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Abstract 

 

Recent advances in MEMS hardware have enabled small-footprint and inexpensive 

sensors to be deployed in hard-to-access locations and to form wireless sensor networks 

(WSNs). WSNs are typically mission-oriented networks and offer appealing solutions to 

a range of practical problems. However, due to the characteristics of WSN, their design 

principles differ from other types of networks. For instance, the severe limitations of 

computational and energy resources in the network nodes restrict their ability to process 

and communicate information. These characteristics, particular to WSNs, dictate new 

security challenges and require new approaches to implementation of security protocols. 

In this chapter, we present some of the WSNs security challenges and discuss a number 

of selected solutions presented in the technical literature. 

 

The structure of the chapter is as follows. In Section 1, we provide background material 

on WSN security; in particular, we present the security goals, implementation constraints, 

potential attacks and defenses, and evaluation benchmarks. In Section 2, we discuss basic 

security challenges and approaches, including cryptography schemes, key management 

schemes, and attack detection and prevention mechanisms. Then, in Sections 3, 4, and 5, 

we discuss secure routing, secure localization, and secure data aggregation, respectively. 

Finally, we conclude the survey in Section 6. 

 

1. Background 

 

1.1 Security Goals: 

The field of Information Security defines numerous goals with respect to protecting 

information, with the following being considered the top three: confidentiality, integrity, 

and availability [1]. (These three components, being the core principles of information 

security, are often referred to as the CIA triad in the Information Assurance field [2].) 

Information confidentiality is defined as the concealment of information, so that the 

information can only be available and disclosed to the intended parties. Integrity of 
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information refers to its trustworthiness, so that an adversary cannot create, modify, or 

destroy information, including protection against injection of fraudulent, duplicate, or old 

(expired) information (e.g., the replay attack). Information availability denotes the ability 

of timely and reliable access to the information. The operation of averting information 

availability is called the denial of service attack. Note that ensuring the above elements of 

information security requires protection of multiple hardware and software components of 

the system, with the network being just one such a component. 

 

Other major elements of information security include: 

 

 Authentication—the ability of a party to verify the identity of the other 

communicating party or parties 

 Non-repudiation—the ability to assert that a particular party generated the 

information.  

 Authorization—the ability to restrict information access only to permitted parties 

 Authenticity—the ability to verify that the information has been created or 

modified by the declared party 

 Privacy—the ability to conceal the meta-data about the information-generating 

entity (e.g., identity of the entity, its location) that generated the transmitted data 

(to be distinguished from confidentiality) 

 

As for most networks, WSNs are also expected to support a subset of the above 

information security goals, a set which depends on the particular WSN application. 

However, the new aspect of WSN security relates to the approaches through which the 

above information security goals are implemented. In particular, meeting the above 

security goals in WSNs are especially challenging, due to the hardware limitations of the 

sensor nodes (energy, computation, storage), as well as due to the operational modes of 

the network (e.g., unattended operation, large number of nodes, limited node lifetime, 

fixed deployment, unknown and/or changing propagation conditions). Furthermore, due to 

the fact that in some applications cost is an important consideration, individual network 

nodes tend to be inexpensive and, thus, less reliable. However, overall the network needs 

to support some required reliability level. Furthermore, the cost consideration often 

prevents reliance on more expensive hardware (e.g., tamper-resistant modules), which 

could otherwise reduce the complexity of some security-related protocols. 

 

1.2 Implementation Constraints 

The particular features of the sensor nodes, especially their limitations, affect the design 

of the security protocols. For instance, typically, nodes in a WSN are inexpensive sensing 

devices with quite limited computational capabilities, as compared with nodes in 

traditional communication networks. Consequently, WSN’s nodes are unable to execute 

security protocols designed for such other networks. Furthermore, the wireless 

communication channel and the operational characteristics of WSNs introduce additional 

implementation challenges. 

 

Hardware constraints 

The complexity of a software and the performance requirements of its underlying 
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application dictate the amount of hardware resources needed for the software execution, 

including the size of memory/storage, the code space, the CPU clock rate, and the energy 

source. Sensors are usually limited in physical size, which in turn limits its ability to store 

data and code. Most contemporary sensor devices have RAM sizes ranging from 1K to 

10K bytes, and program memory less than 1M bytes [3]. For example, a popular sensor 

type, the TelosB, uses the TI MSP430F1611 processor, which is a 16-bit, 8-MHz RISC 

CPU, with only 10KB RAM, 48KB program memory, and 1024KB flash storage. 

Moreover, the code space required to support the OS alone is on the order of several 

kilobytes. For example, the de-facto operating system for wireless sensors, the TinyOS, 

requires about 4KB of memory. Therefore, the implementation of security protocol must 

be very space-conscious to fit the code in the limited available memory of a sensor node. 

 

Power constraints 

Power constraints are always a major concern in WSNs, because the small physical size of 

the sensor node limits the battery size and, thus, its energy capacity. Furthermore, in many 

application scenarios in which sensor nodes operate unattended, once a sensor node is 

deployed it is impossible to replace its battery. Although recharging is possible if an 

energy scavenging mechanism is implemented in the nodes, often the amount of energy 

collected in this way is limited and inadequate to fully support by itself the node’s energy 

needs. In contrast to the above power limitation, security related operations can be 

especially power demanding. Walters et al. summarized in [4] three major sources of 

power consumptions due to security related operations in WSN: 

 the processing required for security functions, such as encryption, decryption, data 

signing, and signature verification; 

 the energy required to transmit the security-related data or overhead, such as 

initialization vectors for encryption and decryption; and 

 the energy required to maintain security parameters in a secure manner, such as 

storage of cryptographic keys. 

 

Physical-level constraints 

In general, wireless communication medium makes mounting security attacks much 

easier, as compared to attacks in wired networks. For example, the attacker can passively 

eavesdrop on the network’s radio frequency range to steal messages in transit, or it can 

inject malicious messages into the network at will [5]. However, WSN are particularly 

vulnerable due to several of their attributes. The large number of deployed nodes and the 

lack of tight binding among the network nodes render it easier for an attacker to 

compromise a small number of nodes, while remaining undetected. Moreover, due to the 

simplicity of their hardware, sensor nodes will typically lack sophisticated protection 

schemes against physical-layer attack, such as jamming. Furthermore, in many WSNs, the 

senor nodes are unreliable and prone to hardware malfunction or depletion of energy, so 

that compromising a sensor node could be misinterpreted as a failure, rather than a 

security breach. To provide the required level of security, WSN security protocol design 

must take these physical-level constraints into consideration. 
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1.3 Potential Attacks and Defenses 

 

Table 1: Sensor network layers and denial-of-service defenses. (From [6]) 

Network Layer Attacks Defenses 

Physical Jamming Spread-spectrum, priority 

message, lower duty cycle, 

region mapping, mode change 

Tampering Tamper-proofing, hiding 

Data Link Collision Error-correcting code, Collision 

detection 

Exhaustion Rate limitation 

Unfairness Small frames 

Network Neglect and greed Redundancy, probing 

Homing Encryption 

Misdirection Authorization, monitoring 

Black holes Authorization, monitoring 

Transport Flooding Client puzzles 

Desynchronization Authorization 

Wood and Stankovic in [6] exploited layered network architecture to analyze security 

issues and to improve robustness. The network layers architecture is divided into physical, 

data link, network, and transport layers. Each layer is susceptible to different types of 

attacks, and security attacks can exploit interaction among layers or cut across multiple 

layers. Table 1 lists the layers of a typical sensor network, and describes each layer’s 

security vulnerabilities and possible defenses.  

 

There are two major types of attacks at the physical layer: jamming and tampering [6]. 

Jamming refers to interfering with the transmissions on the radio frequencies that the 

network’s nodes are using, such that an adversary can disrupt the entire network of N 

nodes with only k randomly distributed jamming nodes, where k << N. The standard 

defense against jamming involves various forms of spread-spectrum communication. 

However, such defense may not be available for sensor nodes, because sensor devices are 

typically assumed to be low-cost, low-power devices. Other defenses include switching to 

a lower duty cycle to outlive an adversary or mapping the jammed region and rerouting 

traffic. Tampering refers to physically compromising the nodes in the network. Tamper 

protection falls into two categories: passive and active [7]. Passive mechanisms do not 

require energy and include technologies that protect a circuit from being detected (e.g., 

tamper-proofing, protective coat). Active tamper protections involve special hardware 

circuits, which consumes more energy. Therefore, it would be more appropriate for sensor 

nodes to employ passive techniques.  

 

The data link layer is susceptible to three major attacks: collisions, exhaustion, and 

unfairness [6]. Error-correcting codes can be used to alleviate some of the effects of 

collisions. However, they cannot completely solve the problem, as the adversary can still 

corrupt more data than could be corrected by the network. Collision detection is another 

way to deal with a collision attack, but it cannot completely defend against collision 

attacks, because proper transmission still need cooperation among nodes, while subverted 
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nodes could intentionally and repeatedly deny channel access. Exhaustion refers to attacks 

that deplete the energy source of the network nodes, thus jeopardizing the availability of 

the network. Existing MAC techniques, such as random back-offs and scheduled access, 

are only intended to solve the problem of random collisions. When collisions are 

intentional, these techniques become largely ineffective. A possible solution is inclusion 

of a rate limiting mechanism in MAC admission control, so that the network would 

simply ignore the excessive requests generated by an attacker without responding to such 

requests, and thus avoiding further increase in the traffic volume. However, rate limiting 

feature has its disadvantages; for example, it reduces the overall network capacity and it 

limits the maximum data rate of individual users even when the network is underutilized. 

Unfairness can be caused by selective intermittent application of the attacks mentioned 

above, by abusing a cooperative MAC-layer priority scheme, or by monopolizing the 

channel. One defense against this threat is to use small frames, so that an individual node 

can capture the channel only for a short time period. However, if the messages typically 

transmitted by the network nodes are long, then splitting the messages into smaller frames 

incurs additional framing and channel-access overheads. 

 

The network layer is subject to four types of attacks: neglect and greed, homing, 

misdirection, and black holes [6]. A malicious node is neglectful when it arbitrarily 

neglects to route some messages. This node is also greedy if it gives undue priority to its 

own messages. A solution to this type of problem is to use multiple (alternate) routing 

paths or send redundant messages. Location-based network protocols that rely on 

geographic forwarding expose the network to homing attacks, in which an adversary 

observes the traffic to obtain the location of critical nodes. Once found, these nodes are 

subject to being attacked. One solution to this problem is to encrypt the header, so that an 

adversary cannot learn the location of the critical nodes from reading the header. This 

solution assumes a secure key management scheme, such that all neighbors share 

cryptographic keys, and so a passive adversary cannot learn the source or destination of 

the messages from the headers. Misdirection is a more powerful attack, which forwards 

messages along a wrong path, perhaps by fabrication malicious route advertisements. This 

attack can target either the sender or an arbitrary victim. (The defense to this attack is 

similar to that for a black-holes attack, which is discussed next.) A Black-holes attack is 

an even more effective attack against distance-vector-based routing protocols. In this 

attack, compromised nodes advertise zero-cost routes, thus forming routing black holes 

within the network [8]. This causes excessive messages to be routed through the 

compromised nodes, and therefore causes intensive bandwidth contention around 

malicious nodes. It also causes the neighbors of malicious nodes to quickly exhaust their 

energy supplies due to excessive routing, and therefore could potentially create partitions 

in the network. Authorization and monitoring are ways to defend against misdirection and 

black-holes attack [6]. In an authorization-based solution, only authorized nodes (i.e., 

nodes with valid public/private key pairs) are allowed to exchange routing information. 

Nodes may use public key infrastructure to sign and verify routing messages, thus 

ensuring the confidentiality and integrity of routing information. Zero-cost routes in black 

holes attack are thus eliminated, as an adversarial node does not have the valid 

public/private key pairs to generate encrypted routing information. Such a scheme 

requires a reliable certification authority for authentication. Since a centralized 

certification authority can become a single point of failure, distributed certification 
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authority schemes have been proposed. For example, Zhou and Haas in [9] proposed a 

distributed certification authority scheme by distributing the certification function among 

n servers and, by using threshold cryptography, ensures the certification authority is 

compromised only if at least t servers are compromised. Monitoring-based solution relies 

on nodes monitoring their neighbors to ensure their proper routing behavior. Nodes then 

select routing paths utilizing nodes that exhibit long-term proper routing behavior. It is 

assumed in monitoring-based solution that nodes with a longer period of proper routing 

behavior are more trustworthy, and therefore routing information from these nodes are 

less likely to be inaccurate. This defends misdirection and black-holes attack, as 

compromised nodes can be quickly detected by their neighbors, and the compromised 

nodes are then not selected again for routing paths. 

 

The transport layer can be threatened by flooding and desynchronization attacks [6]. A 

naïve solution to flooding is to limit the number of allowed connections, but this would 

also degrade the overall network throughput, as there would be fewer connections 

available for each node. A better solution is to have the server node ask the client node to 

solve some computationally expensive puzzle upon requesting a connection, so that if the 

client is a compromised node and repeatedly requests establishment of connections, the 

client would deplete its power while repeatedly solving the puzzles. Desynchronization 

disrupts end-to-end connections. In this attack, the adversary disrupts the communication 

between two nodes by forging messages that carry sequence numbers or other control 

messages. If the adversary is successful, the communicating nodes will waste energy by 

excessively executing the synchronization-recovery protocol without exchanging any 

useful information. A counter to this attack is authentication of all exchanged packets, 

assuming that the adversary cannot forge the authentication mechanism. 

 

1.4 Evaluation Benchmarks 

There are various benchmarks for evaluating whether a security scheme is appropriate for 

WSNs. Some of these benchmarks are ([10]): 

 Resiliency—the network capability to continue to offer sufficient security services 

while some of the network nodes are compromised. 

 Resistance—the network capability to avert an attacker from fully controlling the 

network. 

 Scalability—the capability to support security in very large networks (on the order 

of hundreds to thousands of nodes). 

 Self-organization and flexibility—the capability to adaptively restructure the 

security scheme as a result of network changes; 

 Robustness—the capability of the network to continue to operate in spite of 

irregularities (e.g., security attacks, hardware failure, etc). (Robustness is a more 

generalized notion than resiliency, as resiliency is focused on providing security 

services while under attack, whereas robustness considers providing general 

network services while under attack.) 

 Energy efficiency—the degree to which the network lifetime is maximized by 

preserving energy. 

 Assurance—the confidence that the major elements of information security 

(e.g., confidentiality, integrity, availability, etc.) are adequately met [2].  
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2. Basic Security Challenges and Approaches 

 

2.1 Cryptography Schemes 

Cryptography is the basic element in any security system. It deals with encrypting the 

message in order to achieve secure communication in the presence of third party 

adversaries. There are two types of encryption methods: symmetric key cryptography, 

which uses the same key for encryption and decryption, and asymmetric (public) key 

cryptography, which uses different keys for encryption and decryption. Compared to 

asymmetric key cryptography schemes, symmetric key cryptography schemes have the 

advantage of lower computational overhead because they involve relatively simply bit-

wise operations (e.g., XOR) that can be directly implemented in hardware, but they 

require more complex key distribution and key management schemes ([11]). 

 

There has been extensive work done on the evaluation of different cryptography schemes. 

In [12], Ganesan, et al. investigated the performance of five different symmetric key 

cryptography schemes (RC4, IDEA, RC5, MD5, and SHA1), over six different hardware 

platforms that use 8/16/32-bit word size (Atmega 103, Atmega 128, M16C/10, SA-1110, 

PXA250, and UltraSparc2). Their experiments indicate that: (1) the cycle overhead (i.e., 

the number of clock cycles to perform a cryptographic operation on a hardware platform) 

is mostly uniform within each word-size class (8/16/32 bit), but there are differences 

among the three word-size classes; (2) the impact of caches (i.e., the additional clock 

cycles due to cache misses in memory fetch) is negligible; and (3) hashing techniques 

require almost an order of a magnitude higher clock cycle overhead than symmetric key 

encryption techniques. Table 2 shows the execution times for the various encryption 

algorithms on the various platforms. Figure 1 shows the byte overhead for the various 

algorithms and platforms. They also derived a model to assess the computational overhead 

of embedded architectures for encryption protocols, in general. 

Table 2: Execution times (in µs) for algorithms, platforms, 

and plaintext sizes (in bytes). (From [12]) 

Algorithm Size Action Atmega 

103 

Atmega 

128 

M16C/10 strong

ARM 

Xscale 

(400) 

Xsacle 

(200) 

Sparc 

(440) 

MD5 0 Digest 5863 1466 1083 46 26 53 23 

 1-26 Digest 5890 1473 1075 46 26 53 23 

 62-80 Digest 10888 2722 2011 74 45 90 39 

SHA-1 1 Digest 15249 3812 2651 69 12 102 27 

 3 Digest 15781 3945 5303 69 12.3 103 27 

 56 Digest 14543 3636 7955 133 25.8 205 55 

 64 Digest 31107 7777 10907 145 25.7 207 56 

RC5 16 Init 9641 2410 2074 41 45 91 28 

  Enc 1651 413 197 3 3 6 2 

  Dec 1636 409 202 3 3 7 2 

IDEA 16 Init enc 1523 381 727 26 15.54 47 11 

  Init enc 9417 2354 1927 76 25.16 69 36 

  Enc 2555 325 596 16 3.24 17 9 

  Dec 2614 325 597 16 3.27 17 9 

RC4  Init 1886 472 2455 155 66.8 216 96 

  Enc 344 86 123 10 5 9 4 
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Figure 1: Normalized overhead for algorithms, platforms and, plaintext sizes (in bytes). 

(From [12]) 

Although public key cryptography schemes have received much less attention in WSN 

security due to their expensive computational overhead, there are several studies that 

discuss the possibilities of incorporating public key cryptography schemes into WSN. In 

[13], Gaubatz, et al. showed that special purpose ultra-low power hardware 

implementations of public key algorithms can be used in sensor nodes. They implemented 

three different public key cryptography schemes (Rabin’s Scheme [14], NtruEncrypt and 

NtruSign [15], and Elliptic Curve Cryptography [16, 17]) in a sensor node that is 

embedded with a custom-designed low-power co-processor to handle all the computation-

intensive tasks. They concluded that the use of public key cryptography can reduce the 

amount of traffic overhead due to key management in WSN, and that the computational 

cost is within acceptable limits and sufficiently fast on their special-purpose hardware. 

Wander et al. in [18] also performed a series of experiments to quantify the energy costs 

of authentication and key exchange based on ECC [16, 17] and RSA [19] public key 

cryptography schemes on an 8-bit microcontroller platform. Their studies indicate that 

authentication and key exchange protocols using optimized software implementations of 

public key cryptography are quite viable on small wireless devices. They also recommend 

ECC over RSA for larger energy savings. 

 

Another cryptography technique is watermarking. In [20], Koushanfar and Potkonjak 

proposed the first watermarking approach for protecting data and information generated in 

wireless embedded sensor networks. They considered a sensor network application in 

which sensor nodes collect data (the data-acquisition phase) to solve nonlinear 

optimization problem (the data-processing phase). Node signatures are embedded during 

the data-acquisition and data-processing phases, without compromising the quality of the 

recorded data or the results od data processing. They conducted two experiments—
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acoustic atomic trilateration and light source determination—to study the trade-offs 

between the security protection and the watermarking overhead and to study the situations 

where such watermarking scheme is the most effective. 

 

2.2 Key Management Schemes 

Key management deals with distributing and storing encryption and decryption keys to 

implement secure communication. A trivial solution to key management is to use a global 

key for all the sensor nodes. However, in this scheme, if any node in the network is 

compromised, then the adversary obtains the global key and the whole network security is 

defeated. Another trivial solution is to have each node store N-1 different keys (where N is 

the total number of nodes in the network), with each key corresponding to a different node 

in the network. However, this solution is too complex, as a sensor node’s limited memory 

may be insufficient to store the N-1 keys, especially for a large network. Clearly, key 

management is an important yet challenging task, in particular for encryption schemes 

that use symmetric key cryptography. 

 

There have been extensive research works done in the area of key management schemes. 

Here, we discuss four categories of key management schemes—key pre-distribution 

schemes, hybrid cryptography schemes, key infection schemes, and key management in 

hierarchy networks. Figure 2 shows the taxonomy of key management. 

 

 
Figure 2: Taxonomy of key management protocols 

2.2.1 Key pre-distribution schemes  

In key pre-distribution schemes, sensor nodes store some initial keys before the nodes are 

deployed [21]. Key pre-distribution schemes are further divided into probabilistic schemes 

and deterministic schemes. 

 

For probabilistic schemes, the existence of one or more common predistribution keys 

between intermediate nodes is not certain, but is instead guaranteed only probabilistically. 

Eschenauer and Gligor in [22] proposed one of the earlier probabilistic schemes. In their 

scheme, a ring of keys is distributed to each sensor node before node deployment. Each 

key ring consists of a randomly chosen k keys from a large pool of P keys, which is 
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generated off-line. A pair of nodes can communicate if they share any key among their 

key rings. Although a pair of nodes may not always have a shared key, if a path between 

them exists, they can use that path to exchange a key that establishes a direct link. An 

enhancement over this scheme is proposed by Chan, et al. in [23], in which a q-composite 

random key pre-distribution scheme is proposed. This scheme requires q keys (q>1) 

instead of just 1 common key among the key rings of a pair of communicating nodes. The 

authors showed that the q-composite key scheme strengthens the network’s resilience 

against node capture when the number of captured nodes is small. Figure 3 shows how the 

fraction of additional communications that the attacker can compromise varies with the 

number of nodes captured by the attacker. As a point of reference, comparing the two 

cases of q = 1 and q = 2, in terms of the amount of additional compromised 

communications in a network with 50 compromised nodes is 9.52%, and 4.74%, 

respectively. The disadvantage of the q-composite keys schemes is that a larger portion of 

the network is revealed to the adversary as larger number of nodes becomes compromised. 

This scheme thus trades off the protection against an unlikely large-scale network attack 

in order to significantly improve the strength of the random key pre-distribution scheme 

against smaller-scale attacks. Another probabilistic scheme is GKMPSN proposed by Zhu 

and Zhang in [24]. GKMPSN is a centralized group key distribution scheme, in which a 

network controller broadcasts new group keys, as well as node revocation information 

(i.e., information that identifies a compromised node), to all the nodes whenever a 

compromised node is detected. Prior to the deployment of the network, each node stores a 

random set of keys out of a common large key pool. The group re-keying operation then 

takes two steps. In the first step, the pre-deployed random keys at each node are used to 

create secure channels between nodes in order to deliver new keying materials to 

legitimate nodes. In the second step, each node uses the received keying materials to 

update both the group key and the pre-deployed keys that are invalidated by the 

compromised nodes. GKMPSN has an attractive property of partial statelessness, in which 

a node can decode the current group key, even if the node missed a few previous group re-

keying operations. This is an attractive feature as: (1) typically packet losses are high in 

WSN due to unreliable communication, and (2) the scheme facilitates new nodes joining 

the network after initial network deployment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Probability that a random communication link between two randomly chosen 

nodes can be decrypted by an adversary, as a function of the number of nodes captured 
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by the adversary (excluding the two communicating nodes). Key ring size is 200, and 

probability of successful key-setup with a neighbor is 0.33. (From [23]) 

 

For deterministic schemes, any two intermediate nodes are guaranteed to share one or 

more predistributed keys. An example of a deterministic scheme is LEAP (Localized 

Encryption and Authentication Protocol) proposed by Zhu, et al. ([25]). LEAP is 

motivated by the observation that different types of messages have different security 

requirements and that a single keying mechanism is not suitable for meeting these 

different security requirements. LEAP supports the establishment of four types of keys for 

each sensor node—an individual key shared with the sink node, a pairwise key shared 

with another sensor node, a cluster key shared with multiple neighboring nodes, and a 

group key that is shared by all the nodes in the network. The individual key allows a node 

to securely send sensor readings to the sink node. The pairwise key prevents a 

compromised node’s attack, because once a compromised node is detected, its neighbors 

will typically immediately revoke the pair-wise keys shared with that compromised node.  

However, even if the compromised node is not detected for some time, its damage is only 

limited to its near neighbor, as the pair-wise keys are only shared between one-hop 

neighbors. The cluster key is used for secure local broadcast, for example routing control 

information. The group key authenticates the sink node to the sensor nodes to facilitate 

secure network-wise operations, such as key refreshments. Blom in [26] proposed another 

pair-wise deterministic key distribution scheme. The scheme can defend against up t 

compromised nodes. In pre-distribution phase the sink node generates a (t+1)-by-N matrix 

  over some finite field GF(q), where N is the total number of nodes in the network and 

(t+1) is the codeword size. The matrix   is known to all the nodes in the network. Then 

the sink node creates a (t+1)-by-(t+1) symmetric matrix   over GF(q). This allows the 

sink node to compute a matrix         with the property that      is a symmetric 

matrix (since                                  . Each node i in the 

network is assigned with a public column vector     =ith column of  , and a private row 

vector     =ith row of  . Then, for nodes i and j to establish a pairwise key, they can 

exchange      and     , and compute their pairwise key                  

        . Assuming there are m < t +1 compromised nodes, then these nodes know m 

rows and, due to symmetry, m columns of  . A node needs to know at least (t+1) 

elements in a codeword in order to acquire information about other element in the 

codeword of other nodes. Therefore, if there are less than (t +1) cooperating nodes, no 

information about the unknown key is revealed. It has been proven in that the Blom 

scheme securely protects the pairwise key if any t+1 columns of   are linearly 

independent. 

 

2.2.2 Hybrid cryptography schemes. 

Hybrid cryptography schemes use computationally expensive asymmetric key 

cryptography at the sink nodes and computationally cheaper symmetric key cryptography 

at all other sensor nodes. An example of hybrid scheme is proposed by Huang, et al. in 

[27], which is based on a combination of elliptic curve cryptography and symmetric key 

operations. This scheme reduces the high cost of elliptic curve random point scalar 

multiplications at the sensor side and replaces them with low cost and efficient symmetric 

key based operations. On the other hand, it authenticates the two identities based on 
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elliptic curve implicit certificates to avoid the typical key management problem in pure 

symmetric key based protocols. 

 

2.2.3 Key infection schemes 

In key infection schemes, keys are sent in plaintext and thus are not secure. However, 

these schemes assume that the number of adversaries at key establishment phase is very 

small. For example, Anderson, et al. in [28] proposed a scheme in which each node 

bootstraps itself by broadcasting an initial key in the clear. Nodes then exchange keys and 

build up trust structures as they perform network and resource discovery. The scheme 

assumes that the adversary can only monitor a small proportion of the communications 

during deployment phase (i.e., initial key setup phase), but is fully capable of launching 

attacks after the deployment phase. This is often a realistic assumption, because the initial 

deployment duration is on the order of seconds, while the overall lifetime of the network 

can be up to years. Despite the apparent insecurity of this scheme, the proposed scheme 

uses multipath secrecy amplification and multi-hop key propagation to enhance the 

security of the network, such that at most a fixed proportion of communications links can 

be eavesdropped. Multipath secrecy amplification combines keys propagated along 

different paths to update pairwise keys. For example, consider three nodes W1, W2, and 

W3, with pairwise keys k12, k13, and k23. Suppose W1 wants to update k12 to k12’. W1 can 

ask W3 to send the key-update request to W2. The request from W1 to W3 is encrypted 

using k13, and the request from W3 to W2 is encrypted using k23. Therefore, if k12 is the 

only key being compromised, the adversary cannot update to a new k12’ as long as neither 

k23 nor k13 is compromised. Table 3 compares the ratio of the compromised links of the 

two schemes: the basic key infection scheme and the security amplification scheme (SA), 

showing the improvement of the latter scheme. In the table,   is a varying density of the 

adversarial nodes (referred to as “black dust”), assuming values of 1%, 2%, and 3%, and d 

is the average number of neighbors of a node. Multi-hop key propagation uses 

intermediate nodes to temporarily store the pairwise key update information for two nodes 

at the ends of a path. For example, if W1 links to W2, W2 links to W3, and W1 wants to 

update k13 to k13’, then W1 and W3 can invoke W2’s help to set up a new key that W2 

immediately forgets, so a potential node compromising W2 in the future does not reveal 

k13’. Multi-hop key propagation supports end-to-end, rather than link-level cryptography, 

which helps energy efficiency as sink-to-node communications can be encrypted using 

end-to-end keys rather than translated at intermediate nodes. With the assumption of 

limited adversaries at the initial key deployment phase, and with the enhancement using 

multipath secrecy amplification and multi-hop key propagation, the simulation showed 

that the key infection scheme is almost as secure as using pre-loaded initial keys. 

  
d 

               

basic SA basic SA basic SA 

2 1.20% 0.97% 2.29% 2.00% 3.38% 2.93% 

3 1.81% 1.37% 3.44% 2.67% 5.42% 3.93% 

4 2.30% 1.80% 4.45% 3.71% 6.50% 5.55% 

5 2.93% 2.37% 5.73% 4.68% 8.73% 6.75% 

Table 3: Improvement of secrecy amplification (SA) over the basic key infection scheme 

(From [28]) 
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2.2.4 Key management in hierarchy networks 

Some key management schemes take advantage of the fact that nodes are often 

categorized into different types, such as sink nodes, gateway nodes, and sensor nodes, and 

different types of nodes have different computational resources. In [29], Jolly et al. 

present a key management scheme in a clustered sensor network. The method uses pre-

deployed symmetric keying, in which sensor nodes store a minimum number of keys that 

they share with other nodes. Gateway nodes store a larger number of keys, and the sink 

nodes have no restrictions and store all the keys in the network. Their simulation showed 

that the energy consumption overhead for the key management is remarkably low and 

they report an order of magnitude of energy saving. Chorzempa, et. al., in [30] proposed 

another hierarchical key management scheme for WSNs. The scheme is called SECK 

(Survivable and Efficient Clustered Keying), with three tiers of nodes. The bottom tier 

consists of low-end sensor nodes, which are clustered. Each cluster is managed by a 

second-tier cluster head to perform data aggregation and forwarding. At the top tier there 

is a globally trusted sink node. After initial network deployment, the low-end sensor 

nodes undergo a location training phase to establish clusters, and cluster coordinate 

system is used in low-end node recovery procedure. Clusters are then used for 

establishing and updating administrative keys. A session key between a pair of nodes can 

then be obtained from administrative keys. Simulations suggested that the scheme is 

resilient against multiple node captures, and can efficiently recluster and salvage 

compromised nodes. Figure 4 depicts the comparison of the resiliency against node 

capture of the SECK scheme and the basic probabilistic pairwise scheme of Eschenauer 

and Gligor [22], while showing that the resiliency of both schemes is comparable. 

Realizing that the Eschenauer and Gligor scheme is considered as having good resiliency, 

one can conclude that the SECK scheme has overall good resiliency property as well. 

 

Figure 4: The ratio of keys captured vs. the ratio of the captured nodes. (From [22]) 

 

2.3 Attack Detection and Prevention  

Section 1.3 briefly discussed several basic attacks and defenses in WSNs. This section 

extends the previous discussion and focuses on attack detection and prevention 

mechanisms for two well-known attacks in WSNs: the Sybil attack and the Wormhole 

attack. Another, a more complex issue, compromised node detection, is discussed here as 

well. 
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2.3.1 Sybil attack detection and prevention 

Newsome et al. systematically analyzed the Sybil attack and its defensive measures in 

[31]. In the Sybil attack, a node illegitimately claims multiple identities. This attack can be 

exceedingly detrimental to many important functions of WSN. Figure 5 demonstrates 

Sybil attack, where an adversary node ‘AD’ is present with multiple identities. ‘AD’ 

appears as node ‘F’ to ‘A’, as node ‘C’ to ‘B’, and as node ‘A’ to ‘D’, so when ‘A’ wants 

to communicate with ‘F’, it sends the message to the adversarial node ‘AD’. 

 

 

Figure 5: Sybil Attack 

 In distributed storage for WSNs, the Sybil attack can defeat replication and fragmentation 

mechanisms in a distributed hash table, such as GHT [32]. Thus, the system may not 

realize that while it replicates or fragment data across a number of nodes, in fact, it is 

storing data on a number of Sybil identities which were created by the same malicious 

node. For routing, the Sybil attack can defeat multipath or dispersity routing protocols, 

such that seemingly disjoint paths could, in fact, traverse through a single malicious node 

which represents several Sybil identities. In geographic routing protocols, a Sybil node 

could appear as being present in more than one place at the same time. For data 

aggregation, the Sybil attack can have one malicious node contribute to the aggregate 

many times to alter the aggregate reading. For voting, the Sybil attack allows a malicious 

node to vote multiple times to control outcome of a vote, such as in a blackmail attack. 

For fair resource allocation, a Sybil node can claim multiple identities and therefore 

obtain more network resources. For misbehavior detection, Sybil nodes could “spread the 

blame” by making it appear that the level of misbehaving of the Sybil identities is large 

enough for the system to take an action. Defenses against the Sybil attack include radio 

resource testing, random key predistribution, position verification, and registration [31]. 

In radio resource testing [31], it is assumed that any sensor node has only one radio, and 

that a radio is incapable of simultaneously sending or receiving on more than one channel. 

When a node A wants to test whether any of its neighbors are Sybil nodes (i.e., a node 

with multiple identities), the node A can assign to each of its neighbors a different channel 

to broadcast some messages. The node A can then choose randomly a channel to listen to. 

Due to the assumption that each node has only one radio, if A does not hear anything on a 

chosen channel, then the node A can be suspect that the node being assigned to that 

channel is a Sybil node. Figure 6 shows the probability of not detecting the presence of 
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some Sybil nodes using this method. 

 

In random key predistribution [31], each node is assigned a subset of a large set of keys, 

such that any two nodes share at least a secret key for communication, and no two nodes 

are assigned the same subset of keys. As a result, the sensor node can be uniquely 

identified by the subset of keys that it possesses. A network is able to verify the identity 

of a node by the keys that the node possesses, referred to as key validation. To launch a 

successful Sybil attack, the attacker is challenged to find the exact subset of keys of a 

node to steal the node’s identity. The estimated probability of a randomly created Sybil 

identity being effective is depicted in Figure 7 as a function of the number of 

compromised nodes. As a point of reference, for an attack to succeed, the attacker needs 

to compromise at least 150 nodes (in the full validation case). 

 

Position verification is another approach to defend against Sybil attacks [31]. This 

approach is only applicable in static WSNs (i.e., where sensor nodes are not mobile). In 

this approach, the network verifies the positions of each node. Sybil nodes can be detected 

because the Sybil nodes advertised by a single malicious node now all have the same 

physical position, which would raise an alarm, as the assumption is that a single physical 

location could be associated with at most one node. 

 

Registration is another potential solution against Sybil attacks [31]. In this approach, there 

is a trusted central authority that manages the network. The central authority keeps a list of 

trusted nodes and deployment of nodes. In order to detect a Sybil attack, an entity would 

poll the network; the results would then be compared with the information about the 

known deployment. To prevent attack, any node could query the central authority for 

checking the trusted node list. This scheme requires that the central authority must be able 

to store the trusted node list and deployment information securely. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Probability of no Sybil nodes being detected while using the radio defense in 

the case of a channel being assigned to every neighbor (From [31]) 
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Figure 7: Probability of a randomly created Sybil node being effective in the key pool 

scheme as a function of the number of compromised nodes (From [31]) 

 

2.3.2 Wormhole attack detection and prevention 

In the wormhole attack, an attacker records packets at one location in the network, tunnels 

them to another location, and retransmits the packets at the other location, making it 

appear as the two parts of the tunnel are in close proximity to each other. Figure 8 

demonstrates the wormhole attack, where ‘WH’ is the adversary node which creates a 

tunnel between nodes ‘E’ and ‘I’. These two nodes now apprear as they are at most at the 

distance of two hops from each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The Wormhole Attack 

The wormhole attack can form a serious threat in wireless networks. For example, the 

wormhole attacker can gain unauthorized access, disrupt routing, or perform a Denial-of-

Service attack. In [33], Hu et al. described the wormhole attack and proposed a 

mechanism called packet leashes for detecting and defending against wormhole attacks. A 

leash is an additional part of a packet that limits the packet’s maximum allowed 

transmission distance. The authors introduced two types of leashes—geographic leash, 

which limits the distance a packet travels, and temporal leash, which limits the time a 

packet lives (and hence limits the travelling distance, as packet’s speed is limited by its 
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speed of propagation). To construct a geographical leash, each node is assumed to know 

its own position, and all nodes in the network are assumed to have loosely synchronized 

clocks. Consider two nodes: source, s, and receiver, r. Let ps, pr, ts, and tr denote 

positions and times of nodes s and r, respectively. If v is an upper bound on the velocity 

of any node, and ∆ is the maximum clock difference between any two nodes, then upon 

receiving a packet from source s, the receiver can compute an upper bound on the 

distance between the sender and itself, as dsr ≤ || ps – pr || + 2v (tr - ts + ∆) + δ, where δ is 

the maximum relative error in location information between any two nodes. To use 

temporal leashes, the packet includes an expiration time, after which the receiver does not 

accept the packet. The expiration time is based on the allowed maximum transmission 

distance and the speed of light. A specific protocol, called TIK (TESLA with Instant Key 

disclosure), is also presented in [33] to implement temporal leashes. TIK consists of three 

states: sender setup, receiver bootstrapping, and sending and verifying authenticated 

packets. In the sender setup phase, the sender uses a pseudo-random function F and a 

secret master key X to derive a series of keys K0, K1, … , Kw, where Ki = FX(i). The 

pseudo-random function is assumed to be secure in the sense that it is computationally 

intractable for an attacker to find the master secret key X, even if all the keys K0, K1, … , 

Kw are known. In addition, without the secret master key X, it is computationally 

intractable for an attacker to derive a key Ki that the sender has not yet disclosed. Each Ki 

expires after some time interval I, which is selected by the sender. In the receiver 

bootstrapping phase, the receiver synchronizes with the source to agree on the initial time 

T0 and the time interval I. Finally, in the sending and verifying authenticated packets 

phase, if the sender sends a packet P at time Ti, then the sender also sends a message 

authentication code (HMAC) of P generated using some undisclosed key Ki+j, in which j 

is large enough such that P arrives at the receiver before time Ti+j and Ki+j has not yet 

been disclosed. The receiver can wait until time Ti+j for the source to release the key Ki+j, 

and verify the HMAC for P. The timing diagram of a TIK packet is shown in Figure 9, 

where τ is the propagation time between the nodes. The protocol assumes that all the 

clocks are synchronized within the maximum timing error of .  Upon receipt of the 

HMAC value and based on the time    as the time of disclosure of the key   , the receiver 

confirms that the corresponding key    was not yet sent by the sender. After all the 

verifications of the protocol were successfully completed, the receiver accepts the packet.  

 

 

 

 

 

 

Figure 9: Timing of a packet in transmission of the TIK protocol. (From [33]) 
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2.3.3 Compromised node detection  

Besides attack detection and prevention, compromised node detection is another important 

problem in WSN security. Compromised node detection is usually implemented by 

software or hardware code-testing schemes. However, for WSNs, hardware-based code-

testing schemes are often not feasible for lightweight sensor nodes. Software-based code-

testing is more promising, because it requires neither dedicated hardware nor physical 

access to the device. Software-based approaches are usually based on a challenge-

response scheme, where the verifier (usually the sink node) challenges a prover (a target 

device) to compute a checksum of its memory [34]. Examples of software-based code-

testing schemes are SWATT [35] and SCUBA [36]. 

SWATT (SoftWare-based ATTestation for Embedded Devices)[35] by Seshadri et al. is a 

software-based attestation technique to verify the memory contents of embedded devices. 

For each sensor device, SWATT adds an external verifier that is physically distinct from 

the device. The verifier and the device then run the challenge-response protocol of 

SWATT. To ensure that the device can return the correct answer only if its memory 

contents are correct, the verification procedure uses a pseudorandom memory traversal, in 

which the verifier sends to the device a randomly-generated seed for the device to 

generate a pseudorandom starting memory address for the verifier to access. The verifier 

then traverses the memory randomly, and iteratively updates a checksum of the memory 

contents. Since the verifier’s memory traversal is random, the attacker cannot predict 

which memory location is accessed, and therefore after a certain number of iterations of 

memory accesses, the verifier can eventually detect whether the memory is maliciously 

altered. 

SCUBA (Secure Code Update By Attestation) [36] by Seshadri et al. is another example 

of software-based code-testing scheme. SCUBA enables a sensor network to detect 

compromised nodes. Once a compromised node is detected, SCUBA allows the network 

to either repair the compromised node through code updates, or revoke the compromised 

node. SCUBA is based on ICE (Indisputable Code Execution), which is a challenge-

response-based protocol that ensures that a remote sensor node does not execute a 

malicious executable. To achieve this, each sensor node is installed with a special 

executable called the ICE verification function. The ICE verification function is 

responsible for checking the integrity of an executable on the sensor node, and also for 

setting up an execution environment to provide atomic execution for this executable (i.e., 

when an executable is executed in this execution environment, no other executable can 

interrupt this execution). To ensure that the ICE verification function itself is untampered, 

the ICE verification function is implemented as a self-checksumming code, which is a 

sequence of instructions that compute a checksum over themselves, such that the 

checksum would be wrong or the computation would be slower if the sequence of 

instructions were modified. The SCUBA protocol then works as follows. To invoke a 

sensor node’s executable X, the invoker node (e.g., a sink node) first sends a “check 

integrity and execute” request to the sensor node. The ICE verification function on the 

sensor node then checks for the integrity of X, and executes X if the integrity checking 

passed. After finishing the execution of X, the sensor node sends the execution result, 

together with the checksum returned by the ICE verification function, back to the invoker. 

The invoker can detect whether the sensor node’s executable is compromised by 

reviewing the ICE checksum. 
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3. Secure Routing 

Many WSN routing protocols are based on traditional ad hoc network routing protocols. 

The original focus of ad hoc routing protocols was on performance, but security issues 

were extensively studied as research on ad hoc routing protocols matured (e.g. [37, 38, 39, 

40, 41, 42]). Of course, secure routing is also an important requirement for WSN 

applications. This section examines existing approaches to secure routing for WSNs. 

Figure 10 shows the taxonomy of secure routing. A comprehensive discussion of many of 

the attacks on routing protocols is also presented in [43] by Karlof et al. 

 

 
Figure 10: Taxonomy of Secure Routing 

3.1 Traditional Routing Protocols for Ad Hoc and Sensor Networks 

Routing protocols for ad hoc and sensor networks can be broadly classified into three 

categories: proactive, reactive, and hybrid [44]. In proactive routing protocols, nodes 

periodically exchange routing information, so typically correct routes are almost always 

known at the time a routing request is placed. Examples of proactive routing protocols 

include DSDV[45], TBRPF[46], and OLSR[47]. In reactive routing protocols, nodes 

exchange routing information only when a communication request is pending. Examples 

of reactive routing protocols include DSR[48], AODV[49], LMR[50], ABR[51] and 

TORA[52]. Hybrid routing protocols are a mixture of proactive and reactive routing 

protocols. ZRP [53] and FSR[54] are examples of hybrid routing protocols. Proactive 

routing protocols have lower latency, since routing information is consistently maintained; 

however such protocols are wasteful in communication overhead when the traffic activity 

is small and, especially, when the network is highly mobile. In contrast, reactive routing 

protocols incur smaller communication overhead at the expense of larger delays. Thus, 

reactive protocols may be more practical for low-activity and mobile ad hoc networks, 

while proactive protocols may better fit highly-active and more static networks. Similarly, 

for mobile sensor networks which support applications that require infrequent 

communications, reactive protocols might be a better choice. Hybrid routing protocols 

typically outperforms proactive and reactive routing protocols, because they use a 

combination of the two [55], and often optimize their performance based on the network 

conditions [53,56]. 

 

The original designs of many of the ad hoc network routing protocols are based on 

performance metrics (e.g., energy efficiency) rather than on security provisions, but there 

have been numerous works that extend these original ad hoc network routing protocols to 
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improve security. Zapata in [37] noted that ad hoc networks protocols are being designed 

without security in mind. He proposed the secure ad hoc on-demand distance vector 

(SAODV) routing protocol to address the problem of securing a MANET network. 

SAODV assumes that each node has a signature key pair from a suitable asymmetric 

cryptosystem. Further, each ad hoc node is capable of securely verifying the association 

between the address of a given ad hoc node and the public key of that node. AODV uses 

two mechanisms to secure its messages: Digital signatures and Hash chains. Digital 

signatures are used by AODV to authenticate the non-mutable fields of a message. Hash 

chains are used in AODV to secure the mutable part of a message, which is hop count 

information. On the other hand, for route error messages, a node uses digital signatures to 

sign the whole message, and any neighbor of the node that receives such a route error 

message authenticates the signature.  

 

Papadimitratos and Haas [39, 57] proposed the Secure Message Transmission (SMT) 

protocol, which is based on the notion of information dispersion. SMT assumes that there 

is another underlying protocol capable of discovering routes in the network (e.g., SRP [7]), 

although the routes may contain malicious nodes. SMT adds redundancy and partitions the 

information into fragments, while transmitting the fragments across multiple routes, so that 

even if some of the fragments are lost (i.e., those that are sent over the routes with 

malicious nodes), the remaining fragments suffice to reconstruct the original transmission. 

While SMP transmits data simultaneously over multiple routes, a modification of SMT, the 

Secure Single Path (SSP) protocol, transmits data over multiple routes in an alternative 

manner. The salient feature of these protocols is that they do not rely on trustworthiness of 

nodes in the network (with the exception, of course, of the source and the destination 

nodes). Indeed, the protocols can deliver highly reliable and low-delay communication 

even when a large fraction of the network nodes act maliciously. The protocols are, in 

particular, useful for reliable and secure real-time communications, when retransmissions 

may not be an option. As a point of reference, SMT can deliver 93% of messages without 

retransmissions, even when 50% of the nodes randomly drop packets. Figure 11 depicts an 

example of the SMT operation. 

 

 

 

 

 

 

 

 

 

 

Figure 11: SMT transmission of a single message through dispersion  

 

Ariadne [40], by Hu, Perrig, and Johnson, is an on-demand secure routing protocol for ad 

hoc networks. Ariadne’s goal is to prevent attacks by tampering with uncompromised 

routes (i.e., routes formed by uncompromised nodes), and also prevent many types of 

DoS attacks. The operation of the Ariadne protocol is based on the target node 

authenticating the Route Requests. This is accomplished by the initiator including a 
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MAC, which is calculated over the unique data in the Route Request, and using key Ksd. 

Ariadne uses three alternative mechanisms for route data authentication, which are: 

TESLA protocol, Digital signatures, and standard MACS. Additionally, per-hop hashing 

technique is used to confirm that there is no missing node in the list of nodes in the 

request. The design of the protocol is based on a reactive routing protocol DSR [48] and a 

broadcast authentication protocol TESLA [58, 59]. The operation of DSR is divided into 

Route Discovery and Route Maintenance. In Route Discovery, the source node S 

broadcasts a ROUTE_REQUEST message containing the identifier for the destination 

node D (which is referred to as the “target”). There are two situations in which discarding 

of a ROUTE_REQUEST occurs. One such a situation is when the node’s address is 

already listed in the route’s record. Discarding the request avoids a request propagating 

around a loop. The other such a situation involves discarding the request upon 

determination that the host has recently seen a copy of the same request, one carrying the 

same initiator address and the same request id. This guarantees that a later copy of the 

request that arrived at this node by a different route is removed. If the request is not 

discarded, the node appends its own identifier to the ROUTE_REQUEST message and 

re-broadcasts the message. When ROUTE_REQUEST reaches the target D, D replies 

with a ROUTE_REPLY message, which contains the routing information, back to the 

source node S. Node S then uses the route in ROUTE_REPLY message to forward data to 

the node D. Route Maintenance is a mechanism used to detect broken links on an 

established route. If any of the intermediate hop transmission along the path fails, the 

node unable to make the next hop transmission returns a ROUTE_ERROR message back 

to S, and S repeats the Route Discovery phase. TESLA uses a secret key to generate 

message authentication code (MAC) for messages to ensure broadcast authentication. The 

secret key should be kept secret by the message originator, so that no other node can 

forge the MAC, however, the receiving nodes need the secret key for verification. Instead 

of using a computationally expensive asymmetric cryptography scheme such as RSA 

[19], TESLA achieves this asymmetry from loose time synchronization and delayed key 

disclosure. In TESLA, the sender chooses a random initial key   , and generates a one-

way key chain by repeatedly computing a one-way hash function H on its starting value: 

                   . To compute any previous key    from a key    in which 

   , a node can compute             Then, at time slot   , the key    is used to 

generate the MAC. At the next time slot     ,    is published, so that the receiving nodes 

can verify the MAC using   . If the source node has additional broadcast messages to 

send,      is used to generate the MAC for the new messages at time       Similar to 

DSR, Ariadne also has a Route Discovery phase and a Route Maintenance phase. To 

support secure routing, the ROUTE_REQUST, ROUTE_REPLY, and ROUTE_ERROR 

messages are all authenticated using the TESLA scheme described above.  

 

Marti et al. in [38] proposed a reputation-based secure routing for ad hoc networks. In 

reputation-based routing, the next-hop of a path is chosen based on reliability of links and 

reputation of nodes. Marti et al. used a watchdog that identifies misbehaving nodes and a 

path-rating scheme that helps routing protocols to avoid these nodes; Watchdog and 

Pathrater are the two mechanisms used to detect and mitigate routing misbehavior. These 

mechanisms are  implemented on top of source routing protocols. Detection of 

misbehaving nodes is done by the Watchdog by keeping a buffer of packets that were 
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recently sent. The Watchdog then attempts to verify whether a packet has, indeed, been 

forwarded by the next node by overhearing the transmissions of the neighboring nodes. 

The Watchdog removes the packet from its buffer when it determines that the packet has 

been forwarded by the next node. If after a timeout the packet is still in the buffer, a 

failure count of the node that was responsible for forwarding on the packets is 

incremented by the Watchdog. If the count surpasses a particular threshold, the node is 

considered a misbehaving node. The Pathrater is run by every network node. The most 

likely reliable route is chosen by taking into the consideration the knowledge of 

misbehaving nodes and the data about links’ reliability.  

The algorithm of the Pathrater assigns ratings to nodes in five steps: firstly, when the 

Pathrater becomes aware of a node in the network, the Pathrater assigns the node the 

rating of 0.5 (every  node assigns itself the value of 1.0.) Secondly, at periodic time 

intervals (of 200ms), the Pathrater increments the ratings of nodes on all actively used 

paths by the value of 0.01, with the maximum rating value being 0.8. Thirdly, when the 

Pathrater detect a misbehaving during packet forwarding, it decrements a misbehaving 

node’s rating by 0.05. Fourthly, negative path values suggest that there is one or more 

suspected misbehaving nodes on the path. Of course, the goal is to choose the path with 

the highest ratings.  

 

 

 

 

 

 

 

 

 

Figure 12: The relationship between monitor, reputation system, path manager, and 

trust manager. (Based on [41]) 

The Grudger Protocol by Buchegger and Boudec in [41] is also a reputation-based secure 

routing for ad hoc networks. Detecting and isolating misbehaving nodes becomes 

possible by utilizing the Grudger Protocol. Trust relationships and routing decisions are 

based on behavior of other nodes, which is gathered through experience, observation, or 

reports. It is intended to be implemented and run on top of any existing ad hoc routing 

protocols, such as DSR or AODV. Each node of the Grudger protocol consists of four 

components: monitor, reputation system, path manager, and trust manager. The monitor 

detects deviance by watching its neighborhood. This is accomplished by listening to the 

transmissions of the next node to verify that it forwards the packet. As a result, 
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nonconformities can be detected. The trust manager plays an important role in three 

aspects: firstly, using trust function it calculates the trust levels of nodes and manages 

trust levels in a trust table; secondly, the incoming ALARM messages are filtered based 

on the trust level of the reporting nodes and maintaining information about received 

alarms in an alarm table; thirdly, forwarding the ALARM messages according to the 

friends list.  The reputation system is in charge of maintaining a table of the ratings of the 

nodes. A rating is determined based on a function that includes the node’s own 

experience, the observations, and the reported experience. The path manager re-ranks 

paths based on a security metric, deletes paths which contain malicious nodes, ignores 

route requests generated by malicious node, and ignores requests for a route which 

contains a malicious node in the source route (while alerting the source node). 

  

Figure 12 describes the relationship between the four components of the Grudger Protocol 

(the monitor, the reputation system, the path manager, and the trust manager).The 

operation is explained as follows in four steps. Step 1: When the monitor detected a 

suspicious event, such information is passed on to its reputation system. Step 2: The 

reputation system determines whether the event happened more often than some 

predefined threshold, and if so, the rating of the node that caused the event is adjusted by 

the reputation system. Step 3: If the resulting rating of the node is too high, then the path 

manager removes all the routes that contain this node from the cache of the paths. The 

trust manager then sends out an ALARM message. Step 4: Upon receipt of such an 

ALARM message by a monitor component from a node that is (at least) partially trusted, 

the monitor passes such a received ALARM message on to the trust manager, and the 

ALARM table in the trust manager is updated.  Depending on the level of evidence, the 

information about the node reported in the ALAM will be passed on to the reputation 

system. 

 

Despite the effectiveness of those secure routing protocols for ad hoc networks, they may 

not always be directly applied to WSNs. This is because WSNs usually have a directional 

data flow, from the data collector nodes towards the sink nodes; whereas in ad hoc 

networks, data flows are more uniform among nodes. Routing protocols designed for ad 

hoc networks do not take this directional data flow characteristic into considerations. 

Therefore, depending on the situation WSNs may need their own versions of such secure 

routing protocols. 

 

3.2 Multipath Routing 

Multipath routing protocols take advantage of the redundancy of sensor nodes in the 

network. They are robust against limited number of compromised nodes, at the expenses 

of larger communication overhead. INSENS (Intrusion-tolerant Routing Protocol for 

Wireless Sensor Networks), proposed by Deng et al. in [60], is an example of a multipath 

routing protocol. The main goal of INSENS is to support operation in spite of the harm 

caused by an intruder who was able to compromised sensor nodes with the intention to 

inject, modify, or block packets. INSENS assumes that after the initial deployment, 

sensor nodes can have only bounded mobility. INSENS is effective against DoS attacks 

and false routing information spreading. In this scheme, each node shares a secret key 

only with the sink node and not with other nodes. To defend against DoS attacks, 
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broadcast is only permitted by the sink node. To defend against false routing information 

spreading, initially the sink node computes a multi-hop, multi-path data forwarding tree 

in three rounds. In round 1, the sink node broadcasts route request message to all sensor 

nodes. In round 2, the sensor nodes reply back to the sink node with their local 

topological information. In round 3, the sink node computes a routing table, and then 

securely unicasts it to each sensor node in a breadth-first manner. This forms a data 

forwarding tree rooted at the sink node. Data forwarding then proceeds according to this 

data forwarding tree. Multipath routing in INSENS enhances intrusion tolerance, so that 

even if an intruder compromises a node or a path, alternate forwarding paths still exist on 

the data forwarding tree. Bidirectional verification is used to protect against the rushing 

attack. Nodes joining and leaving a network are supervised by secure maintenance 

mechanisms.  

In Figure 13, multiple routes are derived between each source and destination. The intent 

is that these paths should be as independent as possible; i.e., that the paths share in 

common minimum number of nodes and links. In the best case, only the source node and 

the destination node are common between two paths. In fact, the second path should 

exclude the nodes on the first path (area S1 in Figure 13), their neighbors (area S2), and 

the neighbors of their neighbors (area S3). One or more intruders along some paths can 

jeopardize the delivery of some of the copies of a message. However, as long as there is 

at least one path that is not affected by an intruder, the destination will receive a correct 

copy of the message. 

 

Figure 13: Selection of paths in the multipath routing policy. (From [60]) 

 

3.3 Secure Routing for Cluster or Hierarchical Sensor Networks 

Many WSN architectures are “cluster-based”. In such architectures, each cluster has a 

cluster head and many subordinates, and the cluster head is very close (one-hop or only 

few-hops away) from all subordinates in its cluster. Subordinates collect data and send 

the data to the cluster head, and then the cluster head determines routing path and 

transmits aggregated data. LEACH in [61], proposed by Heinzelman et al., is one of the 

first cluster-based routing protocols that significantly reduces energy consumption. 

LEACH is a self-organizing, adaptive clustering protocol that uses randomization to 

distribute the energy load evenly among the sensor nodes. After sensor node deployment, 

nodes cluster themselves and elect one cluster head for each cluster. Since cluster heads 
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typically perform more intensive processing, they are more prone to faster battery 

drainage and reduced lifetime. To reduce this problem, LEACH randomly rotates the 

cluster-head position. Furthermore, to reduce energy and to enhance system lifetime, the 

transmissions  to the cluster head are compressed using local data fusion. The cluster 

head selection process is done probabilistically: each sensor node elects itself to be a 

local cluster head with certain probability. A cluster head broadcasts its status (e.g., 

remaining energy, location information, etc.) to other sensors. The non-cluster head 

nodes then join a cluster by choosing the cluster head that requires the minimum 

communication energy. After all the nodes are arranged into clusters, every custer-head 

generates a schedule to be used by the nodes that belong to the cluster-head. The energy 

dissipated in the sensor can be minimized by turning off the radios of nodes, when the 

nodes are not transmitting. The LEACH protocol also equalizes the energy used by the 

nodes, so that nodes are depleted of energy at about equal rate, thus allowing maintaining 

a more uniform coverage of the environment. 

Operation of the LEACH algorithm is based on rounds, and the algorithm comprises the 

following phases: (a) the advertisement phase, (b) the cluster set-up phase, (c) the 

schedule creation phase, and (d) the data transmission phase.  

There are two steps in the advertisement phase; the cluster-heads are chosen in the first 

step by having each node,    select a random number between 0 and 1. If this number is 

less than  the threshold     , then the node serves as a cluster-head in the current round. 

The threshold function is set as follows: 

     {

 

               
           

                                                         

 

 

where   is the intended percentage of cluster heads,   is the number of the current round, 

and   represents the set of nodes that have not served as cluster-heads in the last   ⁄  

rounds. The second step in the advertisement phase consists of forming the clusters: 

transmitting with the same power, the cluster-heads transmit their advertisement using the 

CSMA (Carrier Sense Multiple Access) protocol. Each non-cluster-head node selects its 

cluster-head (and, thus, the cluster) for this round based on the measured signal strength of 

the received advertisement transmissions. During the cluster set-up phase, a non-cluster-

head node transmits its selection to the cluster-head and, thus, becomes a member of the 

cluster. The cluster-head node generates a TDMA schedule, which is based on the number 

of the nodes in its cluster, and which indicates to each node when a node can transmit. In 

the data transmission phase, the non-cluster nodes transmit to the cluster head based on the 

TDMA schedule. When all the data from the non-cluster nodes have been received by the 

cluster head, the cluster head compresses the data into a single signal, which the cluster 

head then transmits to the base station. To reduce the interference between the 

transmissions of the nodes in different clusters which are in close proximity one to another, 

the clusters use different CDMA (Code Division Multiple Access) codes to communicate. 

The cluster head send the information about the choice of a particular spreading code to the 

nodes in its cluster. Using the particular spreading code, the cluster head can then extract 
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the information sent by its nodes, while reducing the interference caused by transmission of 

nodes in other clusters.  

 

Despite the energy-efficiency characteristic of LEACH, Karlof et al. in [43] pointed out 

that such cluster-based protocols are susceptible to the Sybil attack, in which a 

compromised node can claim multiple identities and advertises itself as multiple cluster 

heads. Tubaishat et al. proposed in [62] a cluster-based routing protocol, the Secure 

Routing Protocol for Sensor Networks (SRPSN). The goal of the SRPSN protocol is to 

protect the data packet in the sensor networks from different types of attacks. It uses a 

group key management scheme, which contains group communication policies, group 

membership requirements and an algorithm for generating a distributed group key for 

secure communication. This secure routing protocol stores the routing table in a cache. 

The protocol uses hierarchical architecture and highly efficient symmetric cryptographic 

operations. In the group key management scheme, the key computation starts from the 

initiator node by using its partial key. The group key is computed by a leader using the 

partial keys which are contributed by every sensor node in a group; i.e., one can consider 

this as a “bottom up approach,” as the accumulation of the partial keys is done from a leaf 

nodes up to the parent nodes. A modified multiparty Diffie-Hellman protocol [63] is used 

for computing group key, while the updating of group keys is done using the concept of 

key trees. The routing information messages (e.g., route request and route reply 

messages) are then encrypted using the group key.  

 

Cluster-based secure routing protocols are also used in wireless sensor and actuator 

networks (WSANs), which is a special type of WSNs that consists of both, low-power 

sensor nodes that form the traditional WSN and high-power actuator nodes. Therefore, 

while WSNs are mostly concerned only with sensors-to-sensors communications, 

WSANs have to consider four types of communications: sensors-to-sensors, sensors-to-

actuators, actuators-to-sensors, and actuators-to-actuators. Furthermore, the natures of the 

four types of communications are different. For example, sensors-to-sensors 

communication is usually many-to-one (sensors to the sink) or many-to-many (sensors to 

sinks), whereas actuators-to-actuators communication is usually peer-to-peer. Huet al., in 

[64] proposed a secure routing protocol based on WSAN’s hierarchical network 

architecture. A scalable and energy-efficient routing architecture, referred to as Ripple-

zone (RZ), is employed to implement WSAN security. A multiple-key management 

scheme, together with the Ripple-zone routing architecture, improves the security of in-

network processing, for example, of the data aggregation operation. The scheme uses a 

Member Recognition Protocol (MRP) to allow actuators and sensors to self-organize 

themselves into separate domains, with each actuator as the domain center. As shown in 

Figure 14, within each domain, sensor nodes are grouped into ripple zones around the 

domain center actuator, such that nodes in a ripple zone all have the same number of hops 

to the actuator. Within each ripple zone, sensor nodes are further clustered, and each 

cluster elects a sensor node as the cluster head or “master”. A “master” is responsible to 

accumulate data from the sensors in its zone. The “master” then transmits the data to the 

“master” in the next “ripple,” which is located closer to the actuator. Each node (sensor or 

actuator) shares a global key and a pairwise key with the sink node, which are updated 

periodically. In the high-level (among actuators), two types of keys exist: session key 

(SK), which is used to secure data packet transmission, and a backbone key (BK), which 
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is used to secure control packets that include session key re-keying information. Figure 15 

shows the relationship between these two keys. To protect against attacks, the session 

keys (SKs) are periodically re-keyed, while the refreshing of the backbone key (BK) is 

event-triggered, based on events such as actuator insertion, node death, or node 

compromise. A chain of session keys is generated at the sink node by continuously 

applying a known one-way hash function, and the key chain is sent to the actuators. An 

actuator keeps a buffer to store the key chain in order to tolerate multiple key losses. To 

support different security levels for different types of messages, multiple types of keys are 

introduced in the low level: Master-to-Actuator Key (MAK), Inter-Master Pairwise Key 

(MPK), Sensor-to-master Pair-wise Key (SPK), Zone Key (ZK), and Ripple Key (RK). A 

MAK is shared between each master and its domain actuator and is used for direct master-

to-actuator secure communication. MPK is used occasionally to establish secure channels 

between two masters that belong to two actuator domains. SPK is shared between a 

master and each of the sensors in its zone. ZK is used for data aggregation and also for 

propagation of a query message to the whole cluster and is shared among all sensors in 

the same cluster. RK is used to achieve hop-to-hop security in an actuator domain. This 

multi-key management scheme allows for the establishment of a secure routing protocol 

based on ripple-zone, in which messages are routed in a hop-by-hop manner across ripple 

zones. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Ripple-zone-based WSAN routing. (From [64]) 

 

 

 

 

 

 

Figure 15: Backbone Key (BK) and Session Key (SK). (From [64]) 
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3.4 Broadcast Authentication 
 

Broadcast is a fundamental operation in many networks, and it is an essential component 

in many routing protocols. Perrig et al. in [65] proposed μTESLA, an authenticated 

broadcast protocol for the SPINS (Security Protocols for Sensor Networks). In general, 

authentication operation based on asymmetric cryptography is too computationally 

intensive for WSN nodes. μTESLA overcomes this problem through the concept of 

delaying the disclosure of symmetric keys. To send an authenticated packet, the sink 

node computes a MAC (message authentication code) on the packet with a key that is 

secret at that point in time. Upon receiving the packet, the node temporarily stores the 

packet in a buffer and waits for the key disclosure from the sink node. At the time of key 

disclosure, the sink node broadcasts the verification key to all the receivers. When a 

node receives the disclosed key, it can verify the key. If the key is correct, the node 

can use it to authenticate the packet. Each MAC key Ki  is a key of a key chain, 

generated by a public one-way function  , such that           , where the 

subscript denotes the time interval. 

 
 

4. Secure Localization Schemes 

Depending on the application, localization can be an essential service in a WSN. For 

example, a location-based routing protocol, GPSR (geographic routing protocol)  

proposed by Karp et al. in [66], relies on accurate position of sensor nodes to 

perform routing. Localization is a well-studied topic, but almost all localization systems 

operate in a non-adversarial setting [67]. Secure localization only recently emerged as an 

active area of research. Secure localization schemes can be categorized into two groups—

beacon-based and non-beacon-based. 

 
4.1 Beacon-Based Schemes 

 

In the beacon-based schemes, some nodes in the WSN (referred to as beacon nodes) are 

equipped with GPS hardware. These beacon nodes can correctly identify their own 

location via GPS signals. The beacon nodes can then help the non-beacon nodes to obtain 

their location information. The localization schemes can be categorized into two types of 

schemes: “range dependent” and “range-independent”. In the range-dependent schemes, 

the calculation of a node’s location is based on the estimates of distances and angles to 

reference points, where the locations (coordinates) of the reference points are known. 

Such estimates are usually obtained by one of the following ways: received signal 

strength, Time of Arrival (ToA), Time Difference of Arrival (TDoA), and Angle of 

Arrival (AoA) [67]. 

 
On the other hand, the range-independent localization schemes do not rely on the nodes 

performing time, angle, or power measurements. For example, Lazos et al. in [68] 

proposed a range-independent localization algorithm called SeRLoc that is beacon-based. 

SeRLoc is a distributed algorithm based on a two-tier network architecture that allows 

sensors to passively determine their location without interacting with other sensors. There 

are two types of nodes: sensor nodes equipped with omnidirectional antennas, and locator 
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nodes equipped with multi-directional antennas and GPS. Locator nodes first obtain 

their accurate location via GPS, and then each locator transmits beacons with their 

individual coordinates and coverage areas.  Each sensor node collects location 

information from all the locator nodes that it can receive and then, using this information, 

assembles a search area of its own location. After receiving enough beacons from 

different locators, the sensor estimates its location as the center of gravity of the 

overlapping region of the coverage areas. After analytically evaluating the probability of 

sensor displacement due to security threats in WSNs, such as the wormhole attack, the 

Sybil attack, and compromise of network entities, they showed that SeRLoc provides 

accurate location estimation even in the presence of these threats. See Figure 16 for 

additional details. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: A sensor estimates its location as a Center of Gravity based on the beacons 

from locators L1, L2, L3, and L4. (Based on [68]) 

 
Li, et al. in [69] proposed a robust statistical method for secure localization using 

triangulation. In triangulation, a sensor node gathers a collection of {(x,y,d)} values, 

where d is an estimated distance from the sensor node to a beacon node at location (x,y). 

In the ideal case, these {(x,y,d)} values map out to a parabolic surface          
      

        
   Thus, to estimate its location, the sensor node can simply solve 

for a Least Square problem from the gathered data set {(x,y,d)}. However, in the 

presence  of  adversaries,  some  of  the  (x,y,d)  values  can  be  outliers.  Therefore, 

instead of using Least Square, the authors proposed to use Least Median Square [70] for 

achieving robustness in localization. Unlike Least Square, which minimizes the sum of 

the residue squares, Least Median Square minimizes the median of the residue 

s q u a r e s .  As a result, outliners have a much smaller effect on the optimization cost 

function, which makes the location estimation more robust. Contamination ratio ( ) is the 

fraction of the samples that are outliers and the noise level is assumed to be     Figure 17 

shows the square root of mean square error (MSE) as a function of distance 

   √                  (measurement of the strength of the attack). In 
particular, the performances at two pairs of   and     values are presented in the figure; 

(a): (    )=(0.2, 20) and (b): (    )=(0.3, 15). The results demonstrate that the estimation 

error of ordinary LS increases with   , which is caused by the non-robustness of LS to 

outliers. On the other hand, the estimation error of LMS exhibits a different behavior; it 

first increases until reaching a maximum (which occurs at a critical value of    , then the 
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estimation error slightly decreases, and finally stabilizes. These results could be 

interpreted as saying that, if LMS is used for localization, the adversary does not gain by 

mounting a too powerful attack. 

 
Figure 17: The performance comparison between LS and LMS for localization. (From 

[70]) 

4.2 Non-Beacon-Based Schemes 

Since equipping sensor nodes with GPS hardware can be costly, in some practical 

environments beacon-based localization schemes may not be feasible. In non-beacon-

based schemes, a node calculates the position of another node of interest by making an 

estimation based on the known locations of existing nodes. Non-beacon-based schemes 

are less accurate, but are also less expensive to implement than beacon-based schemes 

[67]. 

Fang et al. in [71] proposed a non-beacon-based localization scheme. The scheme is 

based on the following observation: in practice, it is quite common for sensor nodes to 

be deployed in groups. The locations of the groups (deployment points) are pre-

determined prior to deployment and are stored in each sensor’s memory. Sensors  from  

the same group can be placed in locations which follow some a priori known spatial 

probability  distribution, for example, a two-dimensional Gaussian distribution. With this 

prior deployment knowledge, sensors can estimate their locations by observing the group 

memberships of its neighbors. The scheme modeled the localization problem as a 

statistical estimation problem and used the Maximum Likelihood Estimation method to 

estimate the location. 

 

5. Secure Data Aggregation 

WSN applications that involve extensive amount of data processing typically do not have 

all the processing done at the central sink node, but instead some processing could be 

done by the network. Such in-network processing via data aggregation in large-scale 

sensor networks has been shown to improve scalability, eliminate information 

redundancy, and increase the lifetime of the network, but the drawback is that data 

aggregation renders the security problem more difficult [72]. 

In a large-scale data processing network, sensor nodes can be classified into two groups. 

Most of the nodes are data collector nodes that are only responsible for collecting sensor 
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measurements. The other nodes are data aggregator nodes that perform aggregation 

functions upon receiving data from collector nodes. The massive data processing 

performed by the collector-aggregator architecture can significantly reduce the 

communication overhead in the network. However, from a security perspective, there are 

two types of potential threats: the first one is that aggregators can receive false data 

from collectors; the second one is that the sink node receives false data from 

compromised aggregators [10].  Secure data aggregation schemes are developed to 

overcome these two threats. These schemes can be classified into plaintext-based schemes 

and cipher-based schemes. 

5.1 Plaintext-Based Schemes 

In the plaintext-based secure data aggregation schemes, intermediate nodes in the path can 

read the data in transit. Hu, et al. in [73] proposed such an example. In this scheme, each 

node A is initialized before deployment with a symmetric secret key,     , shared with the 

sink node. Time is slotted, so that as time progresses, a sequence of temporary encryption 

keys will be generated for node  . For example, in time slot  , the temporary encryption 

key for   would be             . After each time slot  , the temporary encryption key 

     will be revealed to all sensor nodes. The data aggregation proceeds as follows. 

Consider the following sequence of connected nodes:        , as in Figure 18. 

At time slot  , node   transmits its reading   , identifier  , and a message 

authentication code             to its next hop node  . Node   will hold the data 

until time slot    , when     is revealed. This same sequence of operations is done at 

node   (i.e., at the time of slot  ,   sends {  ,  ,             } to  ). At the time of 

the slot    ,     and     are revealed to all the nodes. Therefore node   can verify the 

integrity of   , and if    is verified, then   forwards  ’s message {  ,  ,            } 

to  . Similarly,   can verify   ’s and   ’s integrity using     and    , respectively. If 

the verification test at   passed,   can perform aggregation over    and   . This data 

aggregation scheme is therefore a delayed aggregation—aggregation is performed not at 

the immediate next hop, but at a later hop. As a result, the intermediate node has to forward 

both its own data and the received data to the last node, and therefore an additional 

transmission cost is incurred. However, delayed aggregation benefits data integrity—an 

adversary who obtains key material from a compromised node cannot tamper with many 

sensor readings. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Example Sensor Network. (Based on [73]) 
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5.2 Cipher-Based Schemes 

In cipher-based secure data aggregation schemes, intermediate nodes on the path cannot 

read the data in transit. One implementation of such a scheme is Concealed Data 

Aggregation (CDA), proposed by Girao, et al. in [74]. CDA is based on a concept called 

privacy homomorphism (PH) proposed by Domingo-Ferrer in [75]. PH is a particular 

encryption transformation with additive and multiplicative homomorphic properties, so 

that direct computation over encrypted data is possible. Suppose   and       are   two   

rings,   where  “  ”   and   “ ”   are   the   corresponding addition and multiplication 

operations for both rings. Let   denote the set of keys,   to be an encryption function 

(           , and   to be a corresponding decryption function (           . 

Then PH ensures that, for all  a, b ∊ Q and k ∊ K, we have       (           ) 

(i.e., homomorphic addition), and                     (i.e., homomorphic 

multiplication). CDA uses PH to encrypt aggregated data along the path. The additive   

and multiplicative homomorphism properties allow processing data while the data is 

encrypted, without the necessity to decrypt the data at each intermediate node. This allows 

preservation of data confidentiality and integrity while the data is routed within the 

network. 

 

6. Conclusion 

 

In this chapter, we discussed several important aspects of WSN security, including 

cryptography schemes, key management schemes, secure routing protocols, secure 

localization, and secure data aggregation. 

 

Cryptography schemes are classified into public key cryptography and symmetric key 

cryptography. Public key cryptography schemes are more computationally demanding, 

but require less care in key distribution and management. Due to limited resources at the 

sensor nodes, public key cryptography schemes are often considered infeasible for 

WSNs, although recent results showed that some public key cryptography schemes can 

be implemented in WSNs by choosing appropriate algorithms, parameters, etc. However, 

achieving energy-efficient public key cryptography schemes still need further research. 

For symmetric key cryptography schemes, efficient key management schemes need to be 

designed. 

 

We discussed four categories of key management schemes—key pre-distribution 

schemes, hybrid cryptography schemes, key infection schemes, and key management in 

hierarchical networks. Although key management has been an active research area in the 

past decade, there are still certain open problems in this area. Current key management 

schemes are mostly concerned with static WSNs, and key management schemes for 

mobile WSNs still lack appropriate solutions. Most key management schemes require 

trustworthy sink nodes, which may not be a valid assumption in many applications; 

therefore new schemes need to be designed to secure the sink node. 

 

Currently there are many secure routing algorithms for WSNs, and many of them are 

derivatives of secure ad hoc network routing algorithms. We reviewed several ad hoc 

network routing protocols, then surveyed two categories of secure routing protocols 
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specifically designed for WSNs—multipath routing and cluster-based routing. Although 

many secure routing algorithms can prevent or detect node compromise to some extent, 

there is still a window of vulnerability in which a compromised node can go unnoticed 

and false routing information may be spread. Designing secure routing protocols to 

minimize this window of vulnerability is another important research area. Yet another 

consideration for future secure routing research is to expand the evaluation metrics. 

Current evaluations of secure routing are mostly focused on security metrics; other 

metrics such as QoS need to be considered in addition to security. 

 

Secure localization is divided into two categories: beacon-based and non-beacon-based 

schemes. However, both types of schemes are only suitable for static WSNs. Mobile 

WSNs secure localization still need further investigation. 

 

Secure data aggregation schemes include plaintext-based and cipher-based schemes. Data 

aggregation schemes usually assume aggregators as more powerful sensor nodes than data 

collector sensor nodes. Therefore it is desirable to design secure data aggregation schemes 

that can be applied in a homogeneous WSN, where all the sensor nodes have equal 

capabilities. Another potential research direction in secure data aggregation is to 

investigate the tradeoffs between security and energy efficiency gains. 

 

A somewhat newer topic related to WSN that has not been covered in this chapter is that 

of security of Internet of Things (IoT) networks. The reader is referred to references [76]-

[81]. 

 

Acknowledgements 

This work was sponsored in part by the NSF grants numbers ANI-0329905, CNS-0626751, 

CNS-1040689, ECCS-1308208, CNS-1352880, and by the AFOSR contract number 

FA9550-09-1-0121/Z806001. 

 

References 

[1] M. Bishop, “Computer Security: Art and Science,”Addison-Wesley, 

2003 

[2] G. Stoneburner, C. Hayden, and A. Feringa, “Engineering principles for information 

technology security,” NIST Special Publication 800-27, Revision A, June 2004. 

[3] M. Healy, et al., “Wireless Sensor Hardware: A Review,” IEEE Sensors, 2008 

[4] J. P. Walters, et al., “Wireless Sensor Network Security: A Survey,” Security in 

Distributed, Grid, and Pervasive Computing. Ed. Y. Xiao, CRC Press, 2006.  

[5] E. Shi, et al., “Designing Secure Sensor Networks,” IEEE Communication 

Magazine, 2004. 

[6] A. Wood, et al., “Denial of Service in Sensor Networks,” IEEE Computer, 2002. 

[7] P. Papadimitratos and Z. J. Haas, “Secure routing for mobile ad hoc networks,” in 

Proc. SCS CNDS, San Antonio, TX, Jan. 27–31, 2002, pp.193–204. 

[8] J. Jeong, G.Y Lee, and Z.J. Haas, “Prevention of Black-Hole Attack Using One-Way 

Hash Chain Scheme in Ad Hoc Networks,” International Conference on Information 

Networking, Estoril, Portugal, January 22-25, 2007. 



34 
 

[9] L. Zhou and Z.J. Haas, “Securing Ad Hoc Networks,” IEEE Network, vol. 13, no. 6, 

1999, pp. 24-30. 

[10] X. Chen, et al., “Sensor Network Security: A Survey”. IEEE Commun. Surveys & 

Tutorials, 2009 

[11] S. A. Camtepe, et al., “Key distribution mechanisms for wireless sensor networks: A 

survey,” Computer Science Department at RPI Tech, Rep. TR-05-07, 2005. 

[12] P. Ganesan, et al., “Analyzing and modeling encryption overhead for sensor network 

nodes,” in Proc. 2nd ACM International Conf. Wireless Sensor Networks 

Applications, 2003, pp. 151-159. 

[13] G. Gaubatz, et al., “State of the art in ultra-low power public-key cryptography for 

wireless sensor networks,” in Proc. 3rd IEEE International Conf. Pervasive 

Computing Commun. Workshops, 2005, pp. 146-150. 

[14] M. Rabin, “Digitalized Signatures and Public-Key Functions as Intractable as 

Factorization,” MIT Laboratory for Computer Science, January 1979. 

[15] J. Hoffstein, J. Pipher, J. Silverman, “NTRU: A Ring Based Public Key 

Cryptosystem,” in Algorithmic Number Theory (ANTS III), Portland, OR, June 1998. 

[16] N. Koblitz, “Elliptic curve cryptosystem,” Mathematics of Computation 48 (177): 

203-209. JSTOR 2007884. 

[17] V. Miller, “Use of elliptic curves in cryptography,” CRYPTO 85: 417-426. 

[18] A. Wander, et al., “Energy analysis for public-key cryptography for wireless sensor 

networks,” In IEEE PerCom’05, Pisa, Italy, Mar. 2005. 

[19] R.L. Rivest, A. Shamir and L.M. Adleman, “A method for obtaining digital 

signatures and public-key cryptosystems,” Communications of the ACM 21(2) (1978) 

120-126. 

[20] F. Koushanfar, M. Potkonjak, Watermarking Techniques for Sensor Networks: 

Foundation and Applications, in Security in Sensor Networks, ed. by Y. Xiao 

(Auerbach Publications, Taylor & Francis Group, 2006) 

[21] J. Jeong and Z.J. Haas, “Predeployed Secure Key Distribution Mechanism in Sensor 

Networks: Current State-of-the-Art and a New Approach Using Time Information," 

IEEE Wireless Communication, August 2008, pp. 42-51 

[22] L. Eschenauer, et al., “A key-management scheme for distributed sensor networks,” 

in Proc. Conf. Computer Commun. Security, 2002, pp. 41-47. 

[23] H. Chan, et al., “Random key predistribution schemes for sensor networks,” in 

Proc.IEEE Symposium Security Privacy, 2003, pp. 197-203. 

[24] S. Zhu and W. Zhang, “Group Key Management in Sensor Networks,” Book Chapter 

from Security in Sensor Networks, edited by Y. Xiao. Auerbach Publications. 2007. 

[25] S. Zhu, et al., “LEAP: Efficient security mechanisms for large-scale distributed 

sensor networks,” in Proc. 10th ACM Conf. Computer Commun. Security, 2003 pp. 

62-72. 

[26] R. Blom, “An Optimal Class of Symmetric Key Generation Systems, Advances in 

Cryptology,” Proc. of EUROCRYPT84, LNCS, Vol. 209, pp. 335-338, 1984. 

[27] Q. Huang, et al. “Fast authenticated key establishment protocols for self- organizing 

http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf
http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf
http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf
http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf
http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf


35 
 

sensor networks,” in Proc. 2nd ACM International Conf. Wireless Sensor Networks 

Applications, 2003, pp. 141-150. 

[28] R. Anderson, et al., “Key infection: Smart trust for smart dust,” in Proc. 12th IEEE 

International Conf. Network Protocols (ICNP), 2004. 

[29] G. Jolly, et al., “A low-energy key management protocol for wireless sensor 

networks,” in Proc. 8th nternational Symposium Computers Commun. (ISCC), 2003, 

vol. 1, pp. 335-340. 

[30] M. Chorzempa, et al., “SECK: Survivable and efficient clustered keying for wireless 

sensor networks,” in Proc. IEEE Workshop on Information Assurance in Wireless 

Sensor Networks, pp. 453-458. Phoenix AZ, April 2005. 

[31] J. Newsome, et al., “The Sybil Attack in Sensor Networks: Analysis & Defenses”, in 

Proc. 3rd International Symposium on Information Processing in Sensor Networks, 

2004, pp. 259-268. 

[32] S. Ratnasamy, et al., “GHT: a geographic hash table for data-centric storage,” In 

WSNA 2002, Sept. 

[33] Y. Hu, et al., “Packet leashes: A defense against wormhole attacks in wireless ad hoc 

networks,” in Proc. IEEE INFOCOM, 2003. 

[34] C. Castelluccia, et al., “On the difficulty of software-based attestation of embedded 

devices,” in CCS’09, November 9-13, 2009 

[35] A. Seshadri, et al., “SWATT: Software-based attestation for embedded devices,” in 

Proc. IEEE Symposium Security Privacy, 2004, pp.272-282. 

[36] A. Seshadri, et al., “SCUBA: Secure code update by attestation in sensor networks,” 

in Proc. 5th ACM Workshop Wireless Security, 2006, pp. 85-94. 

[37] M. G. Zapata, “Secure ad-hoc on-demand distance vector routing,” Mobile Computing 

and Communications Review, Volume 6, Number 3, 2002. 

[38] S. Marti, et al., “Mitigating routing misbehavior in mobile ad hoc networks,” in 

Proc.6th Annual International Conference Mobile Computing Networking, 2000, pp. 

255-265. 

[39] P. Papadimitratos and Z.J. Haas, “Securing Data Communication in Mobile Ad Hoc 

Networks,” IEEE Journal on Selected Issues in Communications (JSAC), special issue 

on “Security in Wireless Ad Hoc Networks,” vol.24, no.2, February 2006, pp.343-356. 

[40] Y. Hu and A. Perrig, “Ariadne: A secure on-demand routing protocol for ad hoc 

networks,” ACM MOBICOM, Sept. 2002, pp. 12-23. 

[41] S. Buchegger and J. L. Boudec, “Nodes Bearing Grudges: Towards Routing Security, 

Fairness, and Robustness in Mobile Ad Hoc Networks,” Proceedings of the Tenth 

Euromicro Workshop on Parallel, Distributed and Network-based Processing, IEEE 

Computer Society, Canary Islands, Spain, 2002, pp. 403-410. 

[42] M.C. Wong, et al., “Security Issues in Ad Hoc Networks,” Book Chapter from 

Security in Sensor Networks, edited by Y. Xiao. Auerbach Publications. 2007. 

[43] C. Karlof, et al., “Secure routing in wireless sensor networks: Attacks and 

countermeasures,” Elsevier’s AdHoc Networks Journal, Special Issue on 

SensorNetwork Applications and Protocols, 1(2-3):293-315, September 2003. 

http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf


36 
 

[44] Y. Wang and Y. Tseng, “Attacks and Defenses of Routing Mechanisms in Ad Hoc 

and Sensor Networks,” Book Chapter from Security in Sensor Networks, edited by Y. 

Xiao. Auerbach Publications.2007. 

[45] C.E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance- 

vector routing (DSDV) for mobile computers,” ACM Conference on 

Communications Architectures, Protocols and Applications, Vol. 1 (1994), pp. 234-

244. 

[46] B. Bellur and R.G. Ogier, “A reliable, efficient topology broadcast protocol for 

dynamic networks,” IEEE INFOCOM, Vol. 1 (1999), pp.178-186. 

[47] P. Jacquet, et al., “Optimized link state routing protocol for ad hoc networks,” IEEE 

International Multi Topic Conference, Vol. 1 (2001), pp. 62-68. 

[48] D.B. Johnson and D.A. Malts, “Dynamic source routing in ad hoc wireless networks, 

Mobile Computing,” edited by T. Imielinski and H. Korth, Kluwer Academic 

Publishers, 1996, pp. 153-181. 

[49] C.E. Perkins and E.M. Royer, “Ad-hoc on-demand distance vector routing,” IEEE 

Workshop on Mobile Computing Systems and Applications, Vol. 1 (1999), pp. 90-

100 

[50] M.S. Corson and A. Ephremides, “A distributed routing algorithm for mobile 

wireless networks,” Wireless Networks, Vol. 1 No. 1 (1995), pp. 61-81. 

[51] C.K. Toh, “Associativity-based routing for ad hoc mobile networks,” Wireless 

Personal Communications, Vol. 4 No. 2 (1997), pp. 103-139 

[52] V.D. Park and M.S. Corson, “A highly adaptive distributed routing algorithm for 

mobile wireless networks,” IEEE INFOCOM, Vol. 1 (1997), pp.1405-1413. 

[53] Z.J. Haas and M.R. Pearlman, “The Performance of Query Control Schemes for the 

Zone Routing Protocol,” IEEE/ACM Transactions on Networking, vol.9, no.4, August 

2001, pp.427-438, DOI: 10.1109/90.944341 

[54] G. Pei, M. Gerla, and T.W. Chen, “Fisheye state routing: a routing scheme for ad hoc 

wireless networks,” IEEE International Conference on Communications, Vol. 1 

(2000), pp. 18-22. 

[55] P. Samar, M.R. Pearlman, and Z.J. Haas, “Independent Zone Routing: An Adaptive 

Hybrid Routing Framework for Ad Hoc Wireless Networks,” ACM/IEEE Transactions 

on Networking, vol.12, no.4, August 2004, pp.595-608  

[56] M.R. Pearlman and Z.J. Haas, “Determining the Optimal Configuration for the Zone 

Routing Protocol,” IEEE Journal of Selected Areas in Communications, vol. 17, no.8, 

August 1999, pp. 1395-1414, DOI: 10.1109/49.779922 

[57] P. Papadimitratos and Z.J. Haas, ”Secure Message Transmission in Mobile Ad Hoc 

Networks,” Elsevier Ad Hoc Networks Journal, vol.1, no.1, July 2003, pp.193-20 

[58] A. Perrig, R. Canetti, D. Song and J.D. Tygar, “Efficient and secure source 

authentication for multicast,” in: Proceeings of the Network and Distributed System 

Security Symposium, NDSS’01 pp.35-46. 

[59] A. Perrig, R. Canetti, J.D. Tygar and . Song, “Efficient authentication and signing of 

multicast streams over lossy channels”, in: Proceedings of the IEEE Symposium on 

Security and Privacy (May 2000) pp. 56-73. 

http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf


37 
 

[60] J. Deng, et al., “INSENS: Intrusion-tolerant routing in wireless sensor networks,” 

Computer Commun., vol. 29, pp. 216-230, 2006. 

[61] W. R. Heinzelman et al., “Energy-efficient communication protocol for wireless 

microsensor networks,” in 33rd Annual Hawaii International Conference on System 

Sciences, 2000, pp. 3005-3014. 

[62] M. Tubaishat, et al., “A secure hierarchical model for sensor network,” ACM 

SIGMOD Record, vol. 33, pp. 7-13, 2004. 

[63] W. Diffie and M. E. Hellman. “Privacy and Authentication: An Introduction to 

Cryptography,” Proceedings of the IEEE, 67(3): 397-427, March 1979. 

[64] F. Hu, et al., “Scalable Security in Wireless Sensor and Actuator Networks,” Book 

Chapter from Security in Sensor Networks, edited by Y. Xiao. Auerbach Publications. 

2007. 

[65] A. Perrig, et al., “SPINS: Security protocols for sensor networks,” Springer 

       Netherlands Wireless Networks, vol. 8, pp. 521-534, 2002. 

[66] B. Karp, et al., “GPSR: Greedy perimeter stateless routing for wireless networks,” In 

Proceedings of the 6th Annual International Conference on Mobile Computing and 

Networking, pp. 243-254, ACM Press, 2000. 

[67] K. Ravichandran and K. M. Sivalingam, “Secure Localization in Sensor Networks,” 

Book Chapter from Security in Sensor Networks, edited by Y. Xiao. Auerbach 

Publications. 2007. 

[68] L. Lazos, et al., “SeRLoc: Robust Localization for Wireless Sensor Networks,” In 

Proc.3rd ACM Workshop Wireless Security, 2004, pp. 21-30. 

[69] Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust statistical methods for securing 

wireless localization in sensor networks,” in Proc. 4th International Symposium 

Information Processing in Sensor Networks, 2005. 

[70] P. Rousseeuw and A. Leroy, “Robust regression and outlier detection,” Wiley- 

Interscience, Sept. 2003. 

[71] L. Fang, et al., “A beacon-less location discovery scheme for wireless sensor 

networks,” in Proc. IEEE INFOCOM, 2005. 

[72] T. Dimitriou and I. Krontiris, “Secure In-Network Processing in Sensor Networks,” 

Book Chapter from Security in Sensor Networks, edited by Y. Xiao. Auerbach 

Publications. 2007. 

[73] L. Hu, et al., “Secure aggregation for wireless networks,” in Proc. Symposium 

Applications Internet Workshops, 2003, pp. 384-391. 

[74] J. Girao, et al., CDA: Concealed data aggregation in wireless sensor networks, in 

Proc. ACM WiSe, 2004. 

[75] J. Domingo-Ferrer, “A provable secure additive and multiplicative privacy 

homomorphism,” in Proc. Information Security Conf., 2002, pp. 471-483. 

[76] L. Atzori, et al., “The Internet of Things: A survey,” Elsevier’s Computer Networks, 

June 2010. 

[77] R. Roman, et al., Integrating Wireless Sensor Networks and the Internet: A 

Security Analysis,” Internet Research, 2009. 



38 
 

[78] R. Roman, et al., “Do Wireless Sensor Networks Need to be Completely Integrated 

into the Internet?,” Furture Internet of People, Things and Services (IoPTS) eco- 

       Systems, Brussels, 2009. 

[79] R. Hummen, et al., “A Security Protocol Adaptation Layer for the IP-based Internet 

of Things,” Interconnecting Smart Objects with the Internet Workshop, 2011. 

[80] T. Zahariadis, et al., “Securing wireless sensor networks towards a trusted Internet of 

Things,” IoS Press, ISBN 978-1-60750-007-0, pp. 47-56. 

[81] R. Roman, et al., “Key management systems for sensor networks in the context of 

the Internet of Things,” Elsevier’s Computers & Electrical Engineering, March 

2011. 

  

  


