IMpress: Large Integer Multiplication Expression Rewriting for FPGA HLS

Ecenur Üstün¹, Ismail San^{2,1}, Jiaqi Yin³, Cunxi Yu³, Zhiru Zhang¹

¹ Cornell University ² Eskisehir Technical University

³ University of Utah

Large Integer Multiplication in Cryptography

Kaplan-Meier survival analysis and genome-wide association study [1]

Privacy-preserving machine learning [2][3]

[1] D. Froelicher *et al.* Truly Privacy-Preserving Federated Analytics for Precision Medicine with Multiparty Homomorphic Encryption. Nature Communications, 2021.

[2] N. Dowlin *et al.* CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy. ICML, 2016.
[3] Microsoft SEAL <u>github.com/Microsoft/SEAL</u>

FPGA-Based Integer Multiplication

Heterogeneity

Default HLS Results

BW	DSP (DSP%)	LUT (LUT%)	CARRY (CARRY%)	FF (FF%)	Latency (cycles)	Frequency (MHz)
256	225 (1.83%)	225 (0.01%)	6 (<0.01%)	692 (0.02%)	4	18
512	900 (7.32%)	434 (0.03%)	6 (<0.01%)	1,329 (0.04%)	4	5
1,024	NA	NA	NA	NA	NA	NA
2,048	NA	NA	NA	NA	NA	NA

Target: AMD Xilinx Virtex Ultrascale+, 300 MHz

Existing Approaches to Optimize Multiplication

n	Implemen tation	DSP	LUT
	HLS Def	225	225
256	Schl	200	3,483
	Karat	164	4,339
	HLS Def	900	434
512	Schl	900	3,368
	Karat	675	5,182
	HLS Def	NA	NA
1,024	Schl	3,600	7,759
	Karat	2,700	12,012

4

Equivalence Graph

Combine different ways of implementing an expression in one graph

Equivalence Graph (E-Graph)

Common sub-expressions

C. G. Nelson. Techniques for Program Verification. Stanford University, 1980. R. Nieuwenhuis *et al.* Proof-Producing Congruence Closure. RTA, 2005.

E-Graphs and Equality Saturation

Given

- An input program: a + b × 2
- A rewrite rule: $t \times 2 \rightarrow t \ll 1$

Integer multiplication with equality saturation:

BW	E-Nodes	E-Classes	Expressions
64	252	194	1.08e6
128	1,171	878	1.37e24
256	5,546	4,078	3.55e96
512	26,769	19,426	1.58e386
1,024	130,936	94,218	6.31e1544
2,048	645,935	462,342	1.59e6179

<u>E-class</u> is a set of <u>e-nodes</u>. Represents equivalent expressions. $c ::= \{n_1, n_2, ...\}$

<u>E-node</u> is a function symbol paired with a list of children e-classes. Represents expression(s). $n ::= f(c_1, c_2, ...)$

IMpress: Large Integer Multiplication Expression Rewriting

- Optimizes large integer multiplication
 - Rewrite at arithmetic level & DSP block level
 - Rich design space through equality saturation
 - Scalable due to efficient data structure
- Extracts optimal expression(s) for multiple FPGA resource objectives
- Translates final expression to HLS C++
- Fits more instances of cryptographic applications on FPGA

Equality Saturation with IMpress

schoolbook(mul_n)

karatsuba(mul_n)

Equality Saturation with IMpress

- $\langle mul_{32}, schoolbook(mul_{32}) \rangle$
- $\langle mul_{32}, karatsuba(mul_{32}) \rangle$
- $\blacktriangleright \quad \langle mul_{17}, mul_{16} \rangle$
- Inter- and intra-rule subexpression sharing

Extraction and Code Generation

- DSP minimization egg (heuristic) & IMpress (exact)
- DSP-constrained LUT minimization IMpress (exact)
- DSP and LUT co-minimization IMpress (exact)

Scalability

D\//	E-Nodes	E-Classes	Expressions	Rewrite Rules	Saturation (s)	Extraction (s)	
D V V						egg	IMpress
64	252	194	1.08e6	10	0.01	0.01	0.01
128	1,171	878	1.37e24	13	0.06	0.02	0.03
256	5,546	4,078	3.55e96	16	0.29	0.11	0.09
512	26,769	19,426	1.58e386	19	1.51	0.63	0.50
1,024	130,936	94,218	6.31e1544	22	8.60	2.72	4.07
2,048	645,935	462,342	1.59e6179	25	49.19	18.26	45.33

Post-Place Cost	64	128	256	512	1,024	2,048
egg	1,823	6,698	25,359	85,117	278,265	1,101,986
IMpress	1,823	6,466	22,399	78,434	264,610	883,931

Extraction quality

Pareto-optimality analysis

Flexibility in controlling DSP-LUT

Placement-constrained million-bit multiplication for FHE

		BW	DSP (DSP%)	LUT (LUT%)	Latency (cycles)
	SLR3	HLS Default	NA	NA	NA
LUTs: 432,000		K(32, 64)	3,950 (32.15%)	339,999 (19.68%)	13,123,773
DSPs: 3,072	SLR2	K(32, 32)	3,227 (26.26%)	408,301 (23.63%)	12,927,158
		K(16, 32)	2,984 (24.28%)	439,775 (25.45%)	13,222,078
	SLR1	K(16, 16)	2,431 (19.78%)	511,916 (29.62%)	13,811,922
	SLR0	IMpress	3,071 (24.99%)	381,697 (22.09%)	12,746,927

xcu250-figd2104-2L-e (AMD Xilinx U250)

Frequency

(MHz)

NA

212

239

239

229

225

RSA

BW	DSP (DSP%)	LUT (LUT%)	Latency (cycles)	Frequency (MHz)	# Instances
Vitis-1	0 (0%)	17,055 (0.99%)	39,565	238	101
Vitis-2	4,530 (36.87%)	41,882 (2.42%)	3,638	18	2
2-level K	3,072 (25.00%)	156,339 (9.05%)	5,192	223	4
3-level K	2,352 (19.14%)	223,964 (12.96%)	4,772	241	5
4-level K	1,782 (14.50%)	291,507 (16.87%)	5,150	236	5
IMpress	2,030 (16.52%)	247,706 (14.33%)	5,024	231	6

AMD Xilinx Vitis Security Library, available at <u>github.com/Xilinx/Vitis_Libraries/tree/master/security</u>.

IMpress: Large Integer Multiplication Expression Rewriting for FPGA HLS

Ecenur Üstün, Ismail San, Jiaqi Yin, Cunxi Yu, Zhiru Zhang

- Optimize large integer multiplication at the HLS level
- Equality saturation based rewriting Bich design space
 - Rich design space
- Extraction with multiple objectives
 - Flexibility for application requirements
 - Increase number of design instances

Thank you!

