
TCP ≈ RDMA: CPU-efficient Remote Storage Access with i10

Jaehyun Hwang Qizhe Cai Ao Tang Rachit Agarwal
Cornell University

Abstract
This paper presents design, implementation and evaluation of
i10, a new remote storage stack implemented entirely in the
kernel. i10 runs on commodity hardware, allows unmodified
applications to operate directly on kernel’s TCP/IP network
stack, and yet, saturates a 100Gbps link for remote accesses
using CPU utilization similar to state-of-the-art user-space
and RDMA-based solutions.

1 Introduction
The landscape of cloud infrastructure has changed rapidly
over the last few years. Two trends stand out:

• First, network and storage hardware has improved signifi-
cantly, e.g., network access link bandwidth has transitioned
from 1Gbps to 40Gbps or even 100Gbps [4, 37]; and, fast
non-volatile memory express (NVMe) storage devices that
deliver more than a million input/output operations per
second (IOPS) are being widely deployed [15, 23].

• Second, the need for fine-grained resource elasticity and
high resource utilization has led to large-scale deployments
of disaggregated storage [40,43]; also see [9,11,12,23,24].
As a result, increasingly more applications now access
storage devices over the network.

These changes have shifted performance bottlenecks back to
the software stack — while network and storage hardware
is able to sustain high throughput, traditional remote storage
access stacks (that make remote storage devices available as
local block devices, e.g., iSCSI [35] and light-weight servers
based on Linux) have unsustainable CPU overheads. For in-
stance, traditional iSCSI protocol is known to achieve merely
70K IOPS per CPU core due to its high protocol processing
and synchronization overheads [12, 15, 23, 24]. While this
was not a bottleneck for slower storage devices and/or net-
works, saturating a single modern NVMe storage device now
requires 14 cores, and saturating a 100Gbps link now requires
40 cores!

Responding to this challenge, both academic and industrial
communities have been taking a fresh look at the problem
of designing CPU-efficient remote storage stacks. Recently
standardized NVMe-over-Fabrics (NVMe-oF), specifically,
NVMe-over-RDMA [3,30] keeps the kernel storage stack, but
moves the network stack to the hardware. A complementary
approach argues for moving the entire storage and network
stack to the user space [24]. These proposals can achieve high
performance in terms of IOPS per core, but require changes

in applications and/or network infrastructure; such changes
would be acceptable, if utmost necessary.

This paper explores a basic question: “are infrastructure
changes really necessary for efficient remote storage access”?
Exploring this question may help clarify our response to the
challenges introduced by the two cloud infrastructure trends
discussed above. An affirmative answer would make a strong
argument for user-space stacks and/or specialized network
hardware. However, if performance similar to above solutions
can be achieved by re-architecting the kernel, then it changes
the lens through which we view the design and adoption
of software stacks in future: for example, rather than every
organization asking whether to perform a ground-up redesign
of their infrastructure, organizations that are already adopting
user-space stacks and/or modern network hardware could ask
how to port kernel remote storage stacks to integrate with their
infrastructure. Thus, while the rest of the paper occasionally
descends into kernel minutiae, the question we are asking has
important practical implications.

Our exploration of the above question led to design and
implementation of i10, a new remote storage stack within the
kernel. i10 demonstrates that, at least for applications that
are throughput bound, performance similar to state-of-the-art
user-space and RDMA-based solutions can be achieved with
minimal modifications in the kernel. i10 offers a number of
benefits. First, i10 requires no modifications outside the ker-
nel; thus, existing applications can operate directly on top
of i10 without any modifications, whatsoever. Second, i10
operates directly on top of existing TCP/IP kernel protocol
stack; thus, it requires no modifications in the network stack
and/or hardware. Third, i10 complies with recently standard-
ized NVMe-oF specification [3]; thus i10 can work with all
emerging NVMe devices. Finally, over benchmark workloads,
i10 saturates a 100Gbps link using a commodity server with
CPU utilization similar to state-of-the-art user-space stacks
and NVMe-over-RDMA products [24, 30]. The last benefit is
perhaps the most interesting one as it fills a gaping hole in our
understanding of kernel bottlenecks: as we discuss in Figure 1
and §4, existing bottlenecks for remote storage access are
neither in the storage stack nor in the network stack; rather,
the inefficiency lies at the boundary of the two stacks!

i10 achieves the above benefits using a surprisingly simple
design that integrates two ideas (§2):

End-to-end dedicated resources and batching. Using dedi-
cated resources and batching to optimize the software stack is
a well-known technique, also used in CPU-efficient network

stacks [6, 13, 19, 29]; however, as we will show, performance
bottlenecks being at the boundary of storage and network
stacks means that prior solutions of dedicating resources at
per-core granularity and batching packets at socket level are
no longer sufficient. i10 dedicates resources at the granularity
of an i10-`ane, creating a highly optimized pipe between each
(core, target) pair, where target refers to the storage stack at
the remote server (and not necessarily individual storage de-
vices at the remote server). i10-`anes have the property that
all control and data packets in any queue are destined to the
same destination, and are to be transmitted on the same TCP
session; thus, they can be efficiently batched at the entrance
of the pipe to reduce network processing overheads (§2).

Delayed Doorbells. When accessing a local NVMe device,
existing storage stacks “ring the doorbell” (signal the storage
device about a new request) immediately upon receiving the
request. i10 observes that while this is efficient for relatively
low-overhead communication over PCI express, immediately
ringing the doorbell leads to high context switching over-
heads for remote accesses where requests traverse over a
high-overhead network stack and network fabric. i10, thus,
introduces the idea of “delayed doorbells”, where the worker
thread in the storage stack delays ringing the doorbell until
multiple requests are processed (or a timeout event happens).
i10 also shows how the granularity of dedicated resources
and batching in i10 interplays well with delayed ringing of
doorbells to achieve the final performance (§2, §4).

i10 design simplicity also enables i10 implementation in
Linux with modest modifications, while operating directly
on an unmodified TCP/IP stack over commodity hardware1.
i10 evaluation, over both benchmark workloads and real appli-
cations, demonstrates that i10 achieves throughput-per-core
comparable to NVMe-over-RDMA [30]. Compared to state-
of-the-art in-kernel remote storage stacks like NVMe-over-
TCP [26], which was incorporated within the Linux kernel
in March 2019, i10 both enables new operating points (e.g.,
being able to saturate 100Gbps links) and also reduces the
CPU utilization by 2.5× for already feasible operating points.
Moreover, i10 maintains these benefits for all evaluated work-
loads including varying read/write ratios, request sizes and
device types. Finally, i10 scales well with number of cores
and with number of remote storage devices.

Going back to our starting point, i10 answers the original
question about the necessity of application and/or network
infrastructure changes for throughput-bound applications. Of
course, this is already a large class of applications; however,
batching used in i10 leads to the same latency-throughput
tradeoff as in CPU-efficient network stacks [6, 13, 19, 29]:
at low loads, latencies may be high (albeit, still at hundred-
microsecond granularity and within 1.7× of NVMe-over-
RDMA latency over storage devices). While not completely

1i10 implementation, along with documentation that enables reproducing
all results, is available at https://github.com/i10-kernel/.

Figure 1: Existing bottlenecks for remote storage access are at
the boundary of the storage and network stacks. The figure
shows throughput-per-core for kernel network, local storage and
remote storage stacks. We use 4KB random read requests between
two servers with NVMe solid state drives connected via a 100Gbps
link (detailed setup in §4). For long-lived flow, the network stack can
sustain as much as ∼30Gbps (roughly 915 kIOPS) per core using
well-known optimizations (e.g., TCP segmentation offload (TSO)
and generic receive offload (GRO)); similarly, the storage stack for
local I/O can sustain ∼350 kIOPS per core. However, when inte-
grated together with existing remote storage stacks, the achievable
throughput reduces to 96 kIOPS (§4).

satisfying, our exploration has led us to believe that user-space
stacks and RDMA-enabled solutions may be more useful for
applications demanding absolutely minimal latency for each
individual request. The question, however, remains open for
such applications.

2 i10 Design
In this section, we describes the i10 design. We start with an
overview (§2.1), followed by a detailed description of how i10
creates highly optimized i10-`anes using dedicated resources
(§2.2), batching (§2.3) and delayed doorbells (§2.4). The
next section provides some of the interesting implementation
details for i10.

2.1 i10 Design Overview
i10 is designed and implemented as a shim layer between the
kernel storage stack (specifically, the block device layer) and
the kernel network stack. Figure 2 shows the high-level design
of i10, including the i10 layer and end-to-end path between
the host application and the target NVMe storage device. i10
does not control how applications are scheduled on the cores;
each application may run on one or more cores, and multiple
applications may share the same core. Applications submit
remote read/write requests to the kernel through the standard
read/write APIs; i10 requires no modifications to these APIs.

i10 achieves its goals using the core abstraction of an i10-
`ane— a dedicated pipe that is used to exchange both control
and data plane messages along a set of dedicated resources.
i10 creates i10-`anes and dedicates resources to each i10-`ane
at the granularity of (core, target)-pair, where target refers
to the block device at the remote server (and not necessarily
individual storage devices). For example, consider that (poten-
tially more than one application running at) a core c submits
read/write requests to two target servers t1 and t2, each hav-
ing multiple storage devices d11, d12, . . . and d21, d22,
. . . . Then, i10 creates two i10-`anes, one c t1 for all

https://github.com/i10-kernel/

Block

(blk-mq)

& NVMe

i10

TCP/IP

Stack

Device

I/O syscalls

bio

App1

req

VFS

per-core

blk-mq

NVMe SSD

bio

req

per-core

NVMe

SQ/CQ

bio

req

bio bio

Kernel

space

User

space

[Host] [Target 2]

App2

NVMe SSD NIC

[Target 1]

Parse PDU

Submit bio

Ring doorbell (SQ)

Do NVMe IRQ (CQ)

Return to i10 I/O queue

per-core

blk-mq

i10 layer

Target 1

Data path

Target 1

i10-lane

Target 2

i10-lane

Target 2

Data path

NICNIC

per-core

NVMe

SQ/CQ

per-core

blk-mq

per-i10-lane

I/O queue

per-i10-lane

TCP Tx/Rx

buffers

per-i10-lane

I/O queue

per-i10-lane

TCP Tx/Rx

buffers

CPU core

req req

Figure 2: End-to-end data path in i10 between one host and two target servers. In this example, app1 is sending read/write requests to
target1 using both core1 and core2, and app2 is sending read/write requests to target2 using core2. Thus, i10 creates three i10-`anes —
one for each of (core1, target1), (core2, target1) and (core2, target2) pairs. Moreover, (green) requests submitted from app2 are copied to the
block layer request queue of core2 and (red) requests submitted from app1 are copied to either the block layer request queue of core1 or core2
depending on which core the request comes from. While block layer request queues may contain requests going to different target servers (e.g.,
the right block layer request queue at host1), each request is copied to the i10 I/O queue for i10-`ane corresponding to the (core, target)-pair.
Finally, if there were an app3 running on core2 sending requests to target2, it would completely share the i10-`ane with app2.

requests going to the former set of storage devices and the
other c t2 for all requests going to the latter set of stor-
age devices. Note that this is independent of the number of
applications running on the core c. Moreover, if a single appli-
cation running on two cores c1 and c2 submits read/write
requests to two target servers t1 and t2, then i10 will create
four i10-`anes, one for each (core, target) pair.

i10 uses three set of dedicated resources for each i10-`ane
(both at the host and at the target side). We first describe
these dedicated resources and then discuss how they integrate
into an end-to-end path between the host core and the target.
The first dedicated resource is an I/O queue in the i10 layer
(shown in the blue horizontal bar in Figure 2). The second is
a dedicated TCP connection, along with its buffers, between
the host and target i10 queues. Finally, a dedicated i10 worker
thread for each core that interacts with i10 at the host side
and for each core that is needed at the target side. Note that,
for reasons that we will discuss in §2.2, i10 queues and TCP
connections are at the per-lane granularity, and the i10 worker
threads are at a per-core granularity.

We are now ready to describe the end-to-end path between
the host core and the target. Upon receiving a request from
a core, the block layer does its usual operations — gener-
ates a bio instance (that represents an in-flight block I/O
operation in the kernel [28]), initializes the corresponding
request instance using Linux kernel’s support for multiple
per-core block queues (blk-mq) [7, 14] and then, copies the

request to the block layer’s request queue for that core (these
request queues are different from i10 queues). Finally, the
block layer’s request instance is converted to an i10 request;
to be compliant with NVMe-oF standards, i10 requests are
similar to a command Protocol Data Unit (PDU) [3]. Finally,
using the context information within the block layer’s request
data structure, i10 requests are copied to the i10 queue for the
corresponding i10-`ane.

Having a dedicated queue for each i10-`ane implies that
all requests and data packets in a queue are destined to the
same target server, and will be transmitted over the same TCP
connection. Thus, i10 is able to batch multiple requests and
data packets into i10 “caravans”2, all to be processed and
transmitted over the same TCP connection. This allows i10
to significantly reduce the network processing overheads by
aggregating enough data to benefit from well-known opti-
mizations like TSO and GRO. We discuss the precise details
in §2.3.

i10 observes that the original NVMe specification was de-
signed for accessing storage devices over PCI express (PCIe).
Since PCIe provides a low-latency low-overhead communica-
tion between the storage stack and the local storage devices,

2i10 “caravans” are nothing but batches of requests; we use the term
caravans to avoid confusion between i10 batches of requests and traditional
batches — while traditional batches correspond to packets going to the same
application port, i10 batches may be going to different storage devices, albeit
within the same target server.

it was useful for the case of local access to “ring the door-
bell” (provide a signal to the storage device that a new I/O
request is ready to be served) immediately upon creating a re-
quest. However, in the case of remote accesses where requests
traverse through a relatively high-latency high-overhead net-
work, immediately ringing the doorbell leads to high context
switching overheads for the worker threads. To alleviate these
overheads, i10 introduces the idea of delayed doorbells, where
the block layer worker thread processes multiple requests (or
times out) before ringing the doorbell to wake up the i10
worker thread. This not only reduces the context switching
overheads significantly, but also provides i10-`ane queues
with enough requests/data to generate right-sized caravans.
We describe the precise mechanism in §2.4.

Finally, the i10 caravan is transmitted through the in-kernel
socket interface. As shown in Figure 2, when the caravan
arrives in the target-side i10 queue, i10 parses the caravan
to regenerate the bio instances, corresponding requests and
submits them to the block layer. Upon receiving the requests,
the block layer executes the same steps as it does for accessing
PCIe-connected local storage devices: the request is inserted
to the NVMe submission queue and upon completion, the
result is returned to the NVMe completion queue. After the
local access, the result goes back to the block device layer,
and finally is abstracted as a response caravan by i10 and sent
back to the host server over the TCP connection.

In the following three subsections, we present design details
for the three building blocks of i10: i10-`ane, i10 caravans,
and delayed doorbells.

2.2 i10-`ane
The two obvious options for creating i10-`ane are (1) creating
one i10-`ane per target server, independent of the number of
cores (Figure 3(a)); and (2) creating one i10-`ane per core,
independent of the number of target servers (Figure 3(b)).
At high loads, the first option leads to high write contention
among the block layer worker threads since they will need
to write the requests to the same i10 queue. The second
option is no better either — here, requests destined to different
targets are forced to be in the same i10 queue resulting in
preventing i10 caravans from batching enough requests, or
high CPU overheads (for sorting requests to batch into the
same caravans). Both these overheads become worse in the
most interesting case of high-load regime. i10 avoids these
overheads by creating an i10-`ane for each (core, target)-pair
(Figure 3(c)). That is, for applications that use P host cores to
access data at T target servers, i10 creates P×T i10-`anes,
independent of the number of storage devices at each target.

We now describe the resources dedicated to each i10-`ane.

blk-mq level request queues. i10 exploits per-core request
queue defined in the block layer (using blk-mq [7, 14]). Be-
fore the support for blk-mq, all block layer requests went to
a single request queue per device. While queueing requests

T1 T2

(a) per-target

T2T1

(b) per-core

T1 T2

(c) per-target/per-core

Figure 3: Creating i10-`ane for each (core, target) pair is the
right design. The figure shows host cores, blk-mq, i10 queues, TCP
connections, and target devices T1 and T2. For discussion, see §2.2.

in a single queue could create head-of-line blocking, this de-
sign enabled scheduling so as to minimize the seek time on
hard disks. For modern storage devices that support high-
throughput random reads and writes using multiple cores, the
equation is quite different due to two reasons: (1) multiple
cores operating over a single queue becomes a performance
bottleneck; and, (2) since seek time is not a problem, mini-
mizing head-of-line blocking becomes more important. Thus,
recent versions of Linux kernel enable the block layer to create
per-core request queues and to maintain multi-queue context
information for both blk-mq and underlying remote access
layers. This enables i10 to efficiently demultiplex requests in
blk-mq into individual i10-`ane queues.

i10 I/O queue. i10 creates one dedicated queue for each indi-
vidual i10-`ane. These queues are equivalent to the I/O queues
from the NVMe standard [2] with the only difference that
they communicate with a remote target server, not with local
SSD devices. Once the requests from blk-mq are converted
to NVMe-compatible command PDUs, they are inserted to
i10 queues. The NVMe standard allows creating as many as
64K NVMe queues to enable parallel I/O processing; since
we expect i10 to have no more than 64K simultaneously ac-
tive i10-`anes at any server for most deployments, i10 design
should not be limited by the number of available queues.

TCP socket instance. Each i10-`ane maintains its own TCP
socket instance and establishes a long lived TCP connection
with the target, along with corresponding TCP buffers. The
state needed to be maintained in the kernel for each individual
TCP connection is already quite small. The only additional
state that i10 requires is the mapping between the TCP con-
nections and the corresponding i10-`ane, which again turns
out to be small (§5).

i10 worker thread. i10 creates a dedicated per-core worker
thread whose responsibility is to conceptually move i10 cara-
vans bidirectionally on i10-`anes. This worker thread starts
executing when a doorbell is rung for any of the i10-`anes on
the same core, and aggregates command PDUs in the queue
of the corresponding i10-`ane into caravans. The worker then
moves the caravans to TCP buffers for the corresponding i10-
`ane. Finally, the worker thread goes into the sleep mode until
a new doorbell is rung.

When the caravan reaches the target’s TCP receive buffers,

blk-mq
T1

T2

I/O-Q TCP-Q Remote targets

one socket call

per caravan

caravan

S
o

c
k

e
ts

Figure 4: Creating i10 caravans at the i10 queues is the right
design for reducing per-request network processing overhead.
See discussion in §2.3.

the corresponding worker thread starts processing the requests
in the caravan. First, it regenerates bio for each request in
the caravan, followed by processing the requests as needed at
the block layer. Upon receiving the signal from completion
processing, the results are inserted into target’s i10 queue and
a caravan is created. It is not necessary for response caravans
to have the same set of requests as in host caravans, because
caravan’s size can be different between host and target (§2.3).

2.3 i10 Caravans
Given that all requests in an i10 queue are going to the same
destination over the same TCP connection, i10 batches mul-
tiple requests into an i10 caravan. This allows i10 to benefit
from standard optimizations like TSO and GRO, which sig-
nificantly reduces the network processing overheads. Our
key insight here is that i10 queues are precisely the place to
create caravans because of two reasons. First, at the block
layer, the blk-mq is per-core and at any given point of time,
may have requests belonging to different targets (as in Fig-
ure 3(c)); thus, batching the requests at the block layer would
require significant CPU processing to sort the requests go-
ing to the same target device. Second, batching at the TCP
layer would require i10 to process each request individually
to send to TCP buffers, thereby creating one event per request;
prior work [19] has shown that such per-request events results
in high CPU processing overheads. By batching at its own
queues, i10 reduces both of these overheads (Figure 4). We
set the maximum amount of data carried by a caravan to be
64KB to align it with the maximum packet size supported by
TSO. However, to prevent a single caravan from batching too
many small-sized requests, each caravan may batch no more
than a pre-defined aggregation size number of requests (§3).

2.4 Delayed Doorbells
The original NVMe specification was designed for accessing
storage devices over PCI express (PCIe). Even though the
standard itself does not prescribe how to use doorbells, the cur-
rent storage stack simply rings the doorbell (that is, updates
the submission queue doorbell register) whenever a request
is inserted into the NVMe submission queue (Figure 5(a)).
Since PCIe provides a low-latency low-overhead communica-
tion between the storage stack and the local storage devices,
ringing the doorbell on a per-request basis reaches the max-
imum throughput of the device with minimal latency. How-
ever, in the case of remote accesses where requests traverse

blk-mq

SQ CQ

NVMe SSD

Insert

Ring

doorbell

(a) Local I/O

blk-mq

Insert

Ring

doorbell
I/O-Q

TCP-Q

Wake up

worker

Thread

switching

(b) Remote I/O

Figure 5: Ringing the doorbell per request is effective for local
PCIe-attached local storage, but not for remote storage access
since the latter results in high context switching overhead. See
discussion in §2.4.

through a relatively high-latency high-overhead network, ring-
ing the doorbell on a per-request basis results in high context
switching overheads. In the specific context of i10, ringing
the doorbell implies that as soon as the block layer thread
inserts an i10 request to the i10 queue, it wakes up the i10
worker thread to handle the request immediately (Figure 5(b)).
This incurs a context switch, which at high loads, could result
in high CPU overheads (§4).

i10 alleviates these overheads using the idea of delayed
doorbells. When an i10 queue is empty, a doorbell timer is
set upon arrival of the first request. Then, the doorbell is rung
either when the i10 queue has as many requests as a pre-
defined aggregation size or when the timer reaches a timeout
value, whichever happens earlier. Whenever the doorbell is
rung, i10 caravans are created with all the requests in the i10
queue and the doorbell timer is unset. We note that delayed
doorbells can be used independent of whether or not requests
are batched into caravans. Moreover, this design will cause
extra latency if applications generate low load (resulting in
requests observing “timeout” amount of latency).

3 i10 Implementation Details

We implement i10 host and target in the Linux kernel 4.20.0.
i10 implementation runs on commodity hardware (we do use
the TSO and GRO features supported by most commodity
NICs) and allows unmodified applications to operate directly
on kernel’s TCP/IP network stack. In this section, we discuss
some interesting aspects of i10 implementation.

kernel_sendpage() vs. kernel_sendmsg(). There are
two options to transmit i10 caravans via kernel socket inter-
faces. The first interface, kernel_sendpage() allows avoid-
ing transmission-side data copy when sending each page of
the data, but limits the aggregation size to be no more than 16.
The second, kernel_sendmsg() takes a kernel I/O vector
as a function argument and internally copies every scattered
data of the I/O vector into a single socket buffer. This allows
i10 aggregation size to be larger than 16, which leads to lower
network processing overhead in some cases. Our tests re-
veal that kernel_sendmsg() achieves slightly better overall

CPU usage (that is, including data copy as well as network
processing overheads), resulting in better overall throughput.
Therefore, we use kernel_sendmsg() for i10 caravans to
achieve better throughput.

i10 no-delay path. For latency-critical applications, it may be
more important to avoid the latency incurred by i10 batching
and delayed doorbells. For example, it may be desirable to
execute a read request on file system metadata such as inode
tables immediately upon submission so as to avoid blocking
further read/write requests that cannot be executed without the
response to the original request. For such cases, i10 supports
a no-delay path — when such a latency-sensitive request
arrives in i10 queue, i10 flushes all outstanding requests in the
queue and processes the latency-sensitive request immediately.
This is implemented using a simple check during the delayed
doorbell ringing process: upon receiving a latency-sensitive
request, the doorbell can be rung immediately, forcing i10 to
create a caravan using all the outstanding requests along with
the latency-sensitive request.

i10 parameters. In general, we expect throughput-per-core
in i10 to improve with increasing aggregation size due to
reduced network processing overheads. However, as we show
in Appendix A in the technical report [16], increasing ag-
gregation size beyond a certain threshold would result in
marginal throughput improvements while requiring larger
doorbell timeout values to be able to aggregate larger number
of requests (thus, inflating per-request latency at low loads).
This threshold — that is, the value that reaches the point of
marginal improvements — of course, depends on kernel stack
implementation. For our kernel implementation, we find 16 to
be the best aggregation size with 50µs doorbell timeout value.
We will use these parameters by default in our evaluation.

TCP buffer configuration. i10 caravans may be as large
as 64KB. To this end, the TCP transmit buffer should have
enough space for receiving caravans. However, TCP buffer
size is generally adjusted by TCP’s auto tuning mechanism —
the Linux TCP implementation automatically increases the
buffer size based on the bandwidth-delay product estimate
for the transmit buffer, unless users specify a static buffer
size via setsockopt(). Therefore, if the remaining trans-
mit buffer is currently less than 64KB, the caravan would be
fragmented even if kernel can provide more memory for the
buffer resulting in higher processing overheads due to more
than one socket call per caravan. For this reason, we explicitly
use a fixed size of TCP buffers via kernel_setsockopt()
at the session establishment stage. We set the buffer size to
8MB in this paper, which is sufficiently large to avoid caravan
fragmentation.

4 i10 Evaluation

In this section, we evaluate an end-to-end implementation of
i10. We first describe our evaluation setup (§4.1). We then

Table 1: Experimental setup used in our evaluation.

H/W configurations

CPU
4-socket Intel Xeon Gold 6128 CPU @ 3.4GHz

6 cores per socket, NUMA enabled (4 nodes)
Memory 256GB of DRAM

NIC
Mellanox ConnectX-5 EX (100G)

TSO/GRO=on, LRO=off, DIM disabled
Jumbo frame enabled (9000B)

NVMe SSD 1.6TB of Samsung PM1725a

S/W configurations

OS Ubuntu 16.04 (kernel 4.20.0)
IRQ irqbalance enabled

FIO
Block size=4KB, Direct I/O=on

I/O engine=libaio, gtod_reduce=off
CPU affinity enabled

start by evaluating i10 performance against state-of-the-art
NVMe-over-RDMA (NVMe-RDMA) [30] and NVMe-over-
TCP (NVMe-TCP) [26] implementations over a variety of
settings including varying loads, varying number of cores,
varying read/write request ratios and varying number of tar-
get servers (§4.2). Next, we use CPU profiling to perform
a deep dive into understanding how different aspects of i10
design contribute to its performance gains (§4.3). Finally,
we evaluate i10 over real applications (§4.4) and compare
its performance with state-of-the-art user-space stacks (§4.5).
Several additional evaluation results (including sensitivity
analysis against aggregation size and doorbell timeout values,
performance with variable request sizes, scalability with mul-
tiple applications sharing the same core, benefits of syscall
batching, etc.) can be found in the technical report [16].

4.1 Evaluation Setup
We use a testbed with two servers, each with 100Gbps links,
directly connected without any intervening switches; while
simple, this testbed allows us to ensure that bottlenecks are at
the server-side thus allowing us to stress test i10. Both servers
have the same hardware/software configurations (Table 1).
Our NICs have one Ethernet port and one InfiniBand port,
allowing us to evaluate both NVMe-TCP and NVMe-RDMA.

Our NICs support dynamically-tuned interrupt moderation
feature that controls the network RX interrupt rate [41], which
helps achieving maximum network throughput with minimum
interrupts under heavy workloads; however, we disable it to
show that i10 does not rely on special hardware features.
Similarly, we do not optimize the Interrupt Request (IRQ)
affinity configuration, but simply use the irqbalance pro-
vided by the OS. Finally, we use FIO [5] application for
our microbenchmarks with a default I/O depth of 128. All
I/O requests are submitted via the asynchronous I/O library
(libaio) and direct I/O is enabled so as to bypass the ker-
nel page cache and to make sure that I/O requests always go
through the network to reach the target device.

i10 and NVMe-RDMA saturate our NVMe solid state

(a) Average Latency (SSD) (b) Tail Latency (SSD) (c) Average Latency (RAM) (d) Tail Latency (RAM)

Figure 6: Single core performance (4KB random read): when compared to NVMe-TCP, i10 achieves significantly higher throughput-per-
core with comparable latency; when compared to NVMe-RDMA, i10 achieves comparable throughput while achieving average and tail latency
within 1.4× and 1.7×, respectively, for the case of SSDs.

(a) Read (SSD) (b) Write (SSD) (c) Read (RAM) (d) Write (RAM)

Figure 7: Multi-core performance (4KB random read/write): i10 achieves throughput significantly better than NVMe-TCP and comparable
to NVMe-RDMA while operating on commodity hardware; i10 and NVMe-RDMA also achieve near-perfect scalability with number of cores.

drives (SSD) with only 4 cores; hence, we also use RAM
block device to evaluate multi-core scalability. In addition,
our RAM-based experiments allow us to emulate i10 perfor-
mance for the emerging Non-Volatile Main Memory devices
as their performance is close to that of DRAM [45]. Unless
otherwise stated, we use 4 cores for SSD-based and 16 cores
for RAM-based evaluation.

4.2 Performance Evaluation
We now evaluate i10 performance across a variety of settings.
All experiments in this subsection focus on host-side CPU
utilization since target CPU was never the bottleneck (§4.3.2).

4.2.1 Single core performance

Figure 6 presents the single-core performance for all the eval-
uation schemes for both NVMe SSD and RAM block devices.
The key takeaway here is that, when compared to NVMe-
RDMA, i10 offers better throughput at high loads, but slightly
higher latency (still at hundred-microsecond granularity) at
low loads. Intuitively, when the load is high, i10 works with
full-sized caravans without delayed doorbell timeouts, thus
achieving high throughput. For low loads, i10 would wait for
more requests to arrive in the i10 queue until the doorbell
timer expires, which slightly increases its average end-to-end
latency. However, we note that even for low loads, i10 average
latency is comparable to that of NVMe-RDMA — e.g., for
the case of SSDs, where SSD access latency becomes the
bottleneck, i10 achieves an average latency of 189µs while
NVMe-RDMA achieves 105µs (Figure 6(a)). We observe sim-
ilar trends for the tail (99th percentile) latency for the case of
SSDs — as shown in Figure 6(b), i10’s tail latency of 206µs
is within 1.7× of NVMe-RDMA tail latency of 119µs, again

since SSD access latency is the main bottleneck. For the case
of RAM block device, i10 has higher average and tail latency
compared to NVMe-RDMA since kernel overheads start to
dominate; however, i10 still achieves comparable or better
throughput per core. Finally, we also observe that all the three
schemes perform better with RAM block device when com-
pared to SSD since the former significantly reduces the access
latency, not requiring any interrupt handling between device
driver and RAM block device.

4.2.2 Scalability with number of cores

To understand i10 performance with increasing number of
cores, we extend the previous single-core measurements to
use up to 24 cores. Figure 7 presents the results. We observe
that, for the case of random reads, i10 and NVMe-RDMA
saturate the SSD with 4 cores, which is a factor 2.5× im-
provement over NVMe-TCP (Figure 7(a)), while direct access
(where the requests go to local SSD) saturates the SSD using
3 cores. The case of random writes in Figure 7(b) is simi-
lar to Figure 7(a); both NVMe-RDMA and i10 saturate the
maximum random write performance with 3 cores whereas
NVMe-TCP requires 6 cores.

With RAM block device, i10 mostly outperforms both
NVMe-TCP and NVMe-RDMA as shown in Figures 7(c)
and Figures 7(d). Perhaps most interestingly, i10 is able to
saturate the 100Gbps link, achieving 2.8M IOPS with ∼20
cores. We observe that NVMe-RDMA stays around 1.5–2M
IOPS after 10 cores for both random read and write work-
loads. While we believe that this performance saturation is
not fundamental to NVMe-RDMA and is merely a hardware
issue, we have not yet been able to localize the core problem;
we note, however, that similar observations have been made

(a) SSD (4 cores) (b) RAM block device (16 cores)

Figure 8: i10 maintains its performance against NVMe-TCP and
NVMe-RDMA with workloads comprising varying read/write
ratios (4KB mixed random read/write).

(a) Read (RAM) (b) Write (RAM)

Figure 9: i10 maintains its performance with increasing num-
ber of target devices (4KB random read and write). The trend is
similar to the multi-core/single-target case in Figure 7.

in other recent papers [31].

4.2.3 Performance with varying read/write ratios

Figure 8 presents results for workloads comprising varying
ratio of read/write requests, varying from 0:100 to 100:0, for
both SSD and RAM block device. For the case of SSD (Fig-
ure 8(a)), we observe that throughput in each case is limited
by random write performance except that of the 100% read
ratio case. This observation is consistent with the previous
study that shows random write can interfere with random read
because of wear leveling and garbage collection, where 75%
read shows a similar IOPS with 50% read [24]. Consistent to
results in previous subsections, both i10 and NVMe-RDMA
saturate the SSD while requiring fewer cores than NVMe-
TCP. With RAM block device (Figure 8(b)), the throughput
changes with marginal fluctuation regardless of the read ratio;
nevertheless, i10 continues to achieve comparable or better
throughput than NVMe-RDMA across all workloads.

4.2.4 Scalability with multiple targets

We now evaluate i10 performance with increasing number of
target devices, using up to 48 target RAM block devices. Here,
we only focus on RAM devices since our testbed has a limited
number of SSD devices. The setting here is that of each core
running applications that access data from targets assigned
to the application. The assignment is done in a round-robin
manner — for up to 24 targets, each core will serve one target
and for more than 24 targets, we assign the additional targets
to the cores starting with core0 (e.g., for 36 targets, the first
12 cores serve two targets each and the remaining 12 cores
serve one target each).

In Figure 9, we observe that i10 outperforms both NVMe-
TCP and NVMe-RDMA, saturating the 100Gbps link with
16 or more targets. The 24-target throughput is kept after
24 targets for all schemes as every host core is fully used
(for i10, the 100Gbps link is already saturated). The overall
trend is similar or even slightly better when compared to the
RAM cases of the multi-core scalability scenario (Figure 7)
as the I/O requests are processed in parallel across different
i10-`anes. This result confirms that i10 maintains its perfor-
mance benefits with increasing number of targets incurring
little CPU contention across the various i10-`anes. For the
scenarios where such CPU contention is severe (assuming
an extremely large number of targets), the single-core/multi-
target throughput is further studied in Appendix B in [16].

4.3 Understanding Performance Gains
We now evaluate how various design aspects of i10 contribute
to its end-to-end performance, and then use CPU profiling to
build a deeper understanding of i10 performance gains.

4.3.1 Performance contribution
Figure 10 shows that each of the design aspects of i10— i10-
`ane, i10 caravans, and delayed doorbells — are essential to
achieve the end-to-end i10 performance. In Figure 10(a), we
measure 4KB random read throughput increasing the num-
ber of cores from 1 to 16. The baseline is our i10-`ane per-
formance, which scales well with multiple cores. Enabling
TSO/GRO and jumbo frames makes slightly further improve-
ment over the i10-`ane throughput. With NVMe SSD, i10 con-
tribution is limited by the SSD performance (Figure 10(b)),
but it is clear that with RAM block device, i10 caravans and
delayed doorbells contribute to the performance improvement
significantly, by 38.2% and 23.2% of the total throughput
with 16 cores as shown in Figure 10(c). We also confirm that
these improvement trends are maintained regardless of the
read ratio for both SSD and RAM devices. The above results
therefore indicate that all of the three building blocks are in-
deed necessary to design an end-to-end remote storage I/O
stack that achieves the aforementioned benefits.

4.3.2 Understanding Bottlenecks
We now use CPU profiling for the 4-core case of SSD and
the 16-core case of RAM block device in Figure 10(a), with
the goal of understanding the bottlenecks for each of the
three schemes. Our profiling results in Figure 12, Table 3
and Table 4 divide the entire remote access process into 7
components as described in Table 2. Our key findings are:

(1) i10 spends fewer CPU cycles in network processing:
i10 improves upon NVMe-TCP by a factor of 2.7× in terms
of CPU usage reduction in network processing parts (Network
Tx and Rx combined) for both NVMe SSD and RAM block
device, while showing comparable CPU utilization to NVMe-
RDMA in the same parts. The main problem of NVMe-TCP is
that it underutilizes the network capacity even with such high

(a) Throughput with varying # cores (b) Throughput (SSD) with varying read % (c) Throughput (RAM) with varying read %

Figure 10: Each of i10-`ane, caravans, delayed doorbells are necessary to achieve the end-to-end i10 performance.

Table 2: Taxonomy of CPU usage.

Component Description

Applications
Submit and receive requests/responses via I/O
system calls (host). Ideally, all cycles would be
spent in this component.

Block TX
Process the requests at the blk-mq layer and ring
the doorbells to the remote storage access layer
(host) or the local storage device (target).

Block RX
Receive the requests/responses from the network
Rx queues or the local storage device.

Net TX
Send the requests/responses from the I/O queues
(NVMe-RDMA uses Queue Pairs in the NIC).

Net RX
Process packets and insert into the network Rx
queues (by the network interrupt handler).

Idle Enter the CPU Idle mode.

Others
Include all the remaining overheads such as task
scheduling, IRQ handling, spin locks, and so on.

Figure 11: For 4K random read, NVMe-TCP does not benefit
from TSO due to the packet sizes being mostly 72B at host and
< 9KB at target, much smaller than ideal 61KB packet size.

CPU usage in network processing. To investigate the reason
further, we measure the packet sizes used in each TCP/IP
processing for 4KB random read, comparing to a long-lived
TCP connection that achieves ∼30Gbps using a single core.
Figure 11 reveals that about 80% of packet sizes generated
by the host are 72 bytes, the I/O request PDU size of NVMe-
TCP. This implies that almost every single small-sized request
consumes CPU cycles for TCP/IP processing, increasing per-
byte CPU usage. The target can generate a larger size of
packets as it sends 4KB response data back to the host, but
still most of them (98%) are under the jumbo frame size

(9000 bytes) while the long-lived TCP connection generates
mostly 61KB packets with TSO. i10 caravans help mitigate
this bottleneck by generating 1152B packets (that is, 72B×16)
at the host and ∼61KB packets at the target; i10 caravans are
thus able to help reduce CPU usage by 30.12% and 31.14%
for SSD and RAM block device in network processing parts,
compared to the baseline i10 that uses only i10-`ane.

(2) i10 minimizes context switching overheads: i10
achieves 1.7× CPU usage reductions over NVMe-TCP in Oth-
ers part that includes task scheduling overheads. NVMe-TCP
involves three kernel threads at the host — one for blk-mq
that corresponds to the application thread, another for the
remote I/O and TCP/IP Tx processing, and the third for the
packet interrupt handling and TCP/IP Rx processing. This
model avoids (i) slow responsiveness to other threads and/or
(ii) long bottom half procedure for the incoming packet in-
terrupts, but can incur high context switching overhead; our
measurement indicates that each context switch takes 1–3µs
per request, consuming more CPU cycles at the host. i10
amortizes this switching overhead using the idea of delayed
doorbells; when compared to i10 design that does not use
delayed doorbells, we observe reduction of CPU usage by
14.2% and 14.15% for NVMe SSD and RAM block device in
the Others part. While the previous work mainly focuses on
the target architecture [24], this host-side optimization turns
out to be essential to improve the remote I/O throughput given
that all the three remote storage access technologies consume
more CPU cycles at the host regardless of the device type.

(3) i10 improves CPU efficiency allowing more cycles for
applications: CPU resources saved in network processing
and in context switching (using caravans and delayed door-
bells) can be utilized by the applications, resulting in im-
proved throughput per core. For instance, i10 allows appli-
cations to use 2.9× and 1.8× more CPU cycles for SSD
and RAM devices, when compared to NVMe-TCP. NVMe-
RDMA also shows 1.9× more CPU usage than NVMe-TCP
on applications with RAM block device.

(4) i10 pushes the performance bottlenecks to the block
layer: Tables 3 and 4 show that i10 pushes the performance
bottlenecks from network processing and other lower layers
(scheduling, etc., including in Others) to upper layers, making

(a) Host (SSD) (b) Target (SSD) (c) Host (RAM) (d) Target (RAM)

Figure 12: CPU consumption at various system components for i10, NVMe-TCP and NVMe-RDMA. i10 and NVMe-RDMA use
significantly fewer CPU cycles for network processing and task scheduling (in Others) at the host while allowing applications to consume more
CPU cycles, when compared to NVMe-TCP.

Table 3: CPU usage contribution for 4KB random read with NVMe SSD: i10 reduces CPU usages in network processing (Net TX and RX)
using i10 caravans and in task scheduling (Others) using delayed doorbells, which allows more CPU cycles for applications and block layer.
Here, i10-`ane contribution is measured with enabling TSO/GRO and jumbo frames.

Applications Block TX Block RX Net TX Net RX Idle Others

i10-`ane 4.67 7.02 7.88 16.14 20.61 22.66 21.02
i10 Caravans +9.85 +14.54 +16.41 -13.7 -16.42 -16.34 +5.66

Delayed Doorbells -0.75 -2.76 +3.38 +0.73 +6.34 +7.26 -14.2

i10 13.77 18.8 27.67 3.17 10.53 13.58 12.48

Table 4: CPU usage contribution for 4KB random read with RAM block device. The trends are similar to the SSD case above.

Applications Block TX Block RX Net TX Net RX Idle Others

i10-`ane 8.0 12.68 15.9 27.0 15.84 3.51 17.07
i10 Caravans +5.77 +10.88 +8.83 -24.79 -6.35 -1.07 +6.73

Delayed Doorbells +0.63 +0.43 +8.66 +1.42 +2.67 +0.34 -14.15

i10 14.4 23.99 33.39 3.63 12.16 2.78 9.65

the block device layer a new bottleneck point in the kernel.
i10 design did not attempt to perform changes in the block
layer; however, it would be interesting to explore block layer
optimizations to further improve end-to-end performance for
remote (and even local) storage access.

We observe that RDMA still consumes a few CPU cycles to
build and parse the command PDUs in network processing
parts. In our profiling, one main difference between the SSD
and RAM cases is that the RAM block device does not use
IRQ to inform the I/O completion, but calls the the block layer
functions immediately while in the SSD case, it still relies
on the nvme_irq handling after the I/O is completed. This
increases the IRQ handling overhead. Further, NVMe-RDMA
generates another type of IRQ to call the block layer functions
in the host after the network processing is done. This also
slightly increases the IRQ handling overhead in the host.

4.4 i10 performance with RocksDB
To evaluate i10 performance over real applications, we use
RocksDB, a popular key-value store deployed in several pro-
duction clusters [17]. We install RocksDB in the host server
with a remote SSD device mounted with XFS file system.
The RocksDB database and write-ahead-log files are stored
on the remote device. To minimize the effect of the kernel
page cache, we clear the page cache every 1 second during
the experiment. We use db_bench, a benchmarking tool of
RocksDB, for generating the two workloads using default pa-
rameters [18]: ReadRandom and ReadWhileWriting. Before
running the workloads, we populate a 55GB database using
the bulkload workload.

We measure the end-to-end execution time and kernel-side
CPU utilization using a single core. In this experiment, the
doorbell timeout value is set to 1ms as RocksDB is not an

(a) Execution time (b) CPU usage in kernel

Figure 13: i10 and NVMe-RDMA achieve 1.2× lower latency
and 2× lower CPU utilization when compared to NVMe-TCP
over SSD-based RocksDB.

I/O bound application, and thus requires more time to aggre-
gate appropriate number of requests. Figure 13 shows the
performance of the three schemes, normalized by the NVMe-
TCP performance. Again, we observe that i10 performs com-
parable to NVMe-RDMA while achieving almost 1.2× im-
provements over NVMe-TCP in terms of execution time. The
reason why this improvement is different with that of FIO
benchmarks is that, RocksDB itself is the main CPU cycle
consumer (up to 70% CPU usage) to perform data compres-
sion, key matching, etc. However, i10 still allows RocksDB
to utilize more CPU resources by requiring 2× lower CPU
in the kernel across a fixed number of requests when com-
pared to over NVMe-TCP. Our additional experiments with
Filebench [39], presented in Appendix B in [16], indicate that
if the application is I/O bound, i10 can achieve more than
2× per-core throughput improvements over NVMe-TCP in a
similar setup.

4.5 Comparison with ReFlex
Now we compare i10 with ReFlex, a user-level remote Flash
access stack [24] using FIO. Unfortunately, despite significant
effort, we were unable to install the remote block device
kernel module for ReFlex [8] in our system3, which is required
for ReFlex host to run legacy Linux applications such as
FIO. Thus, we make an indirect comparison with ReFlex,
measuring i10 throughput using the same 10Gbps NICs used
in [24] (that is, Intel 82599ES 10GbE NICs) and the same
FIO script [8]. We also use 1-core i10 target as ReFlex target
server uses 1-core per tenant. In this setup, i10 saturates the
10Gbps link with ∼3 cores, whereas ReFlex-FIO requires
6 cores according to [24]. This result still suggests that i10
would be a good option for remote storage I/O when we use
legacy throughput-bound applications.

We also note that using IX [6]-based ReFlex clients
achieves higher throughput; for instance, ReFlex reports
achieving 850 kIOPS for 1KB read-only request using a sin-
gle core [24], thus requiring only 2 cores to saturate a 10Gbps
link. However, this requires the client server to run IX, pre-
cluding integration with unmodified legacy applications.

3The kernel module is based on an old version of kernel (4.4.0) that does
not include relevant device drivers for our SAS SSD where the OS is installed.
We also failed to boot with our NVMe SSD even with the up-to-date BIOS.

5 Discussion

We discuss a number of possible extensions for i10.

Can we apply i10 techniques to improve iSCSI perfor-
mance? We believe that many of our optimizations may be
useful to improve iSCSI [35] performance; for instance, the
current Linux iSCSI implementation consumes CPU cycles
inefficiently when sending I/O requests and responses, not
fully utilizing TSO/GRO; moreover, it also runs a dedicated
kernel thread for TCP/IP processing. i10 caravans and delayed
doorbells alleviate precisely these bottlenecks, and thus may
be useful for iSCSI.

Integrations with Emerging Transport Designs. i10 de-
sign and implementation was originally motivated by the
question whether state-of-the-art performance for remote stor-
age stacks can be achieved using simple modifications in the
kernel. Thus, i10 design naturally integrates with existing
network stack within the kernel. An intriguing future work
would be to integrate i10 with emerging CPU-efficient net-
work transport designs that use hardware offload.

Overheads of maintaining i10-`anes. Our i10-`ane design
does not introduce any additional overhead at either blk-mq
or TCP/IP protocol layer, but simply exploits the existing
per-core blk-mq that every request goes through regardless
of whether it is remote access or not. The new overheads
introduced by i10-`ane are: i10 caravans, i10 queues, and
TCP socket instances. To minimize memory usage and de-
/allocation overheads of i10 caravan, each i10-`ane maintains
a single full-sized caravan instance (an array of kernel vectors
that cover the aggregation size of requests and 64KB data)
and reuse it whenever a new doorbell is rung. Memory require-
ment for maintaining per-(core, target) i10 I/O queues would
be comparable to the current NVMe implementation, which
creates per-(core, device) NVMe queues. Lastly, a dedicated
socket requires small amount of state and thus, adds a minor
memory overhead. We believe that such minor overheads are
well worth the performance benefits achieved by i10.

Setting the right doorbell timeout value. In some extreme
cases where a single host core needs to use many i10-`anes
(that is, requests from a single core going to a large number of
target servers), i10 may expose a throughput-latency tradeoff.
Assuming the core generates requests at full rate, increasing
number of i10-`anes means that the number of pending re-
quests for each individual i10-`ane will be reduced triggering
doorbell timeout more often (see Appendix B in [16]). The
tradeoff here is that to achieve throughput similar to the results
in the previous section, we will now need larger delayed door-
bell timeout value, resulting in relatively larger latency. This
observation suggests that operators can set a higher timeout
value when (1) applications are throughput bound; and/or (2)
the number of targets per core increases. An interesting future
work here is to explore setting the timeout value dynamically,
depending on the “observed” load on the system.

Table 5: Comparison of design decisions made in i10 with those in several prior works.

Storage
stack

Network
stack

API App. event
handling

Remote I/O
event handling

Domain protection Modification

Linux kernel Kernel Kernel BSD socket Syscalls Per event Native No

MegaPipe [13] Kernel Kernel lwsocket Batched per event Native App., Kernel

mTCP [19] N/A User-level New API Batched N/A Vulnerable App., NIC driver

IX [6] N/A User-level New API Batched N/A Virtualization H/W App., NIC driver

StackMap [44] Kernel Kernel Ext. netmap Batched per event Vulnerable App., Kernel, NIC driver

ReFlex [24] User-level User-level New API Batched Batched Virtualization H/W App., NIC driver

i10 Kernel Kernel BSD socket Syscalls Batched Native Kernel-only

6 Related Work

Table 5 compares i10 with several of the prior designs on
optimizing the storage and network stacks. We briefly discuss
some of the key related work below.

Existing remote storage I/O stacks. The fundamental per-
formance bottlenecks of traditional remote storage stacks
are well-understood [24]. For instance, iSCSI protocol [35]
was designed to access remote HDDs over 1Gbps networks,
achieving merely ∼70K IOPS per CPU core [12,23,24]. Sim-
ilarly, a light-weight server for remote storage access based
on Linux libevent and libaio achieves ∼75K IOPS per
core [24]. Distributed file systems (e.g., HDFS, GFS, etc.) are
generally optimized for large data transfers, but are not so
efficient for small-sized random read/write requests over high-
throughput storage devices [10,36]. i10 significantly improves
throughput-per-core when compared to existing kernel-based
remote storage stacks, achieving performance close to state-
of-the-art user-space and RDMA-based products.

CPU-efficient network stacks within the kernel. Motivated
by the fact that existing kernel network stacks were not de-
signed for high network bandwidth links, there has been a
significant amount of recent work on designing CPU-efficient
network stacks [13, 27, 38, 42]. These stacks focus primar-
ily on network stacks and are complementary to optimizing
remote storage stacks; nevertheless, several optimization tech-
niques (e.g., syscalls batching/scheduling, per-core accept
queue, etc.) introduced in these works may be useful for i10
as well. For instance, we demonstrate in Appendix B in [16]
that syscall-level batching from [13, 38, 42], when integrated
with i10, helps further improve the performance by 1.2×.

CPU-efficient user-space network stacks. The main moti-
vation of this approach is that the kernel is extremely complex
and high-overhead due to various overheads in system calls,
process/thread scheduling, context switching, and so on. Prior
studies reveal that the current kernel stack has limited net-
work processing power in terms of the number of messages
per second, so it is difficult to saturate network link capacity
if the applications generate only small-sized messages, e.g.,

under tens to hundreds of bytes [6, 19, 44].
To avoid these overheads, user-space solutions place the

entire network protocol stack in the user space and directly
access the NIC through the user-level packet I/O engines
such as DPDK [1] and netmap [34], while bypassing the
kernel [6, 19, 21, 22, 29, 32, 33]. By putting small-sized pack-
ets onto the NIC buffer directly in a batched manner, they
significantly improve the messages per second performance.
ReFlex [24] also implements the remote Flash access stack
in the user space, on top of IX [6]. We note that modifying
applications for using the user-level stacks might not be fun-
damental as recent new systems support the POSIX interfaces
(e.g., TAS [22], Strata [25], and SplitFS [20]). As we have
discussed throughout the paper, i10’s goals are not to beat
the performance of user-space solutions but rather to explore
whether similar performance can be achieved without modifi-
cations in the application and/or network infrastructure.

7 Conclusion

This paper presents design, implementation and evalua-
tion of i10, a new in-kernel remote storage stack for high-
performance network and storage hardware. i10 requires no
modifications outside the kernel, and operates directly on top
of kernel’s TCP/IP network stack. We have demonstrated
that i10 is still able to achieve throughput-per-core compara-
ble to state-of-the-art user-space and RDMA-based solutions.
i10 thus represents a new operating point for remote stor-
age stacks, allowing state-of-the-art performance without any
modifications in applications and/or network infrastructure.

Acknowledgements

We would like to thank our shepherd, Simon Peter, and the
anonymous NSDI reviewers for their insightful feedback. We
would also like to thank Amin Vahdat, Anurag Khandelwal,
Saksham Agarwal and Midhul Vuppalapati for many help-
ful discussions during this work. This work was supported
in part by NSF 1704742, ONR Grant N00014-17-1-2419, a
Google Faculty Research Award, and gifts from Snowflake
and Cornell-Princeton Network Programming Initiative.

References

[1] Intel DPDK: Data Plane Development Kit. https://
www.dpdk.org/.

[2] NVM Express 1.4. https://nvmexpress.org/

wp-content / uploads / NVM-Express-1 _ 4-2019 . 06 .

10-Ratified.pdf, 2019.

[3] NVM Express over Fabrics 1.1. https :

/ / nvmexpress . org / wp-content / uploads /

NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf,
2019.

[4] Amazon. Introducing Amazon EC2 C5n Instances
Featuring 100 Gbps of Network Bandwidth. https:
//aws.amazon.com/about-aws/whats-new/2018/11/

introducing-amazon-ec2-c5n-instances/.

[5] Jens Axboe. Flexible IO Tester (FIO) ver 3.13. https:
//github.com/axboe/fio, 2019.

[6] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In USENIX OSDI, 2014.

[7] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux Block IO: Introducing Multi-
queue SSD Access on Multi-core Systems. In ACM
SYSTOR, 2013.

[8] Ana Klimovic et al. ReFlex github. https://github.
com/stanford-mast/reflex, 2017.

[9] Peter Gao, Akshay Narayan, Sagar Karandikar, João Car-
reira, Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. Network Requirements for Resource
Disaggregation. In USENIX OSDI, 2016.

[10] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In ACM SOSP, 2003.

[11] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient Memory Dis-
aggregation with Infiniswap. In USENIX NSDI, 2017.

[12] Zvika Guz, Harry (Huan) Li, Anahita Shayesteh, and
Vijay Balakrishnan. NVMe-over-fabrics Performance
Characterization and the Path to Low-Overhead Flash
Disaggregation. In ACM SYSTOR, 2017.

[13] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. MegaPipe: A New Programming
Interface for Scalable Network I/O. In USENIX OSDI,
2012.

[14] Christoph Hellwig. High Performance Storage with blk-
mq and scsi-mq. https://events.static.linuxfound.
org/sites/events/files/slides/scsi.pdf.

[15] HGST. LinkedIn Scales to 200 Million Users with
PCIe Flash Storage from HGST. http://pcieflash.
virident.com/rs/virident1/images/Case_Study_

LinkedIn_PCIe_CS008_EN_US.pdf, 2014.

[16] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. TCP ≈ RDMA: CPU-efficient Remote Storage
Access with i10. Technical Report, https://github.
com/i10-kernel/, 2020.

[17] Facebook Inc. RocksDB: A persistent key-value store
for fast storage environments. https://rocksdb.org/,
2015.

[18] Facebook Inc. RocksDB benchmark script. https://
github.com/facebook/rocksdb/blob/master/tools/

benchmark.sh, 2019.

[19] EunYoung Jeong, Shinae Woo, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In USENIX NSDI,
2014.

[20] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory. In ACM SOSP, 2019.

[21] Rishi Kapoor, George Porter, Malveeka Tewari, Geof-
frey M. Voelker, and Amin Vahdat. Chronos: Predictable
Low Latency for Data Center Applications. In ACM
SoCC, 2012.

[22] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In ACM Eurosys, 2019.

[23] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu
John, and Sanjeev Kumar. Flash Storage Disaggregation.
In ACM Eurosys, 2016.

[24] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re-
Flex: Remote Flash ≈ Local Flash. In ACM ASPLOS,
2017.

[25] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In ACM SOSP, 2017.

[26] Lightbits Labs. The Linux Kernel NVMe/TCP support.
http://git.infradead.org/nvme.git/shortlog/

refs/heads/nvme-tcp, 2018.

https://www.dpdk.org/
https://www.dpdk.org/
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-c5n-instances/
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-c5n-instances/
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-c5n-instances/
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/stanford-mast/reflex
https://github.com/stanford-mast/reflex
https://events.static.linuxfound.org/sites/events/files/slides/scsi.pdf
https://events.static.linuxfound.org/sites/events/files/slides/scsi.pdf
http://pcieflash.virident.com/rs/virident1/images/Case_Study_LinkedIn_PCIe_CS008_EN_US.pdf
http://pcieflash.virident.com/rs/virident1/images/Case_Study_LinkedIn_PCIe_CS008_EN_US.pdf
http://pcieflash.virident.com/rs/virident1/images/Case_Study_LinkedIn_PCIe_CS008_EN_US.pdf
https://github.com/i10-kernel/
https://github.com/i10-kernel/
https://rocksdb.org/
https://github.com/facebook/rocksdb/blob/master/tools/benchmark.sh
https://github.com/facebook/rocksdb/blob/master/tools/benchmark.sh
https://github.com/facebook/rocksdb/blob/master/tools/benchmark.sh
http://git.infradead.org/nvme.git/shortlog/refs/heads/nvme-tcp
http://git.infradead.org/nvme.git/shortlog/refs/heads/nvme-tcp

[27] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Ji-
aquan He, Wei Xu, and Yuanchun Shi. Scalable Kernel
TCP Design and Implementation for Short-Lived Con-
nections. In ACM ASPLOS, 2016.

[28] Robert Love. Linux Kernel Development. Addison-
Wesley, 3 edition, 2010.

[29] Ilias Marinos, Robert N.M. Watson, and Mark Handley.
Network Stack Specialization for Performance. In ACM
SIGCOMM, 2014.

[30] Kazan Networks. ACHIEVING 2.8M IOPS WITH
100GB NVME-OF. https://kazan-networks.com/
blog / achieving-2-8m-iops-with-100gb-nvme-of,
2019.

[31] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos Aguilera. Storm: a fast transactional dataplane for
remote data structures. In ACM SYSTOR, 2019.

[32] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-sensitive Datacenter
Workloads. In USENIX NSDI, 2019.

[33] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In ACM SOSP, 2017.

[34] Luigi Rizzo. netmap: A Novel Framework for Fast
Packet I/O. In USENIX ATC, 2012.

[35] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and
E. Zeidner. Internet Small Computer Systems Interface
(iSCSI). https://www.ietf.org/rfc/rfc3720.txt,
2004.

[36] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop Distributed File Sys-
tem. In IEEE MSST, 2010.

[37] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
Rising: A Decade of Clos Topologies and Centralized
Control in Google’s Datacenter Network. In ACM SIG-
COMM, 2015.

[38] Livio Soares and Michael Stumm. FlexSC: Flexible
System Call Scheduling with Exception-Less System
Calls. In USENIX OSDI, 2010.

[39] Vasily Tarasov. Filebench - A Model Based File System
Workload Generator. https://github.com/filebench/
filebench, 2018.

[40] Jason Taylor. Facebook’s data center infrastructure:
Open compute, disaggregated rack, and beyond. In OFC,
2015.

[41] Mellanox Technologies. Dynamically-
Tuned Interrupt Moderation (DIM). https :

/ / community . mellanox . com / s / article /

dynamically-tuned-interrupt-moderation--dim-x,
2019.

[42] Vijay Vasudevan, David G. Andersen, and Michael
Kaminsky. The Case for VOS: The Vector Operating
System. In USENIX HotOS, 2011.

[43] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan
Truong, Ashish Motivala, and Thierry Cruanes. Building
An Elastic Query Engine on Disaggregated Storage. In
USENIX NSDI, 2020.

[44] Kenichi Yasukata, Michio Honda, Douglas Santry, and
Lars Eggert. StackMap: Low-Latency Networking with
the OS Stack and Dedicated NICs. In USENIX ATC,
2016.

[45] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A Tiered File System for Non-
Volatile Main Memories and Disks. In USENIX FAST,
2019.

https://kazan-networks.com/blog/achieving-2-8m-iops-with-100gb-nvme-of
https://kazan-networks.com/blog/achieving-2-8m-iops-with-100gb-nvme-of
https://www.ietf.org/rfc/rfc3720.txt
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://community.mellanox.com/s/article/dynamically-tuned-interrupt-moderation--dim-x
https://community.mellanox.com/s/article/dynamically-tuned-interrupt-moderation--dim-x
https://community.mellanox.com/s/article/dynamically-tuned-interrupt-moderation--dim-x

	Introduction
	i10 Design
	i10 Design Overview
	i10-ane
	i10 Caravans
	Delayed Doorbells

	i10 Implementation Details
	i10 Evaluation
	Evaluation Setup
	Performance Evaluation
	Single core performance
	Scalability with number of cores
	Performance with varying read/write ratios
	Scalability with multiple targets

	Understanding Performance Gains
	Performance contribution
	Understanding Bottlenecks

	i10 performance with RocksDB
	Comparison with ReFlex

	Discussion
	Related Work
	Conclusion

