Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks

Ecenur Ustun*, Chenhui Deng*, Debjit Pal, Zhijing Li, Zhiru Zhang

Electrical and Computer Engineering, Cornell University

November 3, 2020

FPGA High-Level Synthesis (HLS)

- Higher productivity in specialized hardware design
 - Specify hardware behavior in high-level languages (e.g., C/C++)
- Commercial HLS tools
 - Vivado HLS (Xilinx)
 - i++ (Intel)
 - Catapult-C (Mentor Graphics)
- Academic HLS tools
 - LegUp [1]
 - Bambu [2]

[1] A. Canis et al. LegUp: High-Level Synthesis for FPGA-based Processor/Accelerator Systems. FPGA, 2011.

[2] C. Pilato et al. Bambu: A Modular Framework for the High Level Synthesis of Memory-intensive Applications. FPL, 2013.

Delay Prediction in HLS

Accurate delay prediction in earlier stages is crucial [1]

final implementation

[1] R. Nane et al. A Survey and Evaluation of FPGA High-Level Synthesis Tools. TCAD, 2015.

[2] S. Dai et al. Fast and Accurate Estimation of Quality of Results in High-Level Synthesis with Machine Learning. FCCM, 2018.

Learning Operation Mapping in HLS

Introduce mapping-awareness in HLS [1]

[1] M. Tan et al. Mapping-Aware Constrained Scheduling for LUT-Based FPGAs. FPGA, 2015.

Learning Operation Mapping in HLS: Motivating Example

Learning Operation Mapping in HLS: Motivating Example

Our Approach

- Learn mapping of HLS operations onto FPGA device resources using graph neural networks
- Characterize delay in HLS based on learned mapping patterns
 - 72% improvement in HLS operation delay prediction

DSP Mapping

- DSPs are widely used for high-performance complex functions
- Matching HLS subgraphs with DSP blocks
 - Commercial HLS tools follow hard-coded rules to infer DSP mapping

Adder Clusters

- HLS tools fail to identify many adder clusters
- We propose to learn adder clusters automatically

Learning Operation Mapping Using Graph Learning

- Models for learning representations from complex data, e.g., CNN, RNN, etc.
 - Apply to regular patterns or sequences of data
- Graphs are highly irregular
 - Inconvenient for feature engineering
- Graph Learning
 - Apply ML models to graph-structured data
 - Node embedding: learn low-dimensional representations
 - Neighborhood aggregation methods [1-3]

[1] Franco Scarselli, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009.
[2] Will Hamilton, et al. Inductive representation learning on large graphs. NeurIPS, 2017.
[3] Petar Velickovic, et al. Graph attention networks. arXiv:1710.10903, 2017.

Learning Operation Mapping – Our Approach

- Formulate graph learning on dataflow graphs to learn mapping patterns
- Automatically extract correlation between HLS operations and netlist objects

Data Collection – Microbenchmark Generation

- Each microbenchmark
 - 20 operations in total, 4-8 multiplication operations
 - 8–12 input arguments

Data Collection – Features and Labels

Our GNN Model: D-SAGE

- Extended GraphSAGE [1] to support directed graphs
- Our model D-SAGE can distinguish between pre-adder and post-adder

[1] Will Hamilton, et al. Inductive representation learning on large graphs. NeurIPS, 2017.

Our GNN Model: D-SAGE

Step 1: Generate node embedding functions

Step 2: Learn node embeddings through supervised learning

Learning Operation Mapping – DSP Blocks

- Virtex UltraScale+ xcvu11p
- Binary node classification
 - Classification of arithmetic operations with respect to DSP mapping

node label = $\begin{cases} 1, if maps to DSP \\ 0, otherwise \end{cases}$

Learning Operation Mapping – DSP Blocks

Train on combinational microbenchmarks, test on realistic designs targeting 250 MHz

	F1 Score
HLS	0.43
D-SAGE	0.63

Improvement: 47%

Learning Operation Mapping – Carry Chains

- Binary node classification
 - Classification of operations with respect to carry chains

node label = $\begin{cases} 1, if maps to a carry chain \\ 0, otherwise \end{cases}$

	F1 Score
HLS	0.23
D-SAGE	0.72

Improvement: 213%

Delay Characterization

Are node labels sufficient to infer delay?

Learning Operation Clustering – DSP Blocks

- Binary edge classification
 - Classification of "abstract edges" between operations with respect to DSP clustering

 $edge \ label = \begin{cases} 1, if \ its \ nodes \ are \ clustered \\ 0, otherwise \end{cases}$

	F1 Score
HLS	0.69
D-SAGE	0.88

Improvement: 28%

Learning Operation Clustering – DSP Blocks

- Train on combinational microbenchmarks, test on realistic designs
 - fir, fft, gemm, md, spmv, stencil
 - Targeting 250 MHz

	F1 Score
HLS	0.35
D-SAGE	0.59

Improvement: 69%

Learning Operation Clustering – Carry Chains

- Binary edge classification
 - Classification of "abstract edges" between operations with respect to carry chains

 $edge \ label = \begin{cases} 1, if \ its \ nodes \ are \ clustered \\ 0, otherwise \end{cases}$

	F1 Score
HLS	0.17
D-SAGE	0.82

Improvement: 382%

Extension to Pipelined Operations

Incorporate scheduling information

<i>i</i> <i>i</i> + 1	DSP Mapping	µbenchmarks F1 Score	MachSuite F1 Score	DSP Clustering	µbenchmarks F1 Score	MachSuite F1 Score
<i>i</i> + 2	HLS	0.72	0.55	HLS	0.71	0.45
<i>i</i> + 3	D-SAGE	0.89	0.65	D-SAGE	0.84	0.51

<i>i</i>		
<i>i</i> + 1	Carry Chain Mapping	µbenchmarks F1 Score
	HLS	0.43
<i>i</i> + 2	D-SAGE	0.73
<i>i</i> + 3		

Carry Chain Clustering	µbenchmarks F1 Score
HLS	0.28
D-SAGE	0.59

Accurate Delay Prediction for HLS

Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks

Ecenur Ustun*, Chenhui Deng*, Debjit Pal, Zhijing Li, Zhiru Zhang

Electrical and Computer Engineering, Cornell University

Thank you!

