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Auto-Configuring FPGA CAD Tools
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▪ InTime [Kapre et al., FPGA’15] [Yanghua et al., FPL’16]

▪ DATuner [Xu et al., FPGA’17]

▪ Nautilus [Papamichael et al., DAC’15]



Leveraging Multi-Stage ML Inference
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Leveraging Multi-Stage ML Inference
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RMSE = 
σ𝑖=1
𝑁 ො𝑦𝑖−𝑦𝑖

2

𝑁

ො𝑦𝑖 = estimated timing

𝑦𝑖 = actual timing

𝑁 = number of samples
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Leveraging Multi-Stage ML Inference
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Trade-off between computing effort

and estimation accuracy

ML 

Inference

Estimated Timing

RMSE = 𝟏. 𝟔𝒆

C. Lo and P. Chow, “Multi-Fidelity Optimization for 

High-Level Synthesis Directives,” FPL’18
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ML-Based Timing Estimation Framework

Design Stage Feature Type Design-Specific Features

Logic Synthesis,

Technology Mapping, 

and Packing

Resource
#ALM, #LUT, #registers, #DSP, #I/O pins, 

#fan-out, etc.

Timing WS, TNS
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* XGBoost, [Chen et al., KDD’16]
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* OpenTuner [Ansel et al., PACT’14]



LAMDA – Evaluation I Online learning?

Yes No

Leveraging design-

specific features 

from early stages?

Yes
online-multi 

(LAMDA)
offline-multi

No online-single offline-single

Global Best

9

Design #ALUT #FF #DSP

dscg 6246 1679 4

On average;

• 5.43𝑥 speedup compared to DATuner*

• 4.38𝑥 speedup compared to offline-single

* DATuner [Xu et al., FPGA’17]
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LAMDA – Evaluation II

Estimated versus actual QoR of design points visited
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Thank you!

LAMDA: Learning-Assisted Multi-Stage Autotuning for FPGA 

Design Closure


