
Accurate Operation Delay Prediction for FPGA HLS

Using Graph Neural Networks

Ecenur Ustun*, Chenhui Deng*, Debjit Pal, Zhijing Li, Zhiru Zhang

Electrical and Computer Engineering, Cornell University

November 3, 2020

*Equal contributions

▸ Higher productivity in specialized hardware design

– Specify hardware behavior in high-level languages (e.g., C/C++)

▸ Commercial HLS tools

– Vivado HLS (Xilinx)

– i++ (Intel)

– Catapult-C (Mentor Graphics)

▸ Academic HLS tools

– LegUp [1]

– Bambu [2]

1

FPGA High-Level Synthesis (HLS)

Compilation

Allocation

Scheduling

and Binding

RTL Generation

High-level specification

Transformation

RTL

HLS

[1] A. Canis et al. LegUp: High-Level Synthesis for FPGA-based Processor/Accelerator Systems. FPGA, 2011.

[2] C. Pilato et al. Bambu: A Modular Framework for the High Level Synthesis of Memory-intensive Applications. FPL, 2013.

▸ Accurate delay prediction in earlier stages is crucial [1]

2

Delay Prediction in HLS

QuickEst

[2]

Features from

HLS reports

[1] R. Nane et al. A Survey and Evaluation of FPGA High-Level Synthesis Tools. TCAD, 2015.

[2] S. Dai et al. Fast and Accurate Estimation of Quality of Results in High-Level Synthesis with Machine Learning. FCCM, 2018.

fast but

inaccurate

accurate

but slow

mean = 4x

max = 40x

mean = 3x

max = 21x

LUT:

FF:

Prediction Error

(Estimated)
resource usage

timing

(Actual)
resource usage

timing

High-level specification

HLS

Logic Synthesis

Placement

Routing

final implementation

▸ Introduce mapping-awareness in HLS [1]

3

Learning Operation Mapping in HLS

FPGA resources

Dataflow

Graph

(DFG)
Can mapping patterns

be learned?

LUT

0/1

0/1

0/1

0/1

DSP

CARRY

+

×

a b

e

+

out

×

c d

+

+

f g

[1] M. Tan et al. Mapping-Aware Constrained Scheduling for LUT-Based FPGAs. FPGA, 2015.

4

Learning Operation Mapping in HLS: Motivating Example

+

×

a b

e

+

out

×

c d

+

+

f g

CARRY

DSP

DSP

5

Learning Operation Mapping in HLS: Motivating Example

+

×

a b

e

+

out

×

c d

+

+

f g

DSP

DSP

LUT

0/1

0/1

0/1

0/1

LUT

0/1

0/1

0/1

0/1

LUT

0/1

0/1

0/1

0/1

Mapping pattern

directly impacts

timing

▸Learn mapping of HLS operations onto FPGA device resources

using graph neural networks

▸Characterize delay in HLS based on learned mapping patterns

– 72% improvement in HLS operation delay prediction

6

Our Approach

▸ DSPs are widely used for high-performance complex functions

▸ Matching HLS subgraphs with DSP blocks

– Commercial HLS tools follow hard-coded rules to infer DSP mapping

7

DSP Mapping

R. Bajaj. Exploiting DSP block capabilities in FPGA high level design flows. PhD Dissertation, NTU, 2017.

Goal: Automatically

learn mapping patterns

using machine learning

techniques

subgraph

+

×

+

▸ HLS tools fail to identify many adder clusters

▸ We propose to learn adder clusters automatically

8

Adder Clusters

CARRY CARRY CARRY

+ sext

+

+ sext

+ sext +

carry chain

HLS-predicted

cluster

actual

cluster

▸ Models for learning representations from complex data,

e.g., CNN, RNN, etc.

– Apply to regular patterns or sequences of data

▸ Graphs are highly irregular

– Inconvenient for feature engineering

▸ Graph Learning

– Apply ML models to graph-structured data

– Node embedding: learn low-dimensional representations

– Neighborhood aggregation methods [1-3]

9

Learning Operation Mapping Using Graph Learning

[1] Franco Scarselli, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009.

[2] Will Hamilton, et al. Inductive representation learning on large graphs. NeurIPS, 2017.

[3] Petar Velickovic, et al. Graph attention networks. arXiv:1710.10903, 2017.

0

1

16

0

0

8

1

0

48

1

0

27

0

1

12

1

1

30

▸ Formulate graph learning on dataflow graphs to learn mapping patterns

▸ Automatically extract correlation between HLS operations and netlist objects

10

Learning Operation Mapping – Our Approach

HLS IR

Scheduling,

Binding, RTL

Generation

Technology

Mapping
benchmark

+
+

×

+
×

+

×

0

1

48

1

0

21

0

1

10

1

0

32

0

1

18

0

1

27

1

0

36

DSP

DSP

DSP

Conversion to

directed graph

node

features

+
+

×

+
×

+

×

0

1

48

1

0

21

0

1

10

1

0

32

0

1

18

0

1

27

1

0

36

LUT LUT

DSP

Graph

Learning

▸ Each microbenchmark

– 20 operations in total, 4–8 multiplication operations

– 8–12 input arguments

Data Collection – Microbenchmark Generation

×

+

+

a0 a1 a2

a11

a11

a12

out[0]

void DUT(int a0, int a1, int a2,
int& out){

int a11;
int a12;
a11 = a0 + a1;
a12 = a11 * a2;
out[0] = a11 + a12;

}

11

12

Data Collection – Features and Labels

HLS

IR

dataflow

graph

graph structure

as an adjacency

matrix

node features

as a vector

per node

operation type

bitwidth

0 0 1

0 0 1

1 1 0

LUT LUT

DSP

Technology

Mapping

netlist

node & edge labels

as vectors

Match DFG

operations with

netlist objects

0

1

1

0

1

1

2

0

1

2

0

DSP

▸ Extended GraphSAGE [1] to support directed graphs

▸ Our model D-SAGE can distinguish between pre-adder and post-adder

13

Our GNN Model: D-SAGE

+

A

+

B

×

C

+

D

dataflow graph

A

B

D

𝐴𝐺𝐺 𝑀𝐿𝑃

C

CGraphSAGE:

A

B

𝐴𝐺𝐺𝑝𝑟 𝑀𝐿𝑃𝑝𝑟

C
D-SAGE: 𝑀𝐿𝑃

D 𝐴𝐺𝐺𝑠𝑢 𝑀𝐿𝑃𝑠𝑢

C

C

D-SAGE achieves

• 17.3% better accuracy

• 1.7x faster convergence

[1] Will Hamilton, et al. Inductive representation learning on large graphs. NeurIPS, 2017.

14

Our GNN Model: D-SAGE

+
+

×

+
×

+

×

×

+
+

×

+×

+

×

+
+

×

+×

+

×

⁞⁞ ⁞

⁞

⁞⁞

⁞

DSP

DSP

DSP

0

1

18

0

1

27
0

1

10

1

0

21

0

1

48

1

0

36

⁞⁞

⁞

Step 1: Generate node embedding

functions

Step 2: Learn node embeddings

through supervised learning

15

Learning Operation Mapping – DSP Blocks

▸ Virtex UltraScale+ xcvu11p

▸ Binary node classification

– Classification of arithmetic operations with

respect to DSP mapping

𝑛𝑜𝑑𝑒 𝑙𝑎𝑏𝑒𝑙 = ቊ
1, 𝑖𝑓 𝑚𝑎𝑝𝑠 𝑡𝑜 𝐷𝑆𝑃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

a
c
tu

a
l
la

b
e

l

0
TN

0.71
FP

0.08

1
FN

0.00
TP

0.22

0 1

a
c
tu

a
l
la

b
e

l

0
TN

0.77
FP

0.02

1
FN

0.01
TP

0.21

0 1

F1: 0.85

HLS-estimated label

D-SAGE-estimated label

×

+

DSP×

LUT

0/1
0/1
0/1
0/1

? F1: 0.95

0

1

▸ Train on combinational microbenchmarks, test on realistic designs targeting 250 MHz

– fir

– fft

– gemm

– md

– spmv

– stencil

16

Learning Operation Mapping – DSP Blocks

MachSuite
F1 Score

HLS 0.43

D-SAGE 0.63

Improvement: 47%×

+

DSP×

LUT

0/1
0/1
0/1
0/1

?

0

1

17

Learning Operation Mapping – Carry Chains

▸ Binary node classification

– Classification of operations with respect to carry chains

𝑛𝑜𝑑𝑒 𝑙𝑎𝑏𝑒𝑙 = ቊ
1, 𝑖𝑓 𝑚𝑎𝑝𝑠 𝑡𝑜 𝑎 𝑐𝑎𝑟𝑟𝑦 𝑐ℎ𝑎𝑖𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

+

+

×

?

F1 Score

HLS 0.23

D-SAGE 0.72

CARRY CARRY
Improvement: 213%

DSP

DSP

▸Are node labels sufficient to infer delay?

18

Delay Characterization

+
0

+
1

×
2

×
3

a b

c

19

Learning Operation Clustering – DSP Blocks

F1 Score

HLS 0.69

D-SAGE 0.88+

×

DSP

+

LUT

0/1
0/1
0/1
0/1

0

1

Improvement: 28%

▸ Binary edge classification

– Classification of “abstract edges” between operations with respect to DSP clustering

𝑒𝑑𝑔𝑒 𝑙𝑎𝑏𝑒𝑙 = ቊ
1, 𝑖𝑓 𝑖𝑡𝑠 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▸ Train on combinational microbenchmarks, test on realistic designs

– fir, fft, gemm, md, spmv, stencil

– Targeting 250 MHz

20

Learning Operation Clustering – DSP Blocks

F1 Score

HLS 0.35

D-SAGE 0.59+

×

DSP

+

LUT

0/1
0/1
0/1
0/1

0

1

Improvement: 69%

21

Learning Operation Clustering – Carry Chains

▸ Binary edge classification

– Classification of “abstract edges” between operations with respect to carry chains

𝑒𝑑𝑔𝑒 𝑙𝑎𝑏𝑒𝑙 = ቊ
1, 𝑖𝑓 𝑖𝑡𝑠 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

+

+

+

CARRY CARRY

F1 Score

HLS 0.17

D-SAGE 0.82

+

CARRY CARRY

1

0

1

Improvement: 382%

▸ Incorporate scheduling information

22

Extension to Pipelined Operations

DSP

Mapping

µbenchmarks

F1 Score

MachSuite

F1 Score

HLS 0.72 0.55

D-SAGE 0.89 0.65

DSP

Clustering

µbenchmarks

F1 Score

MachSuite

F1 Score

HLS 0.71 0.45

D-SAGE 0.84 0.51

Carry Chain

Mapping

µbenchmarks

F1 Score

HLS 0.43

D-SAGE 0.73

Carry Chain

Clustering

µbenchmarks

F1 Score

HLS 0.28

D-SAGE 0.59

𝑖

𝑖 + 1

𝑖 + 2
×

𝑖 + 3

+

+

𝑖

𝑖 + 1

𝑖 + 2

𝑖 + 3

23

Accurate Delay Prediction for HLS

HLS

RMSE = 3.97

HLS

HLS + D-SAGE

RMSE = 1.12

HLS + D-SAGE

RRSE

µbenchmarks
Logic

Delay

Datapath

Delay

HLS 3.32 2.56

QuickEst 0.34 0.41

HLS + D-SAGE 0.83 0.35

QuickEst + D-SAGE 0.28 0.28

RRSE

Realistic designs
Logic

Delay

Datapath

Delay

HLS 2.19 2.22

QuickEst 1.92 2.44

HLS + D-SAGE 0.82 0.83

QuickEst + D-SAGE 0.89 1.20

72% improvement

Ecenur Ustun*, Chenhui Deng*, Debjit Pal, Zhijing Li, Zhiru Zhang

Electrical and Computer Engineering, Cornell University

Thank you!

Accurate Operation Delay Prediction for FPGA HLS

Using Graph Neural Networks

