object Identifier 10.1109/TNET.2019.2900199

For the providers that possess well-functioning networks
already, e.g., the Internet service providers (ISPs), an attractive
approach is to allow a hybrid operation where both cen-
tralized and distributed routings coexist. There are several
advantages to this approach. For example, if one routing
mechanism fails, the other can continue to function, providing
great robustness. Another example is that when a change
happens in a network spanning a large geographical area,
a centralized controller may not be able to take decisions as
swiftly as the router located close to the source of change.
In this case, a network with hybrid operation can first use
the decision made by the local router, although that may
be only locally optimal, whereas a globally optimal routing
computed by the centralized controller can be kicked in at
a later designed time. With all these benefits, the hybrid
framework nevertheless also poses new challenges to network
management [13]. In this paper, we focus on a critical one:
stability.

Stability is of fundamental importance in network routing.
Several definitions are proposed to depict the idea [14]–[18].
In general, a stable routing mechanism keeps the same route
for the same or similar traffic flow as long as it can. In the
presence of multiple routing control units, a stable route is
the route that would not be altered by any other routing
units [15], [16]. Here, we are interested in how a stable routing
pattern can be obtained in a hybrid SDN, where we have
two control units: the centralized and the distributed. We
define stability for such hybrid SDNs as the consistency of
routing decisions made by the centralized controller and the
local routers (§ IV). Based on the definition, we further
develop a per-priority stabilizing algorithmic framework with
three different kernel algorithms to stabilize each priority
class: global optimization, greedy, and local search, to pur-
sue stable routing patterns. The three kernel algorithms pro-
vide trade-off among time-complexity, cost-effectiveness, and
purpose-flexibility (§ IV-A to § IV-C).

We start with examples showing the benefits and challenges
of introducing a centralized controller (§ II). In Section III,
we introduce the notation, the local source routing mechanism,
the way the centralized controller acquires information, and
how the centralized and the distributed control update the rout-
ing in the network. Then we define, in Section IV, the stability
of a hybrid SDN and design algorithms to achieve stability.
Partial or inconsistent information scenarios are discussed in
Section V followed by the system design (§ VI). Simulation
results are included in Section VII and we conclude the paper
in Section IX.

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6296-644X

TSENG et al.: ROUTING STABILITY IN HYBRID SDNs 791

Fig. 1. A simple example showing that distributed routing can end up in
stalemate. (a) Stalemate. (b) Optimal solution.

II. BACKGROUND

Routing is an essential functionality that a network needs
to provide in order for users to send their traffic through, and
one key property of a desirable routing mechanism is stability.
A stable routing mechanism should not keep changing the
route decisions if all the inputs remain the same. Otherwise,
packets may be lost during the transition and more power is
consumed to amend the routing table.

Nowadays, network traffic is usually routed by distributed
routing protocols such as Open Shortest Path First (OSPF) and
Border Gateway Protocol (BGP). The robustness and stability
of these distributed routing protocols have been well-studied in
the literature [14], [16], [19]. However, the distributed routing
can only achieve a locally optimum routing pattern and may
deviate from globally optimum routing.

Without coordination, distributed routing may result in
a stable but inefficient routing pattern. For instance, two
routers perform shortest-path source routing independently in
Figure 1. All the edges have unit capacity and two flows F 1

and F 2 both require unit sending rate. Fig. 1a shows a case
when no flow can find a shorter path given the existence of
the other flow. However, under the intervention of a centralized
controller, it is still possible to reach a state in which F 1 takes
a shorter path (Fig. 1b).

The simple example above explains the motivation for the
network operator to introduce a coordinator with global view
to help resolve the stalemate and improve the utilization of
the network. SDN is a perfect framework to deploy such a
coordinator – using the SDN centralized controller.

Nevertheless, the network operators who have
well-functioning networks already, like the ISPs, may
not want to switch to a single centralized controller for
reasons explained earlier. Instead, they may adopt a hybrid
SDN approach, in which the centralized controller cooperates
with the local routers to route the traffic.

This dual control framework has significant benefits over
pure distributed or pure centralized routing. References [20]
and [21] provide a perfect example showing that the central-
ized controller can help the network operator improve their
efficiency significantly compared to the pure distributed case.1

Also, a hybrid framework preserves the robustness and the
swiftness provided by the distributed routing: Fast reroute
can be performed to react to failures swiftly and maintain
the packet level robustness. And the flow level post-failover

1We refer the reader to [20, Fig. 2] and the explanations in [21] for more
details.

Fig. 2. A simple example showing that the inconsistency between the
centralized controller and the local routers can cause instability. (a) Routing
pattern preferred by the centralized controller. (b) Routing pattern preferred
by the local routers.

convergence period can be shortened with the help of the
centralized controller.

There are many possible hybrid SDN designs. For instance,
the controller can take full control of the network and let
the distributed routing handle only the path failures (like
IBSDN [22]); the controller can alter the view of distributed
routing to manage the routes (such as Fibbing [23]); or
the controller can manage only parts of the network [13].
A critical fact is: no matter which approach we take in a
hybrid approach, the controller should be able to override
the distributed decisions in whole or in part. Given the fact,
the minimum feasible design of a hybrid SDN network is to
allow the controller to change the distributed routes.2

From the ISPs’ perspective, such design avoids the need of
upgrading distributed devices to support sophisticated mech-
anisms, and hence it is a better choice of incremental SDN
deployment. However, it also introduces new stability chal-
lenges if the centralized controller is not designed carefully.

In Fig. 2, we demonstrate that the inconsistency of the
routing decisions between the two control units can result in
consecutive route switching. Consider two flows F 1 and F 2

which are routed through the network. A poorly designed cen-
tralized controller may prefer the routing pattern as in Fig. 2a,
while the local routers would choose the routes as in Fig. 2b
because they are the shortest paths. After the centralized
controller deploys the left routing pattern, the local routers
override the decision by the right routing pattern. This process
may continue in poorly designed centralized controller.

Besides the concerns from dual control, the partial or incon-
sistent information can also drive the network into an unstable
state. For instance, if the centralized controller in Fig. 2 cannot
detect the middle link, Fig. 2b will never be a feasible solution
for the controller and instability may result It should be
pointed out that the above scenario is rare and non-persistent
in practice, and if it happens the best approach is to simply rely
on distributed routing as long as the problem lasts. However,
we will explore other ways of addressing those imperfect
information situations as well.

III. FORMULATION

In this section, we introduce a flow-level model to depict
our problem and illustrate our system design in the following

2The centralized controller may be granted only partial controllability over
the network. In this paper, we assume full controllability for simplicity.

792 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

sections. The objective of this work is to ensure the centralized
controller deploys a routing pattern that is stable, i.e., con-
sistent with the distributed routing mechanism described in
Section III-B and Assumption 1 in Section IV. The framework
and methods proposed in the following sections are devoted
to this purpose, regardless of the performance metric of the
network operator. That is, no matter which performance metric
the network operator possesses, such as minimizing the overall
cost or maximizing the total throughput, our methods can still
find a stable routing pattern.

A. Notations

We denote by t the physical time of the system. A variable
can attach parenthesized t to refer to its value at time t.

The network is modeled as a directed graph G = (V, E),
where V is the set of nodes representing the local routers
performing source routing and E is the set of directed edges
representing the physical links between the routers. Each edge
e ∈ E has a capacity ce and a cost metric me, which are both
fixed constants. The connectivity of the edge e is indicated
by a binary variable ze(t), which is 1 if the edge is up and 0
when it is down.

A set of flows indexed by the set N sends their traffic
through the network. Each flow Fn, where n ∈ N , requires to
send at the rate rn(t) from its source sn to its destination dn.
sn and dn are connected by a path specified via the path
indicator xn

e (t), which is 1 when the path includes edge e
and 0 otherwise. We omit the subscript e of xn

e (t) to refer to
the path as a vector of path indicators, and its corresponding
cost is expressed by the shorthand notation m(xn(t)) =∑

e∈E

mex
n
e (t). To ensure xn(t) forms a path, an additional

condition xn(t) ∈ Pn is introduced.3

An ISP usually maintains at least two priority levels to
provide different quality of services and pricing/marketing
options. For instance, VoIP or video conference services might
get higher priority than emails [25]. Therefore, we associate
a priority class πn with each flow Fn, and in this work
the 3-tuple < sn, dn, πn > uniquely defines a flow. We say
π1 ≤ π2 if the priority class π1 has higher priority than π2.
The flows with (strictly) higher priority can acquire bandwidth
from lower prioritized flows. We refer to the indices of the
flows higher prioritized than π by N≤π = {n ∈ N : πn ≤ π},
and we let Nπ = {n ∈ N : πn = π}. We denote by
Π = {πn : n ∈ N} the set of all priority classes.

Table I summarizes major notations for easier lookup.

B. Distributed Routing

In this work, each flow Fn is routed via solving the
constrained shortest-path first (CSPF) problem Rn(t) at its
source router, which finds a path among a given set of paths

3Using the notations from [24, Ch. 7.3], we can express Pn as the set such
that

�

e∈δ(S)

xn
e (t) ≥ 1, ∀S ∈ S.

TABLE I

MAJOR NOTATIONS

from the source to the destination that has the minimum cost:

Rn(t) = min m(xn(t))
s.t. xn(t) ∈ Pn (1a)

xn
e (t) ∈ {0, 1} ∀e ∈ E (1b)

xn
e (t) ≤ ze(t) ∀e ∈ E (1c)

∑

n′∈N≤πn

rn′
(t)xn′

e (t) ≤ ce ∀e ∈ E (1d)

where the constraints (1a) and (1b) require that xn(t) be a
path; the constraint (1c) ensures that the path can only take the
up edges; and the constraint (1d) is the link capacity constraint.
Notice that Rn(t) is polynomial-time solvable: By setting
xn

e (t) = 0 for all the edges with ze(t) = 0 and removing
the constraint (1c), the problem is a shortest-path problem,
which is polynomial-time solvable [24].

When equal-cost path solutions exist, only one of them is
picked as the solution based on some tie-break rules provided
by the system operator. In this work, we use the terms “path”
and “route” interchangeably since single path is chosen as the
route for the traffic.

C. Information Structure

As in [20], the centralized controller collects the data plane
information via two different protocols:

• Path Computation Element Communication Protocol
(PCEP, RFC 5440 [26]): The router can report rn(t)
by the path computation request message and xn(t)
by the path computation reply message to the cen-
tralized controller. The PCEP messages are marked by
< sn, dn, πn >, so that the flow can be identified.

• Border Gateway Protocol - Link-State (BGP-LS, RFC
7752 [27]): The centralized controller gathers the
link-state information of each edge, which includes ce,
me, ze(t), and the aggregated traffic rate on the edge per
priority

∑

n∈Nπ

rn(t)xn
e (t).

Local routers report the information through these two
protocols on a regular basis, but the reporting time is not

TSENG et al.: ROUTING STABILITY IN HYBRID SDNs 793

Fig. 3. The system is not necessarily synchronized. Each control
unit/reporting protocol has its update interval.

necessarily synchronized. We assume that the centralized
controller records the receiving time as well when collecting
those reported information. The receiving time helps the
centralized controller detect outdated information and allows
further measures to be taken.

D. Update Timeline

The system updates in an asynchronous manner. Fig. 3
shows the update timeline of the system. The centralized
controller collects the information and routes the traffic every
ΔC time unit. Similarly, each local router performs CSPF
source routing Rn(t) routinely with the interval ΔRn . Notice
that the intervals ΔRn are not necessarily the same among all
routers. If the local router computes the route for the flow Fn

at time t, it will compute again at time t+ΔRn . However, local
routers will perform fast-reroute (by solving Rn(t)) whenever
they find that the assigned routes are no longer feasible. PCEP
and BGP-LS messages are sent in a much higher frequency
than the route updating. The same message will be sent every
ΔI time units, while different messages are not synchronously
sent. For simplicity, we assume that the information reporting
interval, ΔI , is a static value. In reality, the interval size may
vary from message to message. However, we ignore the effect
caused by varying interval size, since the reporting interval is
much shorter than the update interval.

IV. DUAL CONTROL CONSISTENCY

The stability of a hybrid-software defined network involves
the consistency between the centralized routing performed by
the centralized controller and the distributed routing performed
by the individual local routers. If these two control units
are not consistent with each other, the routing decision may
be overturned repeatedly as they take turns to modify the
routes. Before proceeding to the dual control consistency,
we should specify the underlying assumption about the behav-
ior of local routers to ensure the stability of the distributed
routing.

Assumption 1: A local router will not change the selected
path for a flow unless any one of the following is
encountered:

• The centralized controller orders it to do so.
• The old path is no longer feasible.
• A new feasible path with strictly lower cost exists.

Algorithm 1 Algorithmic Framework to Obtain Stable Rout-
ing Patterns
1: for From the highest priority π ∈ Π tothe lowest do
2: Invoke the kernel algorithm to get a stable routing pattern

of the flows indexed by Nπ and deploy the corresponding
routes.

3: end for

The assumption results from the fact that the local routers
should not switch between equal cost paths, otherwise the
distributed routing itself is not stable.

Given the assumption, we define the stability of a hybrid
software-defined network below, similar to the way in [15]
and [16]. It basically says that the hybrid SDN is stable as
long as the centralized controller’s decision is consistent with
the local routers’ decisions.

Definition 1: A hybrid software-defined network is stable if
the centralized controller deploys a routing pattern that is an
optimal solution to Rn(t) for all n ∈ N .

Definition 1 matches the stability of a system in the ordinary
sense: The assigned routes will not be switched back and
forth. The reason is that a path corresponding to an optimal
solution to Rn(t) is feasible and admits no path with strictly
lower cost. Therefore, based on Assumption 1, once the
centralized controller deploys a routing pattern as described
in Definition 1, the local routers will not change the selected
paths since they are already optimal.

With Definition 1, we can design algorithms for the cen-
tralized controller to achieve a stable routing pattern. Since
the flows are prioritized, it is intuitive to cope with the higher
prioritized flows first. The intuition stems from the fact that
the higher prioritized flows can acquire bandwidth from lower
prioritized flows. If a lower prioritized flow is routed first,
its bandwidth can still be taken by a higher prioritized flow,
which leads to rerouting.

Therefore, we propose Algorithm 1 as a framework to
pursue a stable routing pattern. The kernel algorithm in
Algorithm 1 is another algorithm which gives a stable routing
pattern for the flows in a priority class, with all higher
prioritized flows routed already.

We show that Algorithm 1 generates a stable routing pattern
as follows. If the generated pattern were not stable, there
would exist a flow Fn which can find a path with strictly
lower cost. Such path cannot occupy the bandwidth of the
flows with priority higher than πn. Therefore, at the iteration
that considers the flows indexed by Nπn , the path with strictly
lower cost for Fn is feasible. That means the routing pattern
given by the kernel algorithm is not stable, which contradicts
to the definition of the kernel algorithms.

In the following subsections, we propose different kernel
algorithms to obtain a stable routing pattern for a priority class.

A. Global Optimization Kernel Algorithm (GLO)

One way to obtain a stable routing pattern for a priority class
π is by solving the following optimization problem Cπ(t),
which globally minimizes the aggregated metric of the flows

794 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

at the priority class π.

Cπ(t) = min
∑

n∈Nπ

m(xn(t))

s.t. xn(t) ∈ Pn ∀n ∈ Nπ

xn
e (t) ∈ {0, 1} ∀n ∈ Nπ, e ∈ E

xn
e (t) ≤ ze(t) ∀n ∈ Nπ, e ∈ E
∑

n∈N≤π

rn(t)xn
e (t) ≤ ce ∀e ∈ E (2)

The global optimization kernel (GLO) routes the flows based
on the resulted xn

e (t).
The optimal solution to Cπ(t) is stable, which can be shown

by contradiction: If not, there exists n ∈ Nπ such that the
optimal solution to Cπ(t) is not an optimal solution to Rn(t).
As such, we can substitute the optimal solution xn

e (t) to Rn(t)
back to the optimal solution to Cπ(t), which results in a
feasible solution to Cπ(t) with strictly lower cost than the
optimal solution, and it is not possible.

The optimal solution to Cπ(t) guarantees not only the
stability but also the lowest cost in the presence of the route
assignment to higher prioritized flows. Unfortunately, obtain-
ing an optimal solution to Cπ(t) is computationally intractable
in general as Cπ(t) is a min-cost multi-source unsplittable
flow problem, which is NP-hard [28]. Furthermore, even the
single-source version is strongly NP-complete: determining the
existence of a feasible solution to the single-source unsplittable
flow problem is NP-complete [29, Proposition 3.0.1]. As a
result, the major approximation results target three slightly
tweaked versions that were first proposed in [29], which
consider minimum congestion, maximum satisfiable subset,
and minimum number of transmission rounds. We should point
out that a routing pattern given by approximating Cπ(t) may
lead to a low cost solution but the resulting pattern may not
be stable.

Although the optimality of Cπ(t) guarantees the stability,
Cπ(t) may be infeasible. Dealing with the infeasibility is a
decision that would be made by the network operator. The
network operator may try to satisfy a chosen subset of the
flows or send the flows in reduced rates. We don’t make
any assumption on how the network operators deal with
infeasibility, and our results, including the followings, can still
find stable routing patterns.

The NP-hardness of Cπ(t) makes it hard to be solved
efficiently. Therefore, we propose two other tractable methods
in the following subsections.

B. Greedy Kernel Algorithm (GRE)

While NP-hardness prevents us from solving the global
optimization problem Cπ(t), solving so is not necessary
for obtaining a stable routing pattern for a priority class.
For instance, there are two different stable routing patterns
in Fig. 1, even though not both of them incur the lowest
cost. Thus, we propose in the following subsections some
approaches other than the global optimization to obtain a stable
routing pattern.

We propose a greedy approach based on the following
observation: Given a stable routing pattern and a new flow

Algorithm 2 Greedy Kernel Algorithm (GRE)
1: for Choose n ∈ Nπ in an arbitrary order do
2: Solve Rn(t) and deploy the resulted path when Rn(t) is

feasible.
3: end for

Fig. 4. NP-hardness of deciding the best greedy solving order can be shown
by a polynomial-time reduction from the Knapsack problem.

Fn, adding the path resulting from Rn(t) on top of the given
stable routing pattern yields another stable routing pattern.
As such, we can build a stable routing pattern by adding the
route from Rn(t) one at a time, which results in the greedy
kernel algorithm (GRE, Algorithm 2).

GRE generates stable routing patterns. If the routing pattern
given by Algorithm 2 were not stable, we would have a
feasible path with strictly lower cost for some flow Fn. The
path is then feasible at the iteration when Fn is chosen, which
means the path selected by Algorithm 2 is not optimal to
Rn(t), and it leads to a contradiction.

GRE has one major drawback as shown in Fig. 1. That
is, the performance of the algorithm depends on the solving
order of Rn(t). Solving R2(t) before R1(t) gives Fig. 1a; nev-
ertheless, Fig. 1b can be reached by solving R1(t) first. Thus,
better performance may be achieved by carefully aligning the
solving order, however, deciding the best solving order itself
is NP-hard as shown in Proposition 1.

Proposition 1: Finding a solving order of GRE that mini-
mizes

∑

n∈Nπ

m(xn(t)) is NP-hard.

Proof: We show the proposition by providing a
polynomial-time reduction from the Knapsack problem, which
is NP-hard. Fig. 4 shows the construction in the proof below.

Given an instance of the Knapsack problem, we construct
a directed graph consisting of one edge (s, v), which has a
capacity equal to the knapsack size. For each item n with size
rn and value mn, we add a node dn and two directed edges
(s, dn) and (v, dn) with capacities rn to the graph. All the
edges are zero cost except for the edges (s, dn), which have
the cost metric mn, respectively.

We create the flows Fn to send traffic from s to dn at
the rate rn. Since each flow Fn has only two possible paths:
s → dn with cost mn or s → v → dn with zero cost,
deciding the best solving order is equivalent to answering what
is the highest aggregated associated cost mn given by the flows
going through (s, v), which is the objective of the Knapsack
instance. Therefore, the construction gives a polynomial-time
reduction from the Knapsack problem. �

TSENG et al.: ROUTING STABILITY IN HYBRID SDNs 795

Fig. 5. Local search kernel finds a “nearby” stable routing pattern.

Notice GRE will always produce a routable routing pattern,
i.e., the routed flows will respect the capacity constraints.
However, it is not necessary that all the flows will be routed.

C. Local Search Kernel Algorithm (LOC)

GRE builds a stable routing pattern for a priority class from
scratch. However, the centralized controller may have derived
a routable routing pattern from some heuristics already. For
example, the controller may adopt some approximation algo-
rithm, such as [30]–[33], to approach Cπ(t). As mentioned in
Section IV-A, such approximation solution may not form a
stable routing pattern. The only question left is how to shape
the existing routable routing pattern to be a stable one. To deal
with the situation, we take a local search approach. A local
search kernel algorithm (LOC) finds a “nearby” stable pattern
by “improving” the routable solution until no further change
can be made (Fig. 5). In this case, we have to clarify the
meaning of “improvement” such that the termination of LOC
implies the stability of the resulted solution.

Definition 1 sheds light on the possible termination condi-
tion: A routing pattern is stable if there exists no n ∈ Nπ such
that the routing pattern is not an optimal solution to Rn(t).
As a result, we can define the improvement as “finding n ∈ Nπ

such that the routing pattern is not an optimal solution to
Rn(t)” and improving the maintained routable solution by
using the strictly shorter route given by the optimal solution
to Rn(t). The design of LOC is summarized in Algorithm 3,
and we show its stability by contradiction: Suppose the routing
pattern were not stable, we would have a path with strictly
lower cost for some flow Fn. However, the routing pattern is
generated when LOC terminates, which happens only when
all n ∈ Nπ are “checked”. A “checked” flow can have a path
with strictly lower cost only if some other flow modifies its
path, but meanwhile the modified flow marks all other flows
“ unchecked”, and LOC will not terminate. Thus, the resulted
routing pattern must be stable.

An important question about LOC is whether the algorithm
will terminate in polynomial-time. Proposition 2 confirms
that LOC terminates in O(|Nπ|2) iterations, and hence the
Algorithm 1 with LOC as its kernel terminates in O(|N |2).

Proposition 2: Given an initial routable routing pattern
with the path indicators xn(t), n ∈ N , LOC terminates in
Kπ|Nπ|2 iterations, where

Kπ = max
n∈Nπ

|{yn ∈ Pn : m(yn) ≤ m(xn(t))}|

Algorithm 3 Local Search Kernel Algorithm (LOC)
1: Invoke the controller’s heuristic to get an initial routable

routing pattern.
2: Put n ∈ Nπ in a circular buffer in an arbitrary order and

mark them “unchecked”.
3: Let n̂ point to one element in the circular buffer.
4: while There exists n ∈ Nπ unchecked do
5: Solve Rn̂(t).
6: if The resulted path for F n̂ has strictly lower cost than

the current path. then
7: Deploy the new path and mark all elements in the

circular buffer “unchecked”.
8: end if
9: Mark n̂ “checked” and point n̂ to the next element.

10: end while

Fig. 6. The local search kernel algorithm (LOC) can shape a routable
routing pattern to be a stable one. (a) Careful Bounded Greedy (CBG)
Approximation Algorithm. (b) Stabilizing CBG by Local Search Kernel
Algorithm (LOC[CBG]).

is the maximum number of shorter paths that each flow indexed
by Nπ has.

Proof: We show the proposition by considering the longest
execution. Notice that the while loop in LOC will terminate if
we mark n̂ “checked” in |Nπ| consecutive iterations. There-
fore, for every |Nπ| iterations, the longest execution has at
least one n̂ ∈ Nπ which can find a strictly lower cost route
via solving Rn̂(t). Because there are at most Kπ shorter
paths, or Kπ smaller different costs, the longest execution has
at most |Nπ| (every |Nπ| iterations) ×|Nπ| (possible flows)
×Kπ (times of cost decreasing) = Kπ|Nπ|2 iterations before
termination. �

A naive upper bound on Kπ is 2|E|, the number of all edge
combinations. As a result, although the LOC is quadratic in
the number of the flows, the naive bound leads to a factor
exponential in the number of the edges, which suggests a
potential long worst-case termination time in theory.

However, if the initial routing pattern is chosen such that the
initial paths are short already, Kπ would be small and hence
LOC is efficient. It can happen when the controller leverages
LOC to deal with minor deviation from the desired routing
pattern, in which all the paths may be chosen close to the
shortest paths. For instance, when some high prioritized flow
reduces its sending rate, the released bandwidth allows some
low prioritized flows to take shorter paths. LOC will be able to
efficiently deal with that case as the released bandwidth creates
only few shorter possible paths in addition to the current ones.

We introduce the following example in Fig. 6 to illustrate
how LOC can be useful.

796 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

TABLE II

COMPARISON OF ALGORITHM 1 WITH DIFFERENT KERNELS

The centralized controller may approximate Cπ(t) by the
careful bounded greedy (CBG) heuristic [30], [31], which
approximately finds a subset of flows that accounts for the
most traffic. Such approximation algorithm has a fixed approx-
imation ratio proven in [30], but the resulting pattern may
not be stable. We perform a trace-based simulation as in
Section VII-C, and the number of routes flapped are shown
in Fig. 6.

The network traffic changes every five minutes, and we
examine two different kernel algorithms: CBG only (Fig. 6a)
and LOC with CBG generating the initial pattern (denoted
by LOC[CBG], Fig. 6b). The routing patterns by CBG are
not stable: the local routers and the centralized controller
take turns to adjust the routes. In contrast, LOC stabilizes
the routing pattern generated by CBG, and the network is
stabilized quickly after the centralized controller intervenes.

D. Comparison Amongst the Kernels

We summarize Algorithm 1 with three different proposed
kernels in Table II.

Since solving the global optimization problem Cπ(t) is
NP-hard, it will take exponential-time to solve; GRE checks
each flow only once, and hence it is linear-time solvable; and
the time-complexity of LOC has been given by Proposition 2.

We can observe from the table that GLO and GRE are
two extreme cases. Solving Cπ(t) is the most computationally
expensive with the lowest (optimal) cost (per priority class),
while GRE loses such optimality in exchange for lower
computational complexity.

Besides these two extremes, LOC provides flexibility with a
quadratic-time complexity by allowing the specification of an
initial routable routing pattern. The importance of flexibility
is argued in the following sense: Unless the network operator
aims to minimize the same objective as Cπ(t), it may select
a stable routing pattern based on some other criterion, such
as route disturbance. In that case, the flexibility allows the
operator to pursue the criterion as well as the stability in
the same time. For example, if we specify the initial pattern
as the current pattern, the local search algorithm may change
much less routes than the other two kernels since it searches
locally (which is confirmed in Section VII).

We remark that when only one priority class is considered,
GLO simply solves the multi-source unsplittable flow problem
and GRE converges as the legacy distributed routing. However,
centralized control is still beneficial, since it can shift the

network to a preferred routing pattern (Fig. 1) and quickly
stabilize the network.

V. PARTIAL OR INCONSISTENT INFORMATION

In Section IV, we develop a framework with three different
kernels to reach a stable routing pattern assuming complete
and up-to-date information. If the centralized controller does
not get complete information, i.e., some information is missing
or inconsistent, the preferred approach for it is to pause the
centralized controller’s intervention until complete information
is available. This approach works in the hybrid framework
since the distributed routing continues to work, and it is
preferable for the ISPs that operate highly robust networks.
In a robust network, partial or inconsistent information is sel-
dom encountered, and the system recovers from the abnormal
information state quickly. Therefore, the centralized controller
can soon resume working without any additional complex
functions. For the sake of a complete design, we also consider
a second approach where centralized controller takes action
even if the information is incomplete in this section.

As to how the centralized controller can pursue a stable
routing pattern under incomplete or inconsistent information,
we decouple the issue into two stages: information recovery
and stability pursuit. During the information recovery stage,
the centralized controller tries to deduce the missing infor-
mation from the available information or mitigate the impact
of the inconsistent information. Then it pursues stability as
if complete information is given, which has been examined
in Section IV. We will hence focus on the first stage in this
section.

A. Partial Information

Since the centralized controller relies on the data plane to
collect information, the information may be lost or delayed
during the packet delivery. Also, the failures of routers or links
prevent the centralized controller from probing the current
states. Those reasons explain why the centralized controller
may need to route based on partial information.

One simple observation of information recovery is that no
information can be recovered if no information is available for
the centralized controller. It motivates us to focus on the case
in which only small part of the information is missing instead
of those general cases such as a total blackout. Specifically,
we borrow the idea of N-1 criterion [34] from power systems
and provide our modified definition as follows.

Definition 2: The N-1 criterion requires full information
recovery of a variable when one protocol message is lost.

We will show that N-1 criterion can be met for the flow
rate rn(t) and the flow path xn(t), while the information
recovery of the edge connectivity ze(t) is not guaranteed. We
remark that meeting the N-1 criterion does not mean that we
can only restore one missing variable, but that the system is
robust enough to endure one protocol message lost without
being blind to the variable. The system can still recover from
the loss of multiple protocol messages when the messages are
independent.

TSENG et al.: ROUTING STABILITY IN HYBRID SDNs 797

Fig. 7. The PCEP and BGP-LS information is marked with time stamps and stored as a graph.

Recall the information carried by the different protocol
messages:

• PCEP: < sn, dn, πn >, rn(t), and xn(t).
• BGP-LS: ce, me, ze(t), and

∑

n∈Nπ

rn(t)xn
e (t) for each

priority class π.

The 3-tuple < sn, dn, πn > is used to identify the flow. If it is
missing, the corresponding rn(t) or xn(t) is missing as well.
The PCEP information rn(t) and xn(t) are linearly depen-
dent on the aggregated flow information

∑

n∈Nπ

rn(t)xn
e (t)

provided by BGP-LS. As such, one flow information can
be fully-restored per priority class via linear algebra, which
suggests that rn(t) and xn(t) meet the N-1 criterion.

We illustrate the benefit of meeting such N-1 criterion by
the following proposition.

Proposition 3: Assume that each PCEP message gets lost
with probability q, independent with each other. With infor-
mation recovery, the probability that the controller still has
complete information is at least

(1 − q)|N |−|Π| ∏

π∈Π

(1 + (|Nπ| − 1)q) ,

which is lower bounded by the probability that at most one
PCEP message is lost within |N | − |Π| + 1 messages:

(1 − q)|N |−|Π| (1 + (|N | − |Π|)q) .
Proof: The probability that at most one PCEP message is

lost within y messages is
∏

π∈Π

(1 − q)y−1 (1 + (y − 1)q) .

Since the controller can restore one PCEP message per
priority class using BGP-LS information (N-1 criterion),
the probability that the controller has complete information
is

∏

π∈Π

(1 − q)|Nπ|−1 (1 + (|Nπ| − 1)q) ,

and the proposition is derived through simple calculations. �
Without information recovery, the probability that the con-

troller has complete information is (1− q)|N |. In general, q is
small and |N | is large. Therefore, information recovery can
help improve the probability that the centralized controller
maintains complete information.

On the other hand, the PCEP information πn and the
BGP-LS information ce, me, and ze(t) do not have the

dependency, and N-1 criterion is not met. However, πn, ce,
and me are time-independent. It is less likely to lose the
information. As to ze(t), it can be related to xn(t) through
the constraint (1c). For any e ∈ E, xn(t) ≤ ze(t) should be
satisfied for all n ∈ N . As such, ze(t) = 1 if there exists a flow
Fn routed through the edge e. Therefore, revealing ze(t) is
still possible unless no flow is going through the edge. In that
case, we simply assume ze(t) = 0 (i.e., the edge e is down)
until some flow is routed through the edge by a local router.

B. Inconsistent Information

In addition to the partial information issue, it is potentially
possible that the latest information may be inconsistent as they
are reported at different time. For instance, the sending rate of
F 1 in Fig. 7 drops from one unit traffic to 0.4 unit traffic.
When the centralized controller intervenes, the new PCEP
information has been received, and r1(t) is updated to 0.4.
But, the new BGP-LS on edge e has not yet propagated to
the centralized controller, and hence the centralized controller
finds that one unit priority 0 flow is going through e from the
obsolete BGP-LS.

To tackle the conflict view from the two information
sources, we calculate the effective capacity, which is the
minimum possible available capacity, and solve for stable
routing patterns based on that conservative capacity estimation.
The idea behind effective capacity is to avoid occupying the
bandwidth that is being used but not well detected. Among the
reported information of a variable, we take the minimum as its
value. Meanwhile, we estimate the maximum possible amount
of “hidden flows” and deduct them from the capacity. By doing
so, a routable solution based on the effective capacities remains
routable even under the presence of hidden flows, which
prevents packet dropping caused by unawareness of the hidden
flows and occupation of their bandwidth.

We calculate the effective capacity for the example in the
beginning of this section: We deem r1(t) = 0.4 as it is the
minimum reported value of r1(t). As such, 0.6 priority 0
flow on edge e is unseen (the hidden flow), and the effective
capacity of e is computed as 1−0.6 = 0.4. On the other hand,
if the capacity of e is 2 instead, the effective capacity will be
2 − 0.6 = 1.4.

We have the following proposition discussing when the idea
of effective capacity can maintain a routable solution under
inconsistent information.

798 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Proposition 4: A routable routing pattern given by the
controller under effective capacities remains routable when

• the PCEP information of some new flows are not yet
known by the controller.

• the actual sending rates are no more than the reported
values.

Proof: Under the first circumstance, the unknown flows
are reported by BGP-LS but not PCEP, and hence the con-
troller won’t redirect those flows. A routable routing pattern
given by the controller fits other known flows into the network,
and the bandwidth for the unknown flows are reserved by the
design of effective capacity.

The second one is trivial. Since the actual sending rates are
no more than the reported values, and the effective capacity is
always smaller than the real capacity, satisfying the reported
sending rates under effective capacity implies the satisfaction
of the actual sending rates under the real capacity. �

Notice that Proposition 4 guarantees feasibility instead of
stability of the pattern given by the controller. To obtain a
stable pattern, complete information is always favorable than
inconsistent one.

VI. SYSTEM DESIGN

In this section, we elaborate how to build a centralized
controller that generates stable routing patterns.

A. Information Collection

The centralized controller keeps the received information
from PCEP and BGP-LS messages as a graph. The PCEP
messages are translated as πn, rn(t), and xn(t), and stored at
the source nodes. The BGP-LS messages update ce, me, ze(t),
and

∑

n∈N=π

rn(t)xn
e (t) that are stored at the edges. When a new

message is received, the centralized controller checks if there
exists an entry corresponding to the message already. If so,
it updates the entry and resets the time stamp t as the current
time. Otherwise, it creates a new entry to record the message
and sets the time stamp as the current time.

Fig. 7 is an example with two flows F 1 and F 2. Each
flow sends unit traffic from v1 to v4. The network consists
of four unit-capacity edges. The information reported to the
centralized controller is stored in a corresponding graph.

B. System Workflow

At the moment when it is the centralized controller’s turn to
update the routes, it goes through the following process phase
by phase:

1) Outdated information removal: In the phase, the cen-
tralized controller identifies if the stored information is
outdated by comparing the time stamp, which is the last
receiving time, with the current time. The centralized
controller collects only the information which is either
time-independent or within an appropriate timeout ΔT .
ΔT must be larger than ΔI in order not to discard the
latest information.

2) Information recovery: The centralized controller
applies the skills discussed in Section V to the collected

information from the first phase to obtain a recovered
information.

3) Stable routing pattern generation: Based on the recov-
ered information and the effective capacities of the
edges, we then adopt Algorithm 1 with different kernels
to find stable routing patterns.

4) Route deployment: The centralized controller sends out
PCEP commands to the local routers to adjust the routes
of the traffic.

VII. SIMULATIONS

We evaluate our methods by implementing the system
described in Section VI and conducting simulations regarding
their statistical and large-scale performance.

A. Setup

We build a simulation system as a platform to test our meth-
ods. The system structure has been discussed in Section VI.
Following parameters are adopted for the simulations:
ΔC = 30 seconds, ΔRn = ΔR = 4 minutes for all the
flows, and ΔI = 10 seconds. We ignore the route setup time
in our simulation. In practice, it takes at least 1.5 round-trip
time (RTT) for traffic to follow an established new route
(1 RTT for the new route establishment and 0.5 RTT for
the traffic to follow a new route). Also, we don’t consider
the fluctuation during the route change. The only focus of the
following simulations is the establishment of a stable routing
pattern. The asynchronization of the routers is simulated by
assigning random deviation of the decision time to each
router. The deviation is created uniformly random over [0, ΔR]
minutes for each router.

On top of the simulation system, distributed routing (DIS)
and Algorithm 1 are implemented as well as the three kernel
algorithms: global optimization (GLO), greedy (GRE), and
local search (LOC). Dijkstra algorithm is programmed to solve
shortest path problems, which is a critical component not only
for DIS, but also for GRE and LOC. In order to deal with the
Cπ(t) in GLO, we express it as an integer program with the
decision variables xn

e (t), and utilize COIN-OR Branch and
Cut (CBC) [35] as the integer program solver.

The Cπ(t) in GLO is not always feasible. When Cπ(t) is
not feasible, the controller can only guarantee the sending rate
for a subset of the flows, and hence the controller would have
to drop some traffic or reduce the sending rate. As to how to
deal with infeasibility is a design issue and beyond the scope
of this research. Therefore, we simply invoke GRE to select a
subset of the flows that admits a routable solution, and route
those flows by GLO when Cπ(t) is infeasible.

We assign each flow an id number and GRE updates
according to the order of id number. The flow with the smaller
id number would be routed earlier than the flows with larger id
numbers. The id numbers are also used in LOC when adding
flows into the circular buffer.

In LOC, we adopt the simplest controller heuristic to obtain
a routable routing pattern, which does nothing but putting back
the feasible flows in the current routing pattern.

TSENG et al.: ROUTING STABILITY IN HYBRID SDNs 799

Fig. 8. The Internet2 Network topology.

B. Statistical Performance

We first compare the performance of the kernels based on
the layer-3 topology of the Internet2 Network [36], which has
11 nodes and 17 edges (Fig. 8). Each edge has 100 Gbps
bidirectionally, and its metric is set proportional to the distance
between its endpoints.

Two priority classes are allowed, and among all the possible
flows < sn, dn, πn >, we include each with probability 0.8 to
form the set of flows and index them by N . For each selected
flow, we assign an initial sending rate and a target sending rate
uniformly random from the interval [5γ, 15γ] Gbps, where γ
is the tightness parameter to control the size of the generated
flow. The initial stable routing pattern is achieved by DIS.
As all the flows switch to the target sending rate, our methods
are applied to stabilize the network. Under 1000 independent
simulations and different γ, we compare cost performance,
computational efficiency, and route disturbance among the
kernel algorithms.

1) Cost Performance: The first issue is the cost perfor-
mance. As demonstrated in Section II, a stable routing pattern
does not necessarily imply the shortest aggregated path metric.
That is also the reason why the intervention of the centralized
controller may improve the efficiency of the bandwidth utiliza-
tion. To capture the phenomenon, we define the path metric
ratio of a flow to be the metric of the path assigned to the
flow divided by the metric of the shortest possible path in the
network when all the resources are available for the flow. Let
pn(t) be the shortest possible path, which is independent of
the other traffic, we have

path metric ratio of Fn at time t =
m(xn(t))
m(pn(t))

.

According to the definition, the path metric ratio is always
greater than or equal to one. We compare the average of the
path metric ratio of those routed flows, i.e., excluding the flows
that cannot be routed. If a kernel gives the average path metric
ratio close to one, the kernel can route most of the flows
through the shortest possible path, which suggests a good cost
performance.

In Fig. 9, LOC performs similar to GRE under small γ.
When the network becomes highly utilized, LOC beats GRE.
GLO outperforms the other two kernels when γ is small, as we
would expect. As γ growing larger, not all the flows can be
routed, and GRE is introduced to select the routed flows, which
causes the performance downgrade of GLO. While LOC still
performs well in that case.

2) Computational Efficiency: Even though GLO performs
the best when the flows can all be routed, it achieves the

Fig. 9. The 1st-5th-50th-95th-99th percentiles of the average path metric
ratio of the routed flows under different tightness parameter γ. In general,
GLO gives the lowest average metric ratio.

Fig. 10. The 1st-5th-50th-95th-99th percentiles of the computation time.
GRE is faster than LOC, and GLO is significantly slower than the other two.

performance with a huge computational effort. The compu-
tational effort is evaluated through the real CPU time. Such
computational requirement is not reflected directly in all the
simulation results. The reason behind the demonstration deci-
sion is that the computational time depends on the deployed
hardware. The commercial routers or controllers can normally
compute much faster than our simulation platform as those are
highly specialized equipment. But it is worth taking a closer
look at the computational effort spent in our simulation as it
may shed light on the computational requirement in the real
setting.

In Fig. 10, GLO requires up to 6 orders of magnitude longer
time than the other two kernels. GRE consumes the least time,
and the computation time decreases as γ increases, since the
number of the flows that can be routed is decreasing. The
results also show that the computation time of LOC is merely
around twice the time needed by GRE in practice, although it
is of quadratic time complexity in theory.

3) Route Disturbance: Besides the cost performance and
computational efficiency, the operator might want to stabilize
the network with minimum number of routes changed, since
route switching is one of the main packet lost reasons.

In Fig. 11, GLO and GRE both change around 1.5 to 2 times
more routes than LOC does when stabilizing the network. The
reason is that the heuristic in LOC applies the current routing
pattern as the initial routable pattern, and LOC will terminate
once a stable pattern is found by changing one path at a time

800 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 11. The 1st-5th-50th-95th-99th percentiles of the number of paths
changed. LOC changes least paths to stabilize the network.

Fig. 12. The Abilene Network topology.

Fig. 13. The 1st-5th-50th-95th-99th percentiles of the number of paths
changed. LOC changes least paths to stabilize the network.

to search locally, which usually changes only small fraction
of the routes.

We also simulate the Abilene network, the ancestor of
the Internet2 Network, using the trace from [37]. The trace
provides both the measured network topology and traffic
matrix. Fig. 12 shows the topology, which is slightly different
from Internet2 (Fig. 8).

The traffic matrix consists of aggregated traffic per
source/destination pair. We consider two priority classes – high
and low – and partition the aggregated traffic randomly into
the priority classes to create the flows.

As in Section VII-B, we first obtain a stable routing pattern
by DIS. We then vary the sending rate of each flow by a
random per-flow factor, uniformly distributed between 0.8 and
1.2. Over 1000 independent simulations, we collect the results
and discuss their statistics in two aspects: the number of routes
flapped to stabilize the routing pattern and the average path
metric ratio in the achieved pattern.

Fig. 13 shows the number of paths changed to obtain a
stable routing pattern. LOC finds a stable routing pattern
with the least paths changed. The average path metric ratio,
however, is the best under GLO as in Fig. 14, and sophisticated
centralized control (GLO and LOC) can perform better than
DIS. The trends are consistent with Fig. 11 and 9.

Fig. 14. The 1st-5th-50th-95th-99th percentiles of the average path metric
ratio of the routed flows. GLO gives lowest cost among the three kernel
algorithms. Sophisticated centralized control (GLO and LOC) can perform
better than distributed control (DIS).

C. Large-Scale Data-Driven Tests

To further evaluate the practical efficiency of the algorithms,
we establish a modified but realistic wide-area network (WAN)
topology based on a tier-1 ISP’s backbone network. The WAN
has 92 nodes and 418 edges. The capacity, ranging from 100
to 5000 Gbps, and the metric of the edges are set based on
the measurements of the capacity and the OSPF cost of the
corresponding IP links.

The sending rate used in the simulations comes from the
5-minute measurements of the real traffic data on the WAN.
The 5-minute measurements are obtained by first partitioning
the whole day into 288 disjoint 5 minute periods and taking
the average of the per-priority-class aggregated traffic at the
edge routers within each period. As defined in Section III,
we deem all the traffic with the same source, destination, and
priority class to be the same flow. As such, if two network
sessions of different purposes, such as web searching and
video streaming, are sending data through the same path with
the same priority, we don’t differentiate them and treat them as
the same flow. A total of 3547 different flows from two priority
classes are identified, and each flow updates its sending rate
every 5 minutes. The sending rate is highly diversified among
the flows: It distributes from few hundred Kbps to several
hundred Gbps.

1) Routing Stability: Firstly, we inspect how well our
methods can stabilize the routes. Four different scenarios are
considered. In the distributed scenario, each flow is routed
through the shortest path at its source router. The other
three scenarios correspond to Algorithm 1 with the kernel
algorithms GLO, GRE, and LOC, respectively.

Under these four scenarios, we turn on the system at time 0
and count the number of routes changed for 120 minutes.
We reset the count every 12 seconds and plot them in a set of
figures. Since the system is mostly stabilized within 5 minutes
under all four scenarios after the system starts, the change
of the routes after the fifth minute results from the traffic
variation. As to how well the stabilizing algorithms can deal
with traffic variation, we plot in Fig. 15 the number of changed
path from 5 to 120 minutes after the system starts.

Starting with a stable routing pattern, DIS still needs several
cycles before reaching a stable routing pattern as in Fig. 15a.
All proposed kernels stabilize the routing pattern rapidly, while
the numbers of changed paths are slightly different. We will
discuss the difference in more details in Section VII-C.4.

2) Supported Throughput: In addition to stability, the sup-
ported throughput, i.e., how many flows can be routed at
each moment, is also an important aspect to consider for

TSENG et al.: ROUTING STABILITY IN HYBRID SDNs 801

Fig. 15. Number of paths changed during 5−120 mins after the system starts.
All three kernel algorithms can effectively stabilize the network. Among them,
LOC changes the least paths. (a) Distributed (DIS). (b) Global optimization
(GLO). (c) Greedy (GRE). (d) Local search (LOC).

Fig. 16. Ratio of routed flows. The kernel algorithms can shorten the
convergence time to start serving more flows earlier. (a) Distributed (DIS).
(b) Global optimization (GLO). (c) Greedy (GRE). (d) Local search (LOC).

the network operator. We keep track of the number of flows
successfully routed to their destination, normalize it by the
total number of non-zero flows, and plot it in Fig. 16 under
the four different scenarios. We can observe that local routers
(Fig. 16a) mostly support fewer flows than those cases with
controller intervention (Fig. 16b-16d). In fact, for more than
65% of the time, the three controller involved cases can route
all the flows, but the local routers are never able to do so within
the 120 minutes. That confirms the discussion in Section II:
The network utilization can be improved by introducing a
centralized controller.

3) Computational Efficiency: We also compare the com-
putation time needed for each controller in Fig. 17. GLO
requires considerable computation time (Fig. 17a). Although
not shown in the figure, it may take more than thousand sec-
onds (1754.74 seconds in this case) to route the traffic, which
weakens GLO’s ability to deal with the quick variation of the
sending rate. GRE, as expected, takes almost constant time
to route the traffic (Fig. 17b), while LOC needs to check
and reroute the traffic several rounds before reaching a stable

Fig. 17. Computation time of the controller. GLO takes too much time to
compute a stable routing pattern, which confines its application in practice.
(a) Global optimization (GLO). (b) Greedy (GRE). (c) Local search (LOC).

TABLE III

TOTAL NUMBER OF PATHS CHANGED

TABLE IV

AVERAGE RATIO OF ROUTED FLOWS

routing pattern, which is reflected by the peaks after each
sending rate change moment (Fig. 17c).

4) Load Management: Applying the tightness parameter γ
as the multiplier to the traffic sending rate, we scrutinize the
performance of the algorithms under different network loading
within the time period from 5 to 120 minutes.

In Table III, GLO and GRE change up to 2 times more
routes than LOC. The reasons are as follows. The stable
routing pattern with the lowest cost is not necessarily taking
the similar routes as the current routing pattern. The routes can
be totally different and hence several routes will be changed.
GRE ignores the current routing pattern and fits in the flows
one by one, which can cause cascade route flapping when
a new route claims the bandwidth from the old routes. LOC
changes the least paths to obtain a stable routing pattern, which
is consistent with the result in Section VII-B.3.

Table IV shows that LOC outperforms GRE. Besides the
lightest loading condition – under which all the kernels can

802 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 18. Number of paths changed under partial information. Informa-
tion recovery helps mitigate path flapping caused by partial information.
(a) ρm = 10−3 without information recovery. (b) ρm = 10−3 with informa-
tion recovery. (c) ρm = 10−4 without information recovery. (d) ρm = 10−4

with information recovery.

route 99.5% of the flows – LOC can route up to 10% more
flows than GRE under those heavier loading conditions.

5) Partial Information: To realize how well the information
recovery phase in our design can help alleviate the impact
of information missing, we let the PCEP information be
missing with information missing rate ρm and run LOC to
stabilize the network. We fix the traffic sending rate as the
sending rate at time 0 (min) and observe the network starting
from the fifth minute, when the network is supposed to be
stable.

When the information missing rate is large (10−3),
the information recovery phase is helpful but not significant
(Fig. 18a and 18b). However, when the information missing
rate is small, which is usually the case in a commercial
network, the information recovery phase can improve the
stability by reducing the frequency and the number of route
flapping (Fig. 18c and 18d).

6) Inconsistent Information: We also consider the issue
of inconsistent information. Similar to the partial informa-
tion simulation, we fix the sending rate and make each
router send a PCEP message which is inconsistent with the
BGP-LS information with information inconsistent rate ρi.
The inconsistent PCEP message reports the sending rate only
95% of the true rate. Again, we run LOC to stabilize the
network.

The simulation result is a landslide: In all simulated cases
with the information recovery phase to obtain the effective
capacity, the routing pattern remains the same and no path is
changed. However, those without information recovery change
paths, and the network is less stable as ρi increases.

D. Failover Mechanism

The legacy distributed routing usually has some failover
mechanism that can reroute the packets swiftly once the
original route fails, e.g., [38] lists few such local fast failover
mechanisms. We compare two different failover mechanisms
via simulations: fast source reroute by CSPF and depth first
search (DFS) based local fast failover.

Fig. 19. Number of paths changed under inconsistent information. No path
is changed if information recovery phase is adopted. (a) ρi = 10−3 without
information recovery. (b) ρi = 10−2 without information recovery.

Fig. 20. The 1st-5th-50th-95th-99th percentiles of the average path metric
ratio of the routed flows. The kernel algorithms can lead to similar average
path metric ratio under both failover mechanism. (a) Fast source reroute by
CSPF. (b) Local fast failover using DFS.

Fast source reroute relies on the source router to detect
and reroute the traffic once the original route does not work
anymore. Once the route failure is detected by the source
router, it solves the CSPF Rn(t) to obtain a new shortest route
and deploys the new route. On the other hand, the DFS based
local fast failover is performed by the router where the failure
is sensed. As soon as a router finds that an outport is no longer
available due to failure or congestion, the router redirect the
traffic to new paths discovered by DFS.

To evaluate how the failover mechanisms affect our design,
we generate 1000 random stable routing patterns using Abi-
lene network and trace, cut one random edge per pattern,
and stabilize the pattern after the failover mechanism takes
place.

Fig. 20 show that the failover mechanisms have little
impact on the average metric ratio achieved by the sta-
bilization processes. In other words, the methods reach
similar stable states regardless of the underlying failover
mechanisms.

However, the “distance” between the post-failover pattern
and the reached stable pattern can be different. Fig. 21 shows
the number of modified paths to reach the stable patterns.
The local source reroute leads to a routing pattern closer to
a stable one than the pattern resulted from DFS based local
fast failover. It is as expected, as the local source reroute tries
to reroute the traffic through available shortest paths, but the
DFS simply finds a feasible path that is not necessarily the
shortest. As a result, more paths are adjusted to reach a stable
pattern under DFS based local failover.

TSENG et al.: ROUTING STABILITY IN HYBRID SDNs 803

Fig. 21. The 1st-5th-50th-95th-99th percentiles of the number of paths
changed. As DFS usually doesn’t discover the shortest path, more paths are
changed to reach a stable routing pattern. (a) Fast source reroute by CSPF.
(b) Local fast failover using DFS.

VIII. RELATED WORK

To the best of our knowledge, our work is the first one to
address the stability issue in hybrid SDN. We briefly discuss
below the existing related work.

Hybrid SDN: Hybird SDN combines the “efficient global
routing” benefit of centralized routing with scalability,
robustness and immediate decision benefits of distributed
routing [12]. Reference [13] categorizes several hybrid SDN
designs into four categories: topology-based, service-based,
class-based, and integrated hybrid SDN. In the first three
categories, SDN and the legacy routing control disjoint sets
of traffic (or forwarding information bases). Therefore our
work should belong to a special kind of integrated hybrid
SDN, in which the traffic is controlled by both control units.
IBSDN [22] is an idea similar to the hybrid SDN in this
work. The main difference is our hybrid SDN does not require
the routers to maintain a primary state and a backup state.
Fibbing [23] is also a hybrid framework. The centralized
controller utilizes distributed routing to direct the traffic by
creating augmented topology including fake nodes and links
for the local routers. In our case, the centralized controller does
not modify the local routers’ views, but try to be consistent
with them.

There is also an another kind of hybrid SDN in the literature
that considers the mix use of SDN and legacy switches,
such as Panopticon [39] and SHEAR [40]. In both work,
the centralized controller controls only the SDN switches in
the network to collaborate with the legacy switches. In our
work, however, the centralized controller can control all the
switches, and each switch also runs legacy distributed routing
that is independent of the centralized controller. Our research
aims to make these two independent control mechanisms
coherent.

Consistent SDN Update: There exists a body of work on
consistent network update which also involves stability issues.
We refer the reader to [41] for a comprehensive survey. The
key difference between their work and ours is in terms of
control granularity, with consistent SDN update concerning
about packet level consistency while ours primarily dealing
with flow level control coherence.

Stability: The network stability issue has been discovered
for a long time [42] and scrutinized for distributed routing
mechanisms, including OSPF [14], BGP [19], [43], [44], and
some other AS-based path-vector protocols [15], [16], [18],
[45]. In particular, a stable state is defined as the state
when the centralized controller and the local routers reach
a consensus [15], i.e., the centralized controller’s decision is
the best possible one for the local routers as in [16]. Another
similar concept is the “persistence” in [45], which is how long
a route can stay unchanged.

IX. CONCLUSION

We define and study dual control stability in hybrid
software-defined networks where distributed and centralized
routing coexist. To avoid potential route flapping as two con-
trol units alternatively take charge of routing, the centralized
controller has to ensure its decision to be consistent with the
local routers’ decisions. This observation then leads to the
development of an algorithmic framework with three different
stabilization kernels: global optimization, greedy, and local
search. We design and implement a system on a centralized
controller which utilizes those kernels to stabilize the network.
Through extensive simulations using realistic network infor-
mation including data from a tier-1 ISP’s backbone network,
our conclusion is that the proposed local search provides the
best trade-off among computational complexity, cost perfor-
mance and route disturbance.

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
USENIX NSDI, 2010, pp. 89–92.

[2] V. Mann, A. Vishnoi, K. Kannan, and S. Kalyanaraman, “CrossRoads:
Seamless VM mobility across data centers through software defined
networking,” in Proc. IEEE/IFIP NOMS, Apr. 2012, pp. 88–96.

[3] A. Iyer, P. Kumar, and V. Mann, “Avalanche: Data center multicast using
software defined networking,” in Proc. IEEE COMSNETS, Jan. 2014,
pp. 1–8.

[4] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 15–26, 2013.

[5] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3–14, 2013.

[6] C. J. S. Decusatis, A. Carranza, and C. M. DeCusatis, “Communication
within clouds: Open standards and proprietary protocols for data center
networking,” IEEE Commun. Mag., vol. 50, no. 9, pp. 26–33, Sep. 2012.

[7] M. F. Bari et al., “Data center network virtualization: A survey,” IEEE
Commun. Surveys Tuts., vol. 15, no. 2, pp. 909–928, 2nd Quart., 2013.

[8] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: A survey,” IEEE Commun. Mag.,
vol. 51, no. 11, pp. 24–31, Nov. 2013.

[9] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,”
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[10] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, pp. 351–362, Oct. 2010.

[11] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, Aug. 2011.

[12] S. Sezer et al., “Are we ready for SDN? Implementation challenges
for software-defined networks,” IEEE Commun. Mag., vol. 51, no. 7,
pp. 36–43, Jul. 2013.

804 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

[13] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” ACM Comput.
Commun. Rev., vol. 44, no. 2, pp. 70–75, Apr. 2014.

[14] A. Basu and J. Riecke, “Stability issues in OSPF routing,” ACM
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 225–236, 2001.

[15] L. Gao and J. Rexford, “Stable Internet routing without global
coordination,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 681–692,
Dec. 2001.

[16] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. Netw., vol. 10, no. 2,
pp. 232–243, Apr. 2002.

[17] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint
routing and rate control,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 35, no. 2, pp. 5–12, 2005.

[18] D. Papadimitriou, F. Coras, and A. Cabellos, “Path-vector routing
stability analysis,” ACM SIGMETRICS Perform. Eval. Rev.-Meas. Eval.,
vol. 39, no. 3, pp. 22–24, 2011.

[19] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability of
popular destinations,” in Proc. ACM IMW, 2002, pp. 197–202.

[20] M. Birk et al., “Evolving to an SDN-enabled ISP backbone: Key
technologies and applications,” IEEE Commun. Mag., vol. 54, no. 10,
pp. 129–135, Oct. 2016.

[21] G. Choudhury et al., “Centralized optimization of traffic engineering
tunnels in a large ISP backbone using an SDN controller,” in Proc.
INFORMS Optim. Soc. Conf., Mar. 2016.

[22] O. Tilmans and S. Vissicchio, “IGP-as-a-backup for robust SDN net-
works,” in Proc. IEEE CNSM, Nov. 2014, pp. 127–135.

[23] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control
over distributed routing,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 43–56, 2015.

[24] D. P. Williamson and D. B. Shmoys, The Design Approximation Algo-
rithms. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[25] AT&T Class of Service. Accessed: Feb. 26, 2019. [Online]. Available:
http://carecentral.att.com/downloads/Class of Service.pdf

[26] J. Vasseur and J. Le Roux, Path Computation Element (PCE) Commu-
nication Protocol (PCEP), document RFC 5440, 2009.

[27] H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, North-Bound
Distribution of Link-State and Traffic Engineering (TE) Information
Using BGP, document RFC 7752, 2016.

[28] M. Belaidouni and W. Ben-Ameur, “On the minimum cost multiple-
source unsplittable flow problem,” RAIRO-Oper. Res., vol. 41, no. 3,
pp. 253–273, 2007.

[29] J. M. Kleinberg, “Approximation algorithms for disjoint paths prob-
lems,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts
Inst. Technol., Cambridge, MA, USA, 1996.

[30] P. Kolman and C. Scheideler, “Improved bounds for the unsplittable flow
problem,” in Proc. SODA, 2002, pp. 184–193.

[31] P. Kolman, “A note on the greedy algorithm for the unsplittable flow
problem,” Inf. Process. Lett., vol. 88, no. 3, pp. 101–105, 2003.

[32] Y. Azar and O. Regev, “Combinatorial algorithms for the unsplittable
flow problem,” Algorithmica, vol. 44, no. 1, pp. 49–66, 2006.

[33] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, “Approximation
algorithms for the unsplittable flow problem,” Algorithmica, vol. 47,
no. 1, pp. 53–78, 2007.

[34] NERC Reliability Concepts. Accessed: Feb. 26, 2019. [Online]. Avail-
able: http://www.nerc.com/files/concepts v1.0.2.pdf

[35] CBC (COIN-OR Branch and Cut). Accessed: Feb. 26, 2019. [Online].
Available: https://projects.coin-or.org/Cbc

[36] The Internet2 Network. Accessed: Feb. 26, 2019. [Online]. Available:
http://www.internet2.edu/

[37] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0—
Survivable network design library,” in Proc. INOC, 2007, pp. 1–16.
[Online]. Available: http://sndlib.zib.de

[38] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane
connectivity with local fast failover: Introducing OpenFlow graph
algorithms,” in Proc. ACM SIGCOMM HotSDN Workshop, 2014,
pp. 121–126.

[39] D. Levin et al., “Panopticon: Reaping the benefits of incremental SDN
deployment in enterprise networks,” in Proc. USENIX Annu. Tech. Conf.,
2014, pp. 333–345.

[40] M. Markovitch and S. Schmid, “SHEAR: A highly available and flex-
ible network architecture marrying distributed and logically centralized
control planes,” in Proc. IEEE ICNP, Nov. 2015, pp. 78–89.

[41] K.-T. Foerster, S. Schmid, and S. Vissicchio. (2016). “Survey of con-
sistent software-defined network updates.” [Online]. Available: https://
arxiv.org/abs/1609.02305

[42] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet rout-
ing instability,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 27, no. 4, pp. 115–126, Oct. 1997. [Online]. Available:
http://doi.acm.org/10.1145/263109.263151

[43] R. Govindan and A. Reddy, “An analysis of Internet inter-domain
topology and route stability,” in Proc. INFOCOM, vol. 2, Apr. 1997,
pp. 850–857.

[44] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations
in inter-domain routing,” Comput. Netw., vol. 32, no. 1, pp. 1–16, 2000.

[45] V. Paxson, “End-to-end routing behavior in the Internet,” ACM SIG-
COMM Comput. Commun. Rev., vol. 26, no. 4, pp. 25–38, 1996.

Shih-Hao Tseng received the Ph.D. degree in elec-
trical and computer engineering from Cornell Uni-
versity in 2018. He is currently a Post-Doctoral
Scholar with the California Institute of Technology.
His research interests include software-defined net-
working, network function virtualization, network
optimization, algorithm, and system design.

Ao Tang (S’01–M’07–SM’11) received the B.E.
degree in electronics engineering from Tsinghua
University, Beijing, China, in 1999, and the M.S. and
Ph.D. degrees in electrical engineering with a minor
in applied and computational mathematics from the
California Institute of Technology, Pasadena, CA,
USA, in 2002 and 2006, respectively. He is currently
an Associate Professor with the School of Electri-
cal and Computer Engineering, Cornell University,
Ithaca, NY, USA, where he is involved in control and
optimization of computer networks with a particular

focus on autonomous network management.

Gagan L. Choudhury (F’09) received the Ph.D.
degree in electrical engineering from the State Uni-
versity of New York at Stony Brook in 1982. He is
currently a Lead Inventive Scientist with AT&T
Labs, Middletown, NJ, USA. He has over 100 tech-
nical publications and around 30 granted patents. His
research interests are in the optimization, analysis,
and design of software defined networks and mobil-
ity/5G networks. He became an AT&T Fellow for
“outstanding contributions to performance analysis
and robust design and their application to improving

the performance, reliability and scalability of AT&T’s networks” in 2009.

Simon Tse received the B.S. degree in engineering
from Brown University, the M.S. and Ph.D. degrees
in applied sciences from Harvard University, and the
M.B.A. degree from the Wharton School, University
of Pennsylvania. He began his career with AT&T
Bell Laboratories, Middletown, NJ, USA, in 1985,
where he is currently the Director of Inventive Sci-
ence. He manages a group of technical professionals
in network topology designs, network traffic man-
agement, and software defined network controllers
for multilayer network resource optimization.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

