
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 30, No. 2, pp. 1094--1118

DUALITY GAP ESTIMATION VIA A REFINED
SHAPLEY--FOLKMAN LEMMA\ast 

YINGJIE BI\dagger AND AO TANG\ddagger 

Abstract. Based on concepts like the kth convex hull and finer characterization of noncon-
vexity of a function, we propose a refinement of the Shapley--Folkman lemma and derive a new
estimate for the duality gap of nonconvex optimization problems with separable objective functions.
We apply our result to the network utility maximization problem in networking and the dynamic
spectrum management problem in communication as examples to demonstrate that the new bound
can be qualitatively tighter than the existing ones. The idea is also applicable to cases with general
nonconvex constraints.
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1. Introduction. The Shapley--Folkman lemma (Theorem 1.1) was stated and
used to establish the existence of approximate equilibria in economy with nonconvex
preferences [13]. It roughly says that the sum of a large number of sets is close to
convex and thus can be used to generalize results on convex objects to nonconvex ones.

Theorem 1.1. Let S1, S2, . . . , Sn be subsets of \BbbR m. For each z \in conv
\sum n

i=1 Si =\sum n
i=1 convSi, there exist points zi \in convSi such that z =

\sum n
i=1 z

i and zi \in Si except
for at most m values of i.

Remark 1.2. In this paper, we use superscripts to index vectors and subscripts to
refer to a particular component of a vector. For instance, both xi and xij are vectors,
but xi

s is the sth component of the vector xi. For two vectors x and y, x \leq y means
xs \leq ys holds for all components.

The Shapley--Folkman lemma has found applications in many fields, including
economics and optimization theory. It is of particular use for estimating the duality
gap of a general nonconvex optimization problem, which provides an indication of
the nonconvexity of such a problem [8, 5, 4]. Such an estimation has attracted much
interest in previous research, mainly because of its relation to the approximation
algorithms based on dual methods. In this paper, we consider nonconvex optimization
problems with separable objectives and linear constraints:

min

n\sum 
i=1

fi(x
i)

s. t.

n\sum 
i=1

Aix
i \leq b.

(1.1)
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DUALITY GAP ESTIMATION VIA A REFINED SF LEMMA 1095

Here xi \in \BbbR ni are the decision variables. The function fi : \BbbR ni \rightarrow \=\BbbR is proper1 and
lower semicontinuous, and its domain is bounded. Ai is a matrix of size m \times ni, so
there are m linear constraints in total. The Lagrange dual problem of (1.1) is

max  - 
n\sum 

i=1

f\ast 
i ( - AT

i y) - bT y

s. t. y \geq 0,

(1.2)

where f\ast 
i is the conjugate function of fi. In this paper, we always assume the feasibility

on the primal problem (1.1). Furthermore, under our assumptions on the functions
fi, the dual problem (1.2) is guaranteed to be feasible, and we denote the optimal
value of the primal problem (1.1) and dual problem (1.2) as p and d, respectively.
In general, there will be a positive duality gap p  - d > 0 if some function fi is not
convex.

The optimization (1.1) provides the framework for many important problems
in fields such as communication [12] and machine learning [16, 1]. The authors of
[3] presented the following upper bound for the duality gap of (1.1) based on the
Shapley--Folkman lemma:

(1.3) p - d \leq min\{ m+ 1, n\} max
i=1,...,n

\rho (fi).

Here \rho (f) is the nonconvexity of a proper function f defined by

(1.4) \rho (f) = sup

\left\{   f

\left(  \sum 
j

\alpha jx
j

\right)   - 
\sum 
j

\alpha jf(x
j)

\right\}   
over all finite convex combinations of points xj \in dom f , i.e., f(xj) < +\infty , \alpha j \geq 0
with

\sum 
j \alpha j = 1.

In [14], an improved bound for the duality gap2 was given by

(1.5) p - d \leq 
min\{ m,n\} \sum 

i=1

\rho (fi),

where we assume that \rho (f1) \geq \cdot \cdot \cdot \geq \rho (fn). Although the bound (1.5) is only a slight
improvement over the original bound (1.3) by a factor of m/(m + 1), it nevertheless
shows that (1.3) can never be tight except for some trivial situations. But as will
be demonstrated by the examples in this paper, the bound (1.5) can still be very
conservative.

In this paper, we aim at providing a tighter duality gap estimation via refining
the original Shapley--Folkman lemma. The refined Shapley--Folkman lemma is stated
and proved in section 2. Unlike (1.3) and (1.5), our new bound for the duality gap
depends on some finer characterization of the nonconvexity of a function, which is
introduced in section 3. The new bound itself is given in section 4, which can easily

1Here \=\BbbR = [ - \infty ,+\infty ]. A function is said to be proper if it never takes  - \infty and its domain is
nonempty.

2In fact, the bound (1.5) derived in [14] is for the difference p - \^p, in which \^p is the optimal value
of the convexified problem where the function fi is substituted by f\ast \ast 

i . However, \^p = d because the
refined Slater's condition holds for the convexified problem.
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A B

C

(a) conv1 S

A B

C

(b) conv2 S

A B

C

(c) conv3 S

Fig. 1. The kth convex hull of a three-point set S = \{ A,B,C\} .

recover existing ones like (1.5). In section 5, we apply it to two examples, a network
utility maximization problem in networking and the dynamic spectrum management
problem in communication, to demonstrate that the new bound can be qualitatively
tighter than the bound (1.5).

If the domain of some function fi in (1.1) is not convex, by definition \rho (fi) = +\infty .
In this case, all the above bounds and our new bound in section 4 will be useless. To
handle this issue, we can replace the nonconvexity of the domain by appropriate
nonconvex constraints. Although we mainly focus on the case of linear constraints,
section 6 shows how the major idea in this paper can be applied to the cases with
general convex or even nonconvex constraints.

2. Refined Shapley--Folkman lemma. To write down our refined version of
the Shapley--Folkman lemma, we need to first introduce the concept of the kth convex
hull.

Definition 2.1. The kth convex hull of a set S, denoted by convk S, is the set
of convex combinations of k points in S, i.e.,

convk S =

\left\{   
k\sum 

j=1

\alpha jv
j

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| vj \in S, \alpha j \geq 0 \forall j = 1, . . . , k,

k\sum 
j=1

\alpha j = 1

\right\}   .

Figure 1 gives a simple example to illustrate the definition of the kth convex
hull. In Figure 1, the set S = \{ A,B,C\} , conv1 S = S, conv2 S are the segments AB,
BC, and CA, while conv3 S is the full triangle which is also the convex hull of set
S. In general, Carath\'eodory's theorem implies that convm+1 S = convS for any set
S \subseteq \BbbR m. However, for a particular set, the minimum k such that convk S = convS
can be smaller than m + 1, and this number intuitively reflects how the set is closer
to being convex. For instance, if we start from T = conv2 S, the set in Figure 1(b),
then convk T = conv T for k = 2.

Next, we recall the concept of k-extreme points of a convex set, which is a gener-
alization of extreme points.

Definition 2.2. A point z in a convex set S is called a k-extreme point of S if
we cannot find (k + 1) independent vectors d1, d2, . . . , dk+1 such that z \pm di \in S.

According to our definition, if a point is k-extreme, then it is also k\prime -extreme
for k\prime \geq k. For a convex set in \BbbR m, a point is an extreme point if and only if it
is 0-extreme, a point is on the boundary if and only if it is (m  - 1)-extreme, and
every point is m-extreme. For example, in Figure 1(c), the vertices A,B,C are 0-
extreme, the points on segments AB, BC, and CA are 1-extreme, and all the points
are 2-extreme.
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Now we can state our refined Shapley--Folkman lemma.

Theorem 2.3. Let S1, S2, . . . , Sn be subsets of \BbbR m. Assume z is a k-extreme
point of conv

\sum n
i=1 Si; then there exist integers 1 \leq ki \leq k + 1 with

\sum n
i=1 ki \leq k + n

and points zi \in convki
Si such that z =

\sum n
i=1 z

i.

The original Shapley--Folkman lemma (Theorem 1.1) now becomes a direct corol-
lary of Theorem 2.3, since any point z \in conv

\sum n
i=1 Si is an m-extreme point. Apply-

ing Theorem 2.3 on this point gives a decomposition z =
\sum n

i=1 z
i with zi \in convki

Si \subseteq 
convSi and

\sum n
i=1 ki \leq m + n. Then the conclusion in Theorem 1.1 follows because

zi \in Si if ki = 1, while the number of indices i with ki \geq 2 is bounded by m.

Remark 2.4. Our Theorem 2.3 is similar to the refined version of the Shapley--
Folkman lemma proposed in [11]. However, the result in [11] does not take the
extremeness of the point into account, which can be regarded as a special case of
Theorem 2.3 for k = m.

To prove Theorem 2.3, we need the following property of k-extreme points in a
polyhedron.

Lemma 2.5. Let P \subseteq \BbbR m be a polyhedron, and let z be a k-extreme point of P .
Then there exists a vector a \in \BbbR m such that the set \{ y \in P | aT y \leq aT z\} is in a
k-dimensional affine subspace.

Proof. Assume that the polyhedron P is represented by Ax \geq b. Let A= be the
submatrix of A containing the rows of active constraints for the point z, and let b= be
the vector containing the corresponding constants in b. The dimension of the kernel
of A= is at most k. Otherwise, we can find independent and sufficiently small vectors
d1, . . . , dk+1 such that A=d

i = 0 and A(z \pm di) \geq b for i = 1, . . . , k + 1. This implies
z \pm di \in P , which contradicts the k-extremeness of point z.

Let a be the vector such that aT is the sum of all rows in A=. Consider a
point y satisfying Ay \geq b and aT y \leq aT z. Since adding all inequalities together in
A=y \geq b= = A=z gives aT y \geq aT z, we must have A=y = b=. Therefore, y is in the
affine subspace defined by A=x = b= whose dimension is at most k.

Remark 2.6. In the literature, the point satisfying the conclusion of Lemma 2.5 is
called a k-exposed point. For a general convex set S, a k-extreme point may fail to be
a k-exposed point, although it must be in the closure of the set of k-exposed points if
S is compact [2]. For the special case of polyhedra, these two concepts are equivalent,
and Lemma 2.5 is a generalization of the well-known result that an extreme point of
a polyhedron is the unique minimizer of some linear function.

Proof of Theorem 2.3. Since z is in the convex hull of
\sum n

i=1 Si, there exists some
integer l such that z can be written as

(2.1) z =

l\sum 
j=1

\alpha j

n\sum 
i=1

vij ,

in which vij \in Si, \alpha j \geq 0, j = 1, . . . , l, and
\sum l

j=1 \alpha j = 1.

Define S\prime 
i = \{ vi1, . . . , vil\} \subseteq Si; then (2.1) actually tells us that z \in conv

\sum n
i=1 S

\prime 
i,

so z must be k-extreme in this polytope that lies in conv
\sum n

i=1 Si. By Lemma 2.5,
there exists a vector a \in \BbbR m such that the set\Biggl\{ 

y \in conv

n\sum 
i=1

S\prime 
i

\bigm| \bigm| \bigm| \bigm| \bigm| aT y \leq aT z

\Biggr\} D
ow

nl
oa

de
d 

04
/2

5/
20

 to
 1

32
.2

36
.5

9.
69

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1098 YINGJIE BI AND AO TANG

is in a k-dimensional affine subspace L of \BbbR m. Without loss of generality, we assume
that the subspace

L = \{ y \in \BbbR m| yk+1 = yk+2 = \cdot \cdot \cdot = ym = 0\} .

Next, consider the following linear program in which \beta ij are the decision variables:

min

n\sum 
i=1

l\sum 
j=1

\beta ija
T vij

s. t.

n\sum 
i=1

l\sum 
j=1

\beta ijv
ij
s = zs \forall s = 1, . . . , k,

l\sum 
j=1

\beta ij = 1 \forall i = 1, . . . , n,

\beta ij \geq 0 \forall i = 1, . . . , n, \forall j = 1, . . . , l.

Setting \beta ij = \alpha j gives a feasible solution to the above problem with objective value
aT z. Among all the optimal solutions, pick up a particular vertex solution \beta \ast 

ij , which
should have at least nl active constraints. We already have k + n active constraints,
so the number of nonzero \beta \ast 

ij entries is at most k + n. Define

zi =

l\sum 
j=1

\beta \ast 
ijv

ij , z\prime =

n\sum 
i=1

zi,

and let ki be the number of nonzero entries in \beta \ast 
i1, . . . , \beta 

\ast 
il. Since

\sum l
j=1 \beta 

\ast 
ij = 1, there

must be a nonzero one and thus ki \geq 1. Now we know that zi \in convki
Si, and\sum n

i=1 ki \leq k + n implies that each ki cannot exceed k + 1. The remaining thing to
show is zs = z\prime s for s = k + 1, . . . ,m. Because

z\prime \in 
n\sum 

i=1

convS\prime 
i = conv

n\sum 
i=1

S\prime 
i

and

aT z\prime =

n\sum 
i=1

l\sum 
j=1

\beta \ast 
ija

T vij \leq aT z,

z\prime \in L. Since z \in L, the last m  - k components of both z and z\prime are all zeros, so
z = z\prime .

In section 4, when proving the bound for the duality gap, we will not directly
apply Theorem 2.3 but a special case of it given by the following Corollary 2.7. At
that time, we will see how Corollary 2.7 will improve the bound compared with the
existing result such as [11] without the consideration of extremeness.

Corollary 2.7. Let S1, S2, . . . , Sn be subsets of \BbbR m. If z \in conv
\sum n

i=1 Si, then
there exist integers 1 \leq ki \leq m with

\sum n
i=1 ki \leq m  - 1 + n and points zi \in convki

Si

such that zs =
\sum n

i=1 z
i
s for s = 1, . . . ,m - 1 and zm \geq 

\sum n
i=1 z

i
m.
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Proof. Using the same argument in the proof of Theorem 2.3, choose S\prime 
i \subseteq Si

containing finite points such that z \in conv
\sum n

i=1 S
\prime 
i. Since conv

\sum n
i=1 S

\prime 
i is a compact

set,

inf

\Biggl\{ 
wm

\bigm| \bigm| \bigm| \bigm| \bigm| w \in conv

n\sum 
i=1

S\prime 
i, w1 = z1, . . . , wm - 1 = zm - 1

\Biggr\} 

can be achieved by some point w\ast . w\ast is an (m - 1)-extreme point of conv
\sum n

i=1 S
\prime 
i,

and applying Theorem 2.3 on the point w\ast gives the desired result.

3. Characterization of nonconvexity. To improve the bound (1.5), some finer
characterization of the nonconvexity of a function has to be introduced. In parallel
with the definition of the kth convex hull of a set, define the kth nonconvexity \rho k(f) of
a proper function f to be the supremum in (1.4) taken over the convex combinations
of k points instead of an arbitrary number of points. Obviously,

0 = \rho 1(f) \leq \rho 2(f) \leq \cdot \cdot \cdot \leq \rho (f).

For functions f with nonconvex domain, \rho k(f) = +\infty for k > 1. In general, we have
the following property.

Proposition 3.1. For any proper function f : \BbbR n \rightarrow \=\BbbR , \rho n+1(f) = \rho (f).

Proof. We only need to show that \rho (f) \leq \rho n+1(f). Choose any convex combi-

nation x =
\sum l

j=1 \alpha jx
j with all points xj \in dom f , \alpha j \geq 0, and

\sum l
j=1 \alpha j = 1. Since

(xj , f(xj)) \in epi f , the point\left(  l\sum 
j=1

\alpha jx
j ,

l\sum 
j=1

\alpha jf(x
j)

\right)  \in conv epi f.

Using Corollary 2.7 on a single set S1 = epi f , we can find (yi, ti) \in epi f , \beta i \geq 0,

i = 1, . . . , n+ 1, and
\sum n+1

i=1 \beta i = 1 such that

x =

l\sum 
j=1

\alpha jx
j =

n+1\sum 
i=1

\beta iy
i,

l\sum 
j=1

\alpha jf(x
j) \geq 

n+1\sum 
i=1

\beta iti.

Now

f(x) - 
l\sum 

j=1

\alpha jf(x
j) \leq f

\Biggl( 
n+1\sum 
i=1

\beta iy
i

\Biggr) 
 - 

n+1\sum 
i=1

\beta iti \leq f

\Biggl( 
n+1\sum 
i=1

\beta iy
i

\Biggr) 
 - 

n+1\sum 
i=1

\beta if(y
i),

which implies \rho (f) \leq \rho n+1(f).

For lower semicontinuous functions, the following proposition provides an equiva-
lent definition for the kth nonconvexity, which sheds light on the connection between
the concepts of the kth nonconvexity and kth convex hull.

Proposition 3.2. Assume a proper function f is lower semicontinuous and
bounded below by some affine function. Let f (k) be the function whose epigraph is
the closure of the kth convex hull of the epigraph of f , i.e.,

epi f (k) = cl convk epi f.
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Then

(3.1) \rho k(f) = sup
x
\{ f(x) - f (k)(x)\} ,

where we interpret (+\infty ) - (+\infty ) = 0.

Proof. The assumption on the function f implies that f (k) is also a proper func-
tion. Consider an arbitrary k-point convex combination of points xj \in dom f for
j = 1, . . . , k. Following the first step in the proof of Proposition 3.1, we have\left(  k\sum 

j=1

\alpha jx
j ,

k\sum 
j=1

\alpha jf(x
j)

\right)  \in convk epi f \subseteq cl convk epi f = epi f (k).

Therefore,

f

\left(  k\sum 
j=1

\alpha jx
j

\right)   - 
k\sum 

j=1

\alpha jf(x
j) \leq f

\left(  k\sum 
j=1

\alpha jx
j

\right)   - f (k)

\left(  k\sum 
j=1

\alpha jx
j

\right)  ,

which implies

\rho k(f) \leq sup
x
\{ f(x) - f (k)(x)\} .

To prove the reverse direction, for any x \in dom f (k),

(x, f (k)(x)) \in epi f (k) = cl convk epi f.

In the case of x \in dom f , by the lower semicontinuity of f , for every \epsilon > 0, there
exists \delta > 0 such that

f(y) \geq f(x) - \epsilon \forall \| y  - x\| < \delta .

There exists (\kappa , \eta ) \in convk epi f which is sufficiently close to (x, f (k)(x)) such that

\| \kappa  - x\| < \delta , \eta \leq f (k)(x) + \epsilon .

Because (\kappa , \eta ) \in convk epi f , there exists \alpha j \geq 0 for j = 1, . . . , k such that
\sum k

j=1 \alpha j =
1 and

\kappa =

k\sum 
j=1

\alpha jx
j , \eta \geq 

k\sum 
j=1

\alpha jf(x
j)

in which xj \in dom f . Thus

f(x) - f (k)(x) \leq f(\kappa ) - \eta + 2\epsilon \leq f

\left(  k\sum 
j=1

\alpha jx
j

\right)   - 
k\sum 

j=1

\alpha jf(x
j) + 2\epsilon \leq \rho k(f) + 2\epsilon .

Consider the other case of x \not \in dom f , i.e., f(x) = +\infty . By the lower semiconti-
nuity of f , for every \epsilon > 0, there exists \delta > 0 such that

f(y) \geq 1/\epsilon \forall \| y  - x\| < \delta .
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We choose (\kappa , \eta ) \in convk epi f as in the above case. Then

1/\epsilon  - f (k)(x) \leq f(\kappa ) - \eta + \epsilon \leq f

\left(  k\sum 
j=1

\alpha jx
j

\right)   - 
k\sum 

j=1

\alpha jf(x
j) + \epsilon \leq \rho k(f) + \epsilon .

In both cases, we get f(x) - f (k)(x) \leq \rho k(f) by letting \epsilon \rightarrow 0.

Remark 3.3. If a proper function f is bounded below by some affine function,
then

epi f\ast \ast = cl conv f

(see [10, Theorem X.1.3.5]). Therefore, (3.1) can be regarded as a generalization for
the alternative definition of nonconvexity

\rho (f) = sup
x
\{ f(x) - f\ast \ast (x)\} 

used in [14].

In the remainder of this section, three examples will be given to illustrate how to
calculate the kth nonconvexity of a particular function. The results in Examples 3.4
and 3.5 will be used by the network utility maximization problem in section 5.1, and
Example 3.6 will be used by the dynamic spectrum management problem in section
5.2.

Example 3.4. Consider the function

f(x) = f(x1, . . . , xn) = min
s=1,...,n

xs

defined on the box 0 \leq x \leq 1, x \in \BbbR n. It is already known that \rho (f) = (n - 1)/n (see
[14, Table 1]). By Proposition 3.1, \rho k(f) = \rho (f) = (n - 1)/n for k \geq n+ 1.

For k = 1, . . . , n, as in the proof of Proposition 3.2, pick up any k-point convex
combination of points 0 \leq xj \leq 1, j = 1, . . . , k. For a given i \in \{ 1, . . . , k\} , let s(i) be
the index such that xi

s(i) is the minimum among xi
1, . . . , x

i
n. Then

f(x) = min
s=1,...,n

\left\{   
k\sum 

j=1

\alpha jx
j
s

\right\}   \leq 
k\sum 

j=1

\alpha jx
j
s(i)

\leq \alpha ix
i
s(i) + 1 - \alpha i = \alpha if(x

i) + 1 - \alpha i,

where we use the fact that all xj are within the box 0 \leq x \leq 1. Summing up among
i = 1, . . . , k, we have

kf(x) \leq 
k\sum 

i=1

\alpha if(x
i) + k  - 1,

which implies

f(x) - 
k\sum 

i=1

\alpha if(x
i) \leq k  - 1

k

\Biggl( 
1 - 

k\sum 
i=1

\alpha if(x
i)

\Biggr) 
\leq k  - 1

k
.
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1102 YINGJIE BI AND AO TANG

The above argument shows that \rho k(f) \leq (k - 1)/k. In fact, the equality holds, which
can be easily seen by considering the average of first k points of

x1 = (0, 1, . . . , 1),

x2 = (1, 0, . . . , 1),

. . . ,

xn = (1, 1, . . . , 0).

In conclusion,

\rho k(f) =

\left\{     
k  - 1

k
if k = 1, . . . , n,

n - 1

n
if k \geq n+ 1.

Example 3.5. Consider the function

g(x) = g(x1, . . . , xn) =  - log max
s=1,...,n

xs

defined on the region x \geq 0 except x = 0.
For k = 1, . . . , n, pick up any k-point convex combination. Without loss of

generality, assume the coefficients \alpha j > 0 for j = 1, . . . , k. For a given i \in \{ 1, . . . , k\} ,
let s(i) be the index such that xi

s(i) is the maximum among xi
1, . . . , x

i
n. Then

g(x) =  - log max
s=1,...,n

\left\{   
k\sum 

j=1

\alpha jx
j
s

\right\}   \leq  - log

k\sum 
j=1

\alpha jx
j
s(i)

\leq  - log(\alpha ix
i
s(i)) =  - log\alpha i + g(xi).

Summing up among i = 1, . . . , k with weight \alpha i, we have

g(x) \leq  - 
k\sum 

i=1

\alpha i log\alpha i +

k\sum 
i=1

\alpha ig(x
i)

\leq log k +

k\sum 
i=1

\alpha ig(x
i).

The above argument shows that \rho k(g) \leq log k. In fact, the equality holds, which can
be easily seen by considering the average of first k points of

x1 = (1, 0, . . . , 0),

x2 = (0, 1, . . . , 0),

. . . ,

xn = (0, 0, . . . , 1).

To calculate \rho n+1(g), define h(x) =  - log
\sum n

s=1 xs. Then h(x) is convex and
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g(x) - log n \leq h(x) \leq g(x). Thus, for any (n+ 1)-point convex combination,

g

\left(  n+1\sum 
j=1

\alpha jx
j

\right)  \leq h

\left(  n+1\sum 
j=1

\alpha jx
j

\right)  + log n

\leq 
n+1\sum 
j=1

\alpha jh(x
j) + log n

\leq 
n+1\sum 
j=1

\alpha jg(x
j) + log n.

Therefore, \rho n+1(g) \leq log n. On the other hand, \rho n+1(g) \geq \rho n(g) = log n.
In conclusion,

\rho k(g) =

\Biggl\{ 
log k if k = 1, . . . , n,

log n if k \geq n+ 1.

Example 3.6. Consider the function

h\sigma (x) = h\sigma (x1, . . . , xn) =

n\sum 
s=1

log
\| x\| 1  - xs + \sigma 

\| x\| 1 + \sigma 

defined on the box 0 \leq x \leq 1, x \in \BbbR n. Here \sigma is a parameter in the range 0 < \sigma \leq 1.
For complicated functions such as this one, it is usually hard to compute their kth

nonconvexity exactly. However, sometimes we can approximate the kth nonconvexity
of a function by reducing it to another function whose nonconvexity is already known.
Using this technique, we are able to show that

\rho k(h\sigma ) \leq log(k/\sigma ).

The details are given in Appendix A.

4. Bounding duality gap. Now we can state the main result on the duality
gap between the primal problem (1.1) and the dual problem (1.2).

Theorem 4.1. Assume that the primal problem (1.1) is feasible, i.e., p < +\infty .
Then there exist integers 1 \leq ki \leq m+ 1 such that

\sum n
i=1 ki \leq m+ n and the duality

gap

p - d \leq 
n\sum 

i=1

\rho ki
i .

Here \rho ki = \rho k(fi) is the kth nonconvexity of function fi.

First, let us define the perturbation function v : \BbbR m \rightarrow \=\BbbR by letting v(z) be the
optimal value of the perturbed problem

min

n\sum 
i=1

fi(x
i)

s. t.

n\sum 
i=1

Aix
i \leq b+ z.

D
ow

nl
oa

de
d 

04
/2

5/
20

 to
 1

32
.2

36
.5

9.
69

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1104 YINGJIE BI AND AO TANG

As is the case with convex optimization, p = v(0) and d = v\ast \ast (0) (see [9, p. 50,
Lemmas 2.2--2.3]).

Lemma 4.2. The perturbation function v is lower semicontinuous.

Proof. Pick any z \in \BbbR m. We want to show that if zk \rightarrow z as k \rightarrow \infty ,

l = lim inf
k\rightarrow \infty 

v(zk) \geq v(z).

The above inequality clearly holds when l = +\infty . If l < +\infty , by considering a
subsequence of \{ v(zk)\} \infty k=1, without loss of generality we can assume v(zk) < +\infty for
each k and

lim
k\rightarrow \infty 

v(zk) = l.

For each k, find (\^x1k, . . . , \^xnk) attaining the optimal value of the perturbed problem
related to v(zk), i.e.,

v(zk) =

n\sum 
i=1

fi(\^x
ik),

n\sum 
i=1

Ai\^x
ik \leq b+ zk.

By extracting a convergent subsequence for each \{ \^xik\} \infty k=1, we can assume \{ \^xik\} \infty k=1

has a limit xi. Then

n\sum 
i=1

Aix
i \leq b+ z,

which implies that (x1, . . . , xn) is feasible to the perturbed problem related to v(z),
so

n\sum 
i=1

fi(x
i) \geq v(z).

Now

l = lim
k\rightarrow \infty 

n\sum 
i=1

fi(\^x
ik) \geq 

n\sum 
i=1

lim inf
k\rightarrow \infty 

fi(\^x
ik) \geq 

n\sum 
i=1

fi(x
i) \geq v(z),

because fi is lower semicontinuous.

Proof of Theorem 4.1. Since (1.1) is feasible, v(0) = p < +\infty . Let

\xi =

n\sum 
i=1

inf
xi

fi(x
i).

Then by our assumption of fi, \xi is finite. v(z) \geq \xi for all z \in \BbbR m. As a consequence,
v(z) is bounded below by some affine function, so

 - \infty < v\ast \ast (0) \leq v(0) < +\infty , epi v\ast \ast = cl conv epi v.

By Lemma 4.2, v is lower semicontinuous. Since

(0, v\ast \ast (0)) \in epi v\ast \ast = cl conv epi v,
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for every \epsilon > 0, there exists (\kappa , \eta ) \in conv epi v which is sufficiently close to (0, v\ast \ast (0))
such that

(4.1) v(\kappa ) \geq v(0) - \epsilon , \eta \leq v\ast \ast (0) + \epsilon .

Because (\kappa , \eta ) \in conv epi v, there exists some integer l and \alpha j \geq 0 for j = 1, . . . , l

such that
\sum l

j=1 \alpha j = 1 and

\kappa =

l\sum 
j=1

\alpha jz
j , \eta \geq 

l\sum 
j=1

\alpha jv(z
j)

in which zj \in dom v.
For each j = 1, . . . , l, find (\^x1j , . . . , \^xnj) attaining the optimal value of the per-

turbed problem related to v(zj), i.e.,

v(zj) =

n\sum 
i=1

fi(\^x
ij),

n\sum 
i=1

Ai\^x
ij \leq b+ zj ,

which means there exists some vector wj \in \BbbR m
+ such that

(b+ zj  - wj , v(zj)) \in 
n\sum 

i=1

Ci,

where

Ci = \{ (Aix
i, fi(x

i))| fi(xi) < +\infty , xi \in \BbbR ni\} .

Taking convex combination of the points above, we have\left(  b+ \kappa  - 
l\sum 

j=1

\alpha jw
j ,

l\sum 
j=1

\alpha jv(z
j)

\right)  \in conv

n\sum 
i=1

Ci.

Now we can apply Corollary 2.7,3 which gives points (ri, si) \in convki Ci with
1 \leq ki \leq m+ 1 such that

b+ \kappa \geq b+ \kappa  - 
l\sum 

j=1

\alpha jw
j =

n\sum 
i=1

ri, \eta \geq 
l\sum 

j=1

\alpha jv(z
j) \geq 

n\sum 
i=1

si

and
\sum n

i=1 ki \leq m + n. Since (ri, si) \in convki
Ci, there exists \~xij \in \BbbR ni , \beta ij \geq 0 for

j = 1, . . . , ki such that fi(\~x
ij) < +\infty ,

\sum ki

j=1 \beta ij = 1, and

ri =

ki\sum 
j=1

\beta ijAi\~x
ij , si =

ki\sum 
j=1

\beta ijfi(\~x
ij).

3Here if we apply Theorem 2.3 with dimension m+ 1 instead of using Corollary 2.7, the rest of
the argument still works except that the bound for

\sum n
i=1 ki has to be weakened to m+ n+ 1 from

m+n. Therefore, the consideration of extremeness in Corollary 2.7 provides the exact improvement
parallel to how (1.5) improves from the earliest bound (1.3).
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1106 YINGJIE BI AND AO TANG

Thus,

(4.2) \kappa \geq 
n\sum 

i=1

ki\sum 
j=1

\beta ijAi\~x
ij  - b =

n\sum 
i=1

Ai

ki\sum 
j=1

\beta ij \~x
ij  - b

and

(4.3)

n\sum 
i=1

\rho ki
i + \eta \geq 

n\sum 
i=1

\left(  \rho ki
i +

ki\sum 
j=1

\beta ijfi(\~x
ij)

\right)  \geq 
n\sum 

i=1

fi

\left(  ki\sum 
j=1

\beta ij \~x
ij

\right)  .

From (4.2) we know that\left(  k1\sum 
j=1

\beta 1j \~x
1j , . . . ,

kn\sum 
j=1

\beta nj \~x
nj

\right)  
is feasible to the perturbed problem related to v(\kappa ), and so the corresponding objective
value satisfies

n\sum 
i=1

fi

\left(  ki\sum 
j=1

\beta ij \~x
ij

\right)  \geq v(\kappa ).

The above inequality, together with (4.3) and (4.1), implies

v\ast \ast (0) + \epsilon +

n\sum 
i=1

\rho ki
i \geq v(0) - \epsilon .

We finish the proof by letting \epsilon \rightarrow 0. Because all the ki depend on \epsilon , we have to
choose the worst case of

\sum n
i=1 \rho 

ki
i encountered in this process.

From a computational viewpoint, since we do not know the ki that appeared in
Theorem 4.1, in order to find a number for the bound, we have to find the worst case
ki by solving the following optimization problem:

max

n\sum 
i=1

\rho ki
i

s. t. 1 \leq ki \leq m+ 1, ki \in \BbbZ , \forall i = 1, . . . , n,
n\sum 

i=1

ki \leq m+ n.

(4.4)

Let B be the optimal value of (4.4). Then

B \leq 
n\sum 

i=1

\rho (fi).

On the other hand, since for any feasible solution of (4.4) the number of ki with ki \geq 2
is bounded by m, thus

B =
\sum 

i:ki\geq 2

\rho ki
i \leq 

m\sum 
i=1

\rho (fi)
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if \rho (f1) \geq \cdot \cdot \cdot \geq \rho (fn). The above argument shows that the bound B given by the
optimization problem (4.4) is at least as tight as the bound (1.5) in [14].

To illustrate the procedure to calculate the bound B, consider the simple case
where all the xi in the primal problem (1.1) are one-dimensional and all the functions
fi are equal to the same function f . In this case, \rho ki

i = \rho (f) if ki \geq 2. The optimal
value to (4.4) is attained when the number of ki that equal 2 is maximized, so the
optimal value is min\{ m,n\} \rho (f), which is the same as the result given by (1.5). Ex-
ample 1 used in [14] belongs to this category. It hence explains why the bound (1.5)
is tight for that example. However, if the dimension of xi in the primal problem can
be arbitrarily large, the bound (1.5) can be very loose. As will be shown in section 5,
the difference between the bound (1.5) and the exact duality gap tends to infinity for
a series of problems.

5. Applications.

5.1. Joint routing and congestion control in networking. In this part,
we will first apply the previous result to the network utility maximization problem.
Consider a network with N users and L links. Let a strictly positive vector c \in \BbbR L

contain the capacity of each link. Each user i has Ki available paths on which to send
its commodity. We assume that the users are sorted such that K1 \geq \cdot \cdot \cdot \geq KN . The
routing matrix of user i, denoted by Ri, is an L\times Ki matrix defined by

Ri
lk =

\Biggl\{ 
1 if the kth path of user i passes through link l,

0 otherwise.

Let xi \in \BbbR Ki

be the vector in which xi
k is the amount of commodity sent by user

i on its kth path. Assume that each user i has a utility function Ui(\cdot ) depending on
the vector xi. Then the network utility maximization problem can be written as

max

N\sum 
i=1

Ui(x
i)

s. t.

N\sum 
i=1

Rixi \leq c,

xi \geq 0 \forall i = 1, . . . , N.

(5.1)

If all the utility functions U i(\cdot ) are concave, then the above problem (5.1) can
be solved by standard convex optimization techniques. Difficulty arises when U i(\cdot ) is
not concave. For example, if we restrict each user to choosing only one path (single-
path routing) and want to maximize the total throughput of the network, then the
corresponding utility function is

Ui(x
i) = max

s=1,...,Ki
xi
s.

Define

(5.2) fi(x
i) =

\left\{   min
s=1,...,Ki

( - xi
s) if 0 \leq xi \leq \| c\| \infty ,

+\infty otherwise.
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1108 YINGJIE BI AND AO TANG

Here \| c\| \infty is the maximum link capacity in the network. Now the original network
utility maximization problem (5.1) is equivalent to the following problem:

min

N\sum 
i=1

fi(x
i)

s. t.

N\sum 
i=1

Rixi \leq c.

(5.3)

The above problem is a particular case of the general optimization problem with
separable objectives (1.1) studied in this paper. Using the same technique as shown
in Example 3.4, we can prove that

\rho k(fi) =
k  - 1

k
\| c\| \infty , k = 1, . . . ,Ki,

\rho K
i+1(fi) = \rho (fi) =

Ki  - 1

Ki
\| c\| \infty .

In the following, suppose each user has a large number of paths to select. More
explicitly, Ki \geq L + 1 is assumed for user i. Based on the bound (1.5), the duality
gap is bounded by

min\{ N,L\} \sum 
i=1

Ki  - 1

Ki
\| c\| \infty ,

which is at least

(5.4) min\{ N,L\} L

L+ 1
\| c\| \infty .

In contrast, by Theorem 4.1, the duality gap is bounded by the optimal value of the
following optimization problem:

max

N\sum 
i=1

ki  - 1

ki
\| c\| \infty 

s. t. 1 \leq ki \leq L+ 1, ki \in \BbbZ , \forall i = 1, . . . , N,

N\sum 
i=1

ki \leq N + L.

(5.5)

Let N \prime be the number of users whose ki \geq 2. Then 0 \leq N \prime \leq min\{ N,L\} . If N \prime > 0,
using the inequality between arithmetic mean and harmonic mean,

N\sum 
i=1

ki  - 1

ki
=
\sum 

i:ki\geq 2

ki  - 1

ki
= N \prime  - 

\sum 
i:ki\geq 2

1

ki

\leq N \prime  - N \prime 2\sum 
i:ki\geq 2 ki

\leq N \prime  - N \prime 2

N \prime + L

=
L

1 + L/N \prime \leq min\{ N,L\} L

L+min\{ N,L\} 
.
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Fig. 2. The comparison among the original bound (5.4), the numerical result from directly
solving (5.5), and the analytical result for the linear utility case.

The above analysis provides an upper bound for problem (5.5), which in turn is
an upper bound for the duality gap. Taking the N \geq L case as an example, by the
above inequality, we can bound the duality gap by L\| c\| \infty /2, essentially half of the
bound given by (1.5). The same result was obtained by a specialized technique in [7].

In principle, we can directly solve (5.5) to yield better upper bounds, and this is
particularly practical for small instances. In Figure 2, we compare the original bound
(5.4), the numerical result from directly solving (5.5), and the above analytical result
for fixed N or fixed L with the assumption that \| c\| \infty = 1. Figure 2 shows that our
analytical result is much better than the original bound, and in all cases it is almost
tight compared with the numerical result. In fact, the above analysis can be regarded
as solving problem (5.5) exactly without considering all integer constraints on ki.

Next, we consider another case in which each user has logarithmic utility but still
must choose only one path. The utility function of user i can be written as

Ui(x
i) = log max

s=1,...,Ki
xi
s.

Define

gi(x
i) =

\left\{    - log max
s=1,...,Ki

xi
s if 0 \leq xi \leq \| c\| \infty , xi \not = 0,

+\infty otherwise.

Then the network utility maximization problem (5.1) is equivalent to the problem
obtained by replacing fi with gi in (5.3). Using the result in Example 3.5,

\rho k(gi) = log k, k = 1, . . . ,Ki,

\rho K
i+1(gi) = \rho (gi) = logKi.

Applying the bound (1.5) to this case, we can bound the duality gap by

(5.6)

min\{ N,L\} \sum 
i=1

logKi,
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1110 YINGJIE BI AND AO TANG

which is at least min\{ N,L\} log(L + 1). On the other hand, by Theorem 4.1, the
duality gap is bounded by the optimal value of the following optimization problem:

max

N\sum 
i=1

log ki

s. t. 1 \leq ki \leq L+ 1, ki \in \BbbZ , \forall i = 1, . . . , N,

N\sum 
i=1

ki \leq N + L.

(5.7)

If we still let N \prime be the number of users whose ki \geq 2, then 0 \leq N \prime \leq min\{ N,L\} and
the above bound

N\sum 
i=1

log ki =
\sum 

i:ki\geq 2

log ki = log
\prod 

i:ki\geq 2

ki \leq log

\biggl( \sum 
i:ki\geq 2 ki

N \prime 

\biggr) N \prime 

\leq log

\biggl( 
N \prime + L

N \prime 

\biggr) N \prime 

\leq min\{ N,L\} log
\biggl( 
1 +

L

min\{ N,L\} 

\biggr) 
,

where in the last step the monotonicity of the function (1 + 1/x)x is used. Note
that the new bound is qualitatively tighter than the bound (5.6) provided by (1.5) by
removing a logarithm factor of O(logL) when N \geq L.

5.2. Dynamic spectrum management in communication. Consider a com-
munication system consisting of L users sharing a common band. The band is divided
equally into N tones. Each user l has a power budget pl which can be allocated across
all the tones. Let xi

l be the power of user l allocated on tone i. Due to the crosstalk
interference between users, the total noise for a user on tone i is the sum of a back-
ground noise \sigma i and the power of all other users on the same tone. Therefore, the
achievable transmission rate of user l on tone i is given by

ui
l =

1

N
log

\biggl( 
1 +

xi
l

\| xi\| 1  - xi
l + \sigma i

\biggr) 
.

The dynamic spectrum management problem is to maximize the total throughput
of all users under the power budget constraints, which can be formulated as the
following nonconvex optimization problem:

max

L\sum 
l=1

N\sum 
i=1

ui
l

s. t.

N\sum 
i=1

xi
l \leq pl \forall l = 1, . . . , L,

xi
l \geq 0 \forall i = 1, . . . , N, \forall l = 1, . . . , L.

(5.8)

For simplicity, we assume that the noises \sigma i \leq 1 and the power budgets pl \leq 1 (if
not, then scale all the \sigma i and pl simultaneously). The latter requires all the variables
xi
l \leq 1. Using the function h\sigma introduced in Example 3.6, the objective function of

(5.8) can be rewritten as a sum of separable objectives:

L\sum 
l=1

N\sum 
i=1

ui
l =  - 1

N

N\sum 
i=1

h\sigma i
(xi).
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For the purpose of designing dual algorithms, it is of great interest to estimate
the duality gap for problem (5.8). In [15], the authors showed that the duality gap
will tend to zero if the number of users L is fixed and the number of tones N goes to
infinity. The paper [12] further determined the convergence rate of the duality gap
to be O(1/

\surd 
N). Using the bound (1.5), we now demonstrate how to improve the

convergence rate estimation to O(1/N), which can only be achieved by the method
in [12] in the special case where all the noises \sigma i are the same.4

Example 3.6 proves that the nonconvexity

\rho k(h\sigma i
) \leq log

k

\sigma i
\leq log

k

\sigma 
, k = 1, . . . , L+ 1,

where \sigma is the minimum among all the noises \sigma i, so (1.5) implies that the duality gap
is upper bounded by

(5.9)
min\{ N,L\} 

N
log

L+ 1

\sigma 
,

which is in the order of O(1/N) if L is fixed and N increases.
In order to further improve the estimation (5.9) for the duality gap, we can resort

to Theorem 4.1 and follow the exact same steps for solving (5.7), which shows that
the duality gap is upper bounded by

min\{ N,L\} 
N

log
1 + L/min\{ N,L\} 

\sigma 
.

Like the previous example, our bound is still tighter than the one (5.9) from (1.5) by
removing a logarithm factor.

6. Generalization with nonlinear constraints. The idea in this paper can
also be applied to separable problems with nonlinear constraints such as

min

n\sum 
i=1

fi(x
i)

s. t.

n\sum 
i=1

gi(x
i) \leq b.

(6.1)

Here each fi has the same requirement as in (1.1), and each gi : \BbbR ni \rightarrow \=\BbbR m is proper
and lower semicontinuous. Note that the previous problem (1.1) we studied is a special
case of the optimization problem (6.1) if we choose gi(x

i) = Aix
i. Let y \in \BbbR m

+ be the
dual variables. Then the Lagrangian is

L(x, y) =

n\sum 
i=1

(fi(x
i) + yT gi(x

i)) - yT b

and the Lagrange dual problem of (6.1) is

d = sup
y\geq 0

inf
x

L(x, y).

4The paper [12] actually studied the generalization of problem (5.8) under the existence of a path
loss coefficient between different users. However, the argument for O(1/N) provided here can also
be adapted to the general problem.
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1112 YINGJIE BI AND AO TANG

If the functions gi are not convex, the duality gap should not only depend on the
nonconvexity of functions fi but also somehow relate to the functions gi. Like [6],
we define the kth order nonconvexity of a proper function f : \BbbR n \rightarrow \=\BbbR with respect
to another proper function g : \BbbR n \rightarrow \=\BbbR m, denoted by \rho k(f, g). To do this, for each
x \in \BbbR n, we introduce a set Gk(x; g) \subseteq \BbbR m such that y \in Gk(x; g) if and only if there
exist xj \in \BbbR n and \beta j \in \BbbR , for j = 1, . . . , k, satisfying

(6.2)

\left\{                         

x =

k\sum 
j=1

\beta jx
j ,

y =

k\sum 
j=1

\beta jg(x
j), g(xj) < +\infty , \forall j = 1, . . . , k,

k\sum 
j=1

\beta j = 1, \beta j \geq 0, \forall j = 1, . . . , k.

Define the auxiliary function hk(x; f, g) : \BbbR n \rightarrow ( - \infty ,+\infty ] by

(6.3) hk(x; f, g) = inf
z\in \BbbR n

\{ f(z)| g(z) \leq y \forall y \in Gk(x; g)\} .

Then \rho k(f, g) is defined by

\rho k(f, g) = sup

\left\{   hk

\left(  k\sum 
j=1

\alpha jx
j ; f, g

\right)   - 
k\sum 

j=1

\alpha jf(x
j)

\right\}   
over all possible convex combinations \alpha j \geq 0, j = 1, . . . , k, with

\sum k
j=1 \alpha j = 1 of

points xj satisfying f(xj) < +\infty . If the function g is convex, then in the infimum
of (6.3) we can choose z = x, which gives hk(x; f, g) \leq f(x) and \rho k(f, g) \leq \rho k(f).
However, if g is not convex, the above argument does not work since in the worst case
g(x) could be +\infty and does not satisfy the constraint in the infimum of (6.3).

Theorem 4.1 can be modified accordingly to the case with nonlinear constraints
by replacing \rho ki(fi) with \rho ki(fi, gi). In the case when all gi are convex, \rho ki(fi, gi) \leq 
\rho ki(fi), which implies that the original conclusion in Theorem 4.1 remains true. How-
ever, in general, considering gi explicitly in Theorem 6.1 has the potential to provide
a tighter bound even for convex constraints including the linear cases.

Theorem 6.1. Assume that the primal problem (6.1) is feasible, i.e., p < +\infty .
Then there exist integers 1 \leq ki \leq m+ 1 such that

\sum n
i=1 ki \leq m+ n and the duality

gap

p - d \leq 
n\sum 

i=1

\rho ki
i .

Here \rho ki = \rho k(fi, gi) is the kth nonconvexity of function fi with respect to function gi.

Proof. See Appendix B.

In the following, we demonstrate how to use the above theory to estimate the
duality gap for a separable problem with both nonconvex objective and nonconvex
constraints. Consider a modification of the optimization problem that appeared in the
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network utility maximization in section 5.1 but with additional nonconvex constraints:

min

N\sum 
i=1

fi(x
i)

s. t.

N\sum 
i=1

Rixi \leq c,

0 \leq xi \leq a or b \leq xi \leq \| c\| \infty \forall i = 1, . . . , N.

(6.4)

Here fi(x
i) is defined in (5.2) and a, b \in \BbbR are constants satisfying 0 < a < b < \| c\| \infty .

We define the function gi to capture the constraints:

gi(x
i) =

\Biggl\{ 
Rixi if 0 \leq xi \leq a or b \leq xi \leq \| c\| \infty ,

+\infty otherwise.

Note that in this problem all the matrices Ri are nonnegative. Therefore, for given
xi \in \BbbR Ki

with 0 \leq xi \leq \| c\| \infty , if we find a point z \in \BbbR Ki

with the property that
z \leq xi and 0 \leq z \leq a or b \leq z \leq \| c\| \infty , then the constraint in the infimum of (6.3)
will be automatically satisfied. One possible choice for such a point z is given by

zs =

\Biggl\{ 
xi
s if 0 \leq xi

s \leq a or b \leq xi
s \leq \| c\| \infty ,

a otherwise,

which satisfies fi(z) - fi(x
i) \leq b - a. By the definition of the nonconvexity, we have

hk(xi; fi, gi) \leq fi(x
i) + b - a

and

\rho k(fi, gi) \leq sup

\left\{   fi

\left(  k\sum 
j=1

\alpha jx
ij

\right)   - 
k\sum 

j=1

\alpha jfi(x
ij)

\right\}   + b - a

\leq \rho k(fi) + b - a.

Now by the same technique used to solve (5.5) in section 5.1, we can show that the
duality gap is bounded by

min\{ N,L\} L

L+min\{ N,L\} 
+ L(b - a).

Compared with the result obtained in section 5.1, the extra term L(b  - a) is the
nonlinear constraints' contribution, which is zero when a = b, as expected.

7. Conclusion. The improvements obtained in this paper are attributed to two
sources. First, instead of using a single number measurement, a series of numbers are
introduced to characterize the nonconvexity of a function in a potentially much finer
manner. This is based on the concept of the kth convex hull of a set, which allows
us to differentiate different levels of nonconvexity for nonconvex sets. Second, for a
separable nonconvex problem, instead of approximating each subproblem individually,
we consider all of them jointly. Based on the fact that the total deviation of each
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1114 YINGJIE BI AND AO TANG

subproblem to a convex problem is bounded, a much tighter duality gap estimation
can be reached.

In this paper, we focus on estimating the duality gap without consideration of
actually solving the primal problem (1.1). A natural future direction is to design
approximate algorithms for the primal problem and analyze the quality of the obtained
solution based on our deeper understanding of the nonconvexity achieved in this paper.

Appendix A. The nonconvexity of the capacity function. In this appen-
dix, we are going to compute the nonconvexity of the capacity function h\sigma (x), defined
in Example 3.6, which appears in the dynamic spectrum management problem in sec-
tion 5.2. Define an auxiliary function

H(x;\sigma ) =

n\prod 
s=1

\| x\| 1  - xs + \sigma 

\| x\| 1 + \sigma 
.

Then h\sigma (x) = logH(x;\sigma ). To compute the kth nonconvexity for the function h\sigma , we
first prove some elementary properties for the function H(x;\sigma ).

Lemma A.1. The function H(x;\sigma ) has the following properties:
(a) For any vectors x and y in the region 0 \leq x, y \leq \sigma , if y \leq x, then H(y;\sigma ) \geq 

H(x;\sigma ).
(b) \sigma H(x; 1) \leq H(x;\sigma ) \leq H(x; 1).

Proof. For any x in the region 0 \leq x \leq \sigma , the partial derivatives

\partial H(x;\sigma )

\partial xi
= H(x;\sigma )

\Biggl( 
n\sum 

s=1

1

\| x\| 1  - xs + \sigma 
 - 1

\| x\| 1  - xi + \sigma 
 - n

\| x\| 1 + \sigma 

\Biggr) 

= H(x;\sigma )

\Biggl( 
n\sum 

s=1

xs

(\| x\| 1  - xs + \sigma )(\| x\| 1 + \sigma )
 - 1

\| x\| 1  - xi + \sigma 

\Biggr) 

\leq H(x;\sigma )

\Biggl( 
n\sum 

s=1

xs

\| x\| 1(\| x\| 1 + \sigma )
 - 1

\| x\| 1 + \sigma 

\Biggr) 
= 0,

which gives the first property.
For the second property, it is obvious to see that H(x;\sigma ) \leq H(x; 1). The other

inequality is equivalent to

p(\sigma ) =
1

\sigma 
H(x;\sigma ) - H(x; 1) \geq 0.

The partial derivative

\partial H(x;\sigma )

\partial \sigma 
= H(x;\sigma )

\Biggl( 
n\sum 

s=1

1

\| x\| 1  - xs + \sigma 
 - n

\| x\| 1 + \sigma 

\Biggr) 

= H(x;\sigma )

n\sum 
s=1

xs

(\| x\| 1  - xs + \sigma )(\| x\| 1 + \sigma )

\leq H(x;\sigma )

n\sum 
s=1

xs

\sigma (\| x\| 1 + \sigma )

=
1

\sigma 
H(x;\sigma )

\| x\| 1
\| x\| 1 + \sigma 

\leq 1

\sigma 
H(x;\sigma )
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implies that

p\prime (\sigma ) =  - 1

\sigma 2
H(x;\sigma ) +

1

\sigma 

\partial H(x;\sigma )

\partial \sigma 
\leq 0.

Therefore, the function p(\sigma ) is nonincreasing. Together with p(1) = 0, we have proved
the nonnegativity of p(\sigma ).

To upper bound the kth nonconvexity of the function h\sigma , consider arbitrary points
xj for j = 1, . . . , k with corresponding combination weights \alpha j > 0. Define k vectors
y1, . . . , yk in \BbbR k by

y1 = (1/H(x1; 1), 0, . . . , 0),

y2 = (0, 1/H(x2; 1), . . . , 0),

. . . ,

yk = (0, 0, . . . , 1/H(xk; 1)).

Using the result of nonconvexity for the function g given in Example 3.5 and the
properties proved in Lemma A.1, we have

h\sigma 

\left(  k\sum 
j=1

\alpha jx
j

\right)  = logH

\left(  k\sum 
j=1

\alpha jx
j ;\sigma 

\right)  \leq logH

\left(  k\sum 
j=1

\alpha jx
j ; 1

\right)  by property (b)

\leq logH(\alpha jx
j ; 1) \forall j = 1, . . . , k, by property (a)

and then

h\sigma 

\left(  k\sum 
j=1

\alpha jx
j

\right)  \leq log min
j=1,...,k

H(\alpha jx
j ; 1)

\leq log min
j=1,...,k

1

\alpha j
H(\alpha jx

j ;\alpha j) = log min
j=1,...,k

1

\alpha j
H(xj ; 1) by property (b)

= g

\left(  k\sum 
j=1

\alpha jy
j

\right)  \leq 
k\sum 

j=1

\alpha jg(y
j) + log k by the nonconvexity of g

=

k\sum 
j=1

\alpha j logH(xj ; 1) + log k \leq 
k\sum 

j=1

\alpha j log
1

\sigma 
H(xj ;\sigma ) + log k by property (b)

=

k\sum 
j=1

\alpha jh\sigma (x
j) + log

k

\sigma 
.

The above argument shows that the kth nonconvexity \rho k(h\sigma ) \leq log(k/\sigma ).
In the above example, an upper bound for the kth nonconvexity of function h\sigma is

obtained by a reduction from the nonconvexity of g in Example 3.5. Along this line
of thought, it is conceivable to find the exact value for the kth nonconvexity of h\sigma if
we are able to reduce h\sigma to itself (but with just k variables).

D
ow

nl
oa

de
d 

04
/2

5/
20

 to
 1

32
.2

36
.5

9.
69

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1116 YINGJIE BI AND AO TANG

Appendix B. Proof of Theorem 6.1. In this appendix, we give the complete
proof for the bound of the duality gap for problem (6.1) with separable objectives and
separable but possibly nonlinear constraints.

Proof of Theorem 6.1. Like the proof of Theorem 4.1, we define the perturbation
function v : \BbbR m \rightarrow \=\BbbR by letting v(z) be the optimal value of the perturbed problem

min

n\sum 
i=1

fi(x
i)

s. t.

n\sum 
i=1

gi(x
i) \leq b+ z.

The optimal value of the above problem can always be achieved because the constraint
set is closed, which is implied by the lower-semicontinuity of gi.

By the same argument as in the proof of Theorem 4.1,  - \infty < v\ast \ast (0) = d \leq v(0) =
p < +\infty , and for \epsilon > 0 there exists (\kappa , \eta ) \in conv epi v which is sufficiently close to
(0, v\ast \ast (0)) such that

v(\kappa ) \geq v(0) - \epsilon , \eta \leq v\ast \ast (0) + \epsilon .

Proceed exactly the same as in the proof of Theorem 4.1. We decompose \kappa into zj

such that

\kappa =

l\sum 
j=1

\alpha jz
j , \eta \geq 

l\sum 
j=1

\alpha jv(z
j)

and introduce wj \in \BbbR m
+ with\left(  b+ \kappa  - 

l\sum 
j=1

\alpha jw
j ,

l\sum 
j=1

\alpha jv(z
j)

\right)  \in conv

n\sum 
i=1

Ci,

where Ci is defined by

Ci = \{ (gi(xi), fi(x
i))| fi(xi) < +\infty , gi(x

i) < +\infty , xi \in \BbbR ni\} .

Corollary 2.7 gives points (ri, si) \in convki Ci with 1 \leq ki \leq m+ 1 such that

b+ \kappa \geq b+ \kappa  - 
l\sum 

j=1

\alpha jw
j =

n\sum 
i=1

ri, \eta \geq 
l\sum 

j=1

\alpha jv(z
j) \geq 

n\sum 
i=1

si,

and
\sum n

i=1 ki \leq m + n. Since (ri, si) \in convki
Ci, there exist \~xij \in \BbbR ni , \beta ij \geq 0 for

j = 1, . . . , ki such that fi(\~x
ij) < +\infty , gi(\~x

ij) < +\infty ,
\sum ki

j=1 \beta ij = 1, and

ri =

ki\sum 
j=1

\beta ijgi(\~x
ij), si =

ki\sum 
j=1

\beta ijfi(\~x
ij).

For each i = 1, . . . , n, define \^xi =
\sum ki

j=1 \beta ij \~x
ij . If hki(\^xi; fi, gi) = +\infty , we also
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have \rho ki
i = +\infty and the theorem is trivial in this case. Otherwise, observe that

ki\sum 
j=1

\beta ijgi(\~x
ij) \in Gki(\^xi; gi),

because \~xij and \beta ij satisfy all the constraints given in (6.2). As a result, there will
be \^qi \in \BbbR ni such that

gi(\^q
i) \leq 

ki\sum 
j=1

\beta ijgi(\~x
ij),

fi(\^q
i) \leq hki(\^xi; fi, gi) + \epsilon .

Thus,

\kappa \geq 
n\sum 

i=1

ki\sum 
j=1

\beta ijgi(\~x
ij) - b \geq 

n\sum 
i=1

gi(\^q
i) - b

and

n\sum 
i=1

\rho ki
i + \eta \geq 

n\sum 
i=1

\left(  \rho ki
i +

ki\sum 
j=1

\beta ijfi(\~x
ij)

\right)  \geq 
n\sum 

i=1

hki
i (\^xi; fi, gi) \geq 

n\sum 
i=1

fi(\^q
i) - n\epsilon .

Now (\^q1, . . . , \^qn) is a feasible solution to the perturbed problem v(\kappa ). Following the
original proof, we have

v\ast \ast (0) + \epsilon +

n\sum 
i=1

\rho ki
i \geq v(0) - (n+ 1)\epsilon 

and then finish the proof by letting \epsilon \rightarrow 0.

REFERENCES

[1] A. Askari, A. d'Aspremont, and L. El Ghaoui, Naive Feature Selection: Sparsity in Naive
Bayes, preprint, https://arxiv.org/abs/1905.09884, 2019.

[2] E. Asplund, A k-extreme point is the limit of k-exposed points, Israel J. Math., 1 (1963),
pp. 161--162.

[3] J. P. Aubin and I. Ekeland, Estimates of the duality gap in nonconvex optimization, Math.
Oper. Res., 1 (1976), pp. 225--245.

[4] D. P. Bertsekas, Convex Optimization Theory, Athena Scientific, 2009.
[5] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and Optimization, Athena

Scientific, 2003.
[6] D. P. Bertsekas and N. R. Sandell, Jr., Estimates of the duality gap for large-scale separable

nonconvex optimization problems, in Proc. 21st IEEE Conference on Decision and Control,
1982, pp. 782--785.

[7] Y. Bi, C. W. Tan, and A. Tang, Network utility maximization with path cardinality con-
straints, in IEEE INFOCOM 2016 -- The 35th Annual IEEE International Conference on
Computer Communications, 2016, pp. 1--9.

[8] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[9] I. Ekeland and R. T\'emam, Convex Analysis and Variational Problems, SIAM, Philadelphia,

1999, https://doi.org/10.1137/1.9781611971088.
[10] J.-B. Hiriart-Urruty and C. Lemar\'echal, Convex Analysis and Minimization Algorithms

II, Springer, 1993.

D
ow

nl
oa

de
d 

04
/2

5/
20

 to
 1

32
.2

36
.5

9.
69

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://arxiv.org/abs/1905.09884
https://doi.org/10.1137/1.9781611971088


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1118 YINGJIE BI AND AO TANG

[11] J. Lawrence and V. Soltan, Carath\'eodory-type results for the sums and unions of convex
sets, Rocky Mountain J. Math., 43 (2013), pp. 1675--1688.

[12] Z.-Q. Luo and S. Zhang, Duality gap estimation and polynomial time approximation for
optimal spectrum management, IEEE Trans. Signal Process., 57 (2009), pp. 2675--2689.

[13] R. M. Starr, Quasi-equilibria in markets with non-convex preferences, Econometrica, 37
(1969), pp. 25--38.

[14] M. Udell and S. Boyd, Bounding duality gap for separable problems with linear constraints,
Comput. Optim. Appl., 64 (2016), pp. 355--378.

[15] W. Yu and R. Lui, Dual methods for nonconvex spectrum optimization of multicarrier systems,
IEEE Trans. Commun., 54 (2006), pp. 1310--1322.

[16] H. Zhang, J. Shao, and R. Salakhutdinov, Deep neural networks with multi-branch architec-
tures are intrinsically less non-convex, Proc. Mach. Learn. Res., 89 (2019), pp. 1099--1109.

D
ow

nl
oa

de
d 

04
/2

5/
20

 to
 1

32
.2

36
.5

9.
69

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Refined Shapley–Folkman lemma
	Characterization of nonconvexity
	Bounding duality gap
	Applications
	Joint routing and congestion control in networking
	Dynamic spectrum management in communication

	Generalization with nonlinear constraints
	Conclusion
	Appendix A. The nonconvexity of the capacity function
	Appendix B. Proof of Theorem 6.1
	References

