
1

“Current Challenges and Approaches in

Securing Communications for Sensors and Actuators”

Zygmunt J. Haas, Lin Yang, Meng-Ling Liu, Qiao Li, and Fangxin Li

 Wireless Networks Laboratory (WNL)

Cornell University, Ithaca, NY, 14853

wnl.ece.cornell.edu

Abstract

Recent advances in MEMS hardware have enabled small-footprint and inexpensive

sensors to be deployed in hard-to-access locations and to form wireless sensor networks

(WSNs). WSNs are typically mission-oriented networks and offer appealing solutions to

a range of practical problems. However, due to the characteristics of WSN, their design

principles differ from other types of networks. For instance, the severe limitations of

computational and energy resources in the network nodes restrict their ability to process

and communicate information. These characteristics, particular to WSNs, dictate new

security challenges and require new approaches to implementation of security protocols.

In this chapter, we present some of the WSNs security challenges and discuss a number

of selected solutions presented in the technical literature.

The structure of the chapter is as follows. In Section 1, we provide background material

on WSN security; in particular, we present the security goals, implementation constraints,

potential attacks and defenses, and evaluation benchmarks. In Section 2, we discuss basic

security challenges and approaches, including cryptography schemes, key management

schemes, and attack detection and prevention mechanisms. Then, in Sections 3, 4, and 5,

we discuss secure routing, secure localization, and secure data aggregation, respectively.

Finally, we conclude the survey in Section 6.

1. Background

1.1 Security Goals:

The field of Information Security defines numerous goals with respect to protecting

information, with the following being considered the top three: confidentiality, integrity,

and availability [1]. (These three components, being the core principles of information

security, are often referred to as the CIA triad in the Information Assurance field [2].)

Information confidentiality is defined as the concealment of information, so that the

information can only be available and disclosed to the intended parties. Integrity of

Z. J. Haas, L. Yang, M-L. Liu, Q. Li, and F. Li, “Current Challenges and Approaches in

Securing Communications for Sensors and Actuators,” Chapter 17 in “The Art of Wireless

Sensor Networks,” H.M. Ammari (ed.), Springer-Verlag Berlin Heidelberg, 2014,

DOI: 10.1007/978-3-642-40009-7_17

2

information refers to its trustworthiness, so that an adversary cannot create, modify, or

destroy information, including protection against injection of fraudulent, duplicate, or old

(expired) information (e.g., the replay attack). Information availability denotes the ability

of timely and reliable access to the information. The operation of averting information

availability is called the denial of service attack. Note that ensuring the above elements of

information security requires protection of multiple hardware and software components of

the system, with the network being just one such a component.

Other major elements of information security include:

 Authentication—the ability of a party to verify the identity of the other

communicating party or parties

 Non-repudiation—the ability to assert that a particular party generated the

information.

 Authorization—the ability to restrict information access only to permitted parties

 Authenticity—the ability to verify that the information has been created or

modified by the declared party

 Privacy—the ability to conceal the meta-data about the information-generating

entity (e.g., identity of the entity, its location) that generated the transmitted data

(to be distinguished from confidentiality)

As for most networks, WSNs are also expected to support a subset of the above

information security goals, a set which depends on the particular WSN application.

However, the new aspect of WSN security relates to the approaches through which the

above information security goals are implemented. In particular, meeting the above

security goals in WSNs are especially challenging, due to the hardware limitations of the

sensor nodes (energy, computation, storage), as well as due to the operational modes of

the network (e.g., unattended operation, large number of nodes, limited node lifetime,

fixed deployment, unknown and/or changing propagation conditions). Furthermore, due to

the fact that in some applications cost is an important consideration, individual network

nodes tend to be inexpensive and, thus, less reliable. However, overall the network needs

to support some required reliability level. Furthermore, the cost consideration often

prevents reliance on more expensive hardware (e.g., tamper-resistant modules), which

could otherwise reduce the complexity of some security-related protocols.

1.2 Implementation Constraints

The particular features of the sensor nodes, especially their limitations, affect the design

of the security protocols. For instance, typically, nodes in a WSN are inexpensive sensing

devices with quite limited computational capabilities, as compared with nodes in

traditional communication networks. Consequently, WSN’s nodes are unable to execute

security protocols designed for such other networks. Furthermore, the wireless

communication channel and the operational characteristics of WSNs introduce additional

implementation challenges.

Hardware constraints

The complexity of a software and the performance requirements of its underlying

3

application dictate the amount of hardware resources needed for the software execution,

including the size of memory/storage, the code space, the CPU clock rate, and the energy

source. Sensors are usually limited in physical size, which in turn limits its ability to store

data and code. Most contemporary sensor devices have RAM sizes ranging from 1K to

10K bytes, and program memory less than 1M bytes [3]. For example, a popular sensor

type, the TelosB, uses the TI MSP430F1611 processor, which is a 16-bit, 8-MHz RISC

CPU, with only 10KB RAM, 48KB program memory, and 1024KB flash storage.

Moreover, the code space required to support the OS alone is on the order of several

kilobytes. For example, the de-facto operating system for wireless sensors, the TinyOS,

requires about 4KB of memory. Therefore, the implementation of security protocol must

be very space-conscious to fit the code in the limited available memory of a sensor node.

Power constraints

Power constraints are always a major concern in WSNs, because the small physical size of

the sensor node limits the battery size and, thus, its energy capacity. Furthermore, in many

application scenarios in which sensor nodes operate unattended, once a sensor node is

deployed it is impossible to replace its battery. Although recharging is possible if an

energy scavenging mechanism is implemented in the nodes, often the amount of energy

collected in this way is limited and inadequate to fully support by itself the node’s energy

needs. In contrast to the above power limitation, security related operations can be

especially power demanding. Walters et al. summarized in [4] three major sources of

power consumptions due to security related operations in WSN:

 the processing required for security functions, such as encryption, decryption, data

signing, and signature verification;

 the energy required to transmit the security-related data or overhead, such as

initialization vectors for encryption and decryption; and

 the energy required to maintain security parameters in a secure manner, such as

storage of cryptographic keys.

Physical-level constraints

In general, wireless communication medium makes mounting security attacks much

easier, as compared to attacks in wired networks. For example, the attacker can passively

eavesdrop on the network’s radio frequency range to steal messages in transit, or it can

inject malicious messages into the network at will [5]. However, WSN are particularly

vulnerable due to several of their attributes. The large number of deployed nodes and the

lack of tight binding among the network nodes render it easier for an attacker to

compromise a small number of nodes, while remaining undetected. Moreover, due to the

simplicity of their hardware, sensor nodes will typically lack sophisticated protection

schemes against physical-layer attack, such as jamming. Furthermore, in many WSNs, the

senor nodes are unreliable and prone to hardware malfunction or depletion of energy, so

that compromising a sensor node could be misinterpreted as a failure, rather than a

security breach. To provide the required level of security, WSN security protocol design

must take these physical-level constraints into consideration.

4

1.3 Potential Attacks and Defenses

Table 1: Sensor network layers and denial-of-service defenses. (From [6])

Network Layer Attacks Defenses

Physical Jamming Spread-spectrum, priority

message, lower duty cycle,

region mapping, mode change

Tampering Tamper-proofing, hiding

Data Link Collision Error-correcting code, Collision

detection

Exhaustion Rate limitation

Unfairness Small frames

Network Neglect and greed Redundancy, probing

Homing Encryption

Misdirection Authorization, monitoring

Black holes Authorization, monitoring

Transport Flooding Client puzzles

Desynchronization Authorization

Wood and Stankovic in [6] exploited layered network architecture to analyze security

issues and to improve robustness. The network layers architecture is divided into physical,

data link, network, and transport layers. Each layer is susceptible to different types of

attacks, and security attacks can exploit interaction among layers or cut across multiple

layers. Table 1 lists the layers of a typical sensor network, and describes each layer’s

security vulnerabilities and possible defenses.

There are two major types of attacks at the physical layer: jamming and tampering [6].

Jamming refers to interfering with the transmissions on the radio frequencies that the

network’s nodes are using, such that an adversary can disrupt the entire network of N

nodes with only k randomly distributed jamming nodes, where k << N. The standard

defense against jamming involves various forms of spread-spectrum communication.

However, such defense may not be available for sensor nodes, because sensor devices are

typically assumed to be low-cost, low-power devices. Other defenses include switching to

a lower duty cycle to outlive an adversary or mapping the jammed region and rerouting

traffic. Tampering refers to physically compromising the nodes in the network. Tamper

protection falls into two categories: passive and active [7]. Passive mechanisms do not

require energy and include technologies that protect a circuit from being detected (e.g.,

tamper-proofing, protective coat). Active tamper protections involve special hardware

circuits, which consumes more energy. Therefore, it would be more appropriate for sensor

nodes to employ passive techniques.

The data link layer is susceptible to three major attacks: collisions, exhaustion, and

unfairness [6]. Error-correcting codes can be used to alleviate some of the effects of

collisions. However, they cannot completely solve the problem, as the adversary can still

corrupt more data than could be corrected by the network. Collision detection is another

way to deal with a collision attack, but it cannot completely defend against collision

attacks, because proper transmission still need cooperation among nodes, while subverted

5

nodes could intentionally and repeatedly deny channel access. Exhaustion refers to attacks

that deplete the energy source of the network nodes, thus jeopardizing the availability of

the network. Existing MAC techniques, such as random back-offs and scheduled access,

are only intended to solve the problem of random collisions. When collisions are

intentional, these techniques become largely ineffective. A possible solution is inclusion

of a rate limiting mechanism in MAC admission control, so that the network would

simply ignore the excessive requests generated by an attacker without responding to such

requests, and thus avoiding further increase in the traffic volume. However, rate limiting

feature has its disadvantages; for example, it reduces the overall network capacity and it

limits the maximum data rate of individual users even when the network is underutilized.

Unfairness can be caused by selective intermittent application of the attacks mentioned

above, by abusing a cooperative MAC-layer priority scheme, or by monopolizing the

channel. One defense against this threat is to use small frames, so that an individual node

can capture the channel only for a short time period. However, if the messages typically

transmitted by the network nodes are long, then splitting the messages into smaller frames

incurs additional framing and channel-access overheads.

The network layer is subject to four types of attacks: neglect and greed, homing,

misdirection, and black holes [6]. A malicious node is neglectful when it arbitrarily

neglects to route some messages. This node is also greedy if it gives undue priority to its

own messages. A solution to this type of problem is to use multiple (alternate) routing

paths or send redundant messages. Location-based network protocols that rely on

geographic forwarding expose the network to homing attacks, in which an adversary

observes the traffic to obtain the location of critical nodes. Once found, these nodes are

subject to being attacked. One solution to this problem is to encrypt the header, so that an

adversary cannot learn the location of the critical nodes from reading the header. This

solution assumes a secure key management scheme, such that all neighbors share

cryptographic keys, and so a passive adversary cannot learn the source or destination of

the messages from the headers. Misdirection is a more powerful attack, which forwards

messages along a wrong path, perhaps by fabrication malicious route advertisements. This

attack can target either the sender or an arbitrary victim. (The defense to this attack is

similar to that for a black-holes attack, which is discussed next.) A Black-holes attack is

an even more effective attack against distance-vector-based routing protocols. In this

attack, compromised nodes advertise zero-cost routes, thus forming routing black holes

within the network [8]. This causes excessive messages to be routed through the

compromised nodes, and therefore causes intensive bandwidth contention around

malicious nodes. It also causes the neighbors of malicious nodes to quickly exhaust their

energy supplies due to excessive routing, and therefore could potentially create partitions

in the network. Authorization and monitoring are ways to defend against misdirection and

black-holes attack [6]. In an authorization-based solution, only authorized nodes (i.e.,

nodes with valid public/private key pairs) are allowed to exchange routing information.

Nodes may use public key infrastructure to sign and verify routing messages, thus

ensuring the confidentiality and integrity of routing information. Zero-cost routes in black

holes attack are thus eliminated, as an adversarial node does not have the valid

public/private key pairs to generate encrypted routing information. Such a scheme

requires a reliable certification authority for authentication. Since a centralized

certification authority can become a single point of failure, distributed certification

6

authority schemes have been proposed. For example, Zhou and Haas in [9] proposed a

distributed certification authority scheme by distributing the certification function among

n servers and, by using threshold cryptography, ensures the certification authority is

compromised only if at least t servers are compromised. Monitoring-based solution relies

on nodes monitoring their neighbors to ensure their proper routing behavior. Nodes then

select routing paths utilizing nodes that exhibit long-term proper routing behavior. It is

assumed in monitoring-based solution that nodes with a longer period of proper routing

behavior are more trustworthy, and therefore routing information from these nodes are

less likely to be inaccurate. This defends misdirection and black-holes attack, as

compromised nodes can be quickly detected by their neighbors, and the compromised

nodes are then not selected again for routing paths.

The transport layer can be threatened by flooding and desynchronization attacks [6]. A

naïve solution to flooding is to limit the number of allowed connections, but this would

also degrade the overall network throughput, as there would be fewer connections

available for each node. A better solution is to have the server node ask the client node to

solve some computationally expensive puzzle upon requesting a connection, so that if the

client is a compromised node and repeatedly requests establishment of connections, the

client would deplete its power while repeatedly solving the puzzles. Desynchronization

disrupts end-to-end connections. In this attack, the adversary disrupts the communication

between two nodes by forging messages that carry sequence numbers or other control

messages. If the adversary is successful, the communicating nodes will waste energy by

excessively executing the synchronization-recovery protocol without exchanging any

useful information. A counter to this attack is authentication of all exchanged packets,

assuming that the adversary cannot forge the authentication mechanism.

1.4 Evaluation Benchmarks

There are various benchmarks for evaluating whether a security scheme is appropriate for

WSNs. Some of these benchmarks are ([10]):

 Resiliency—the network capability to continue to offer sufficient security services

while some of the network nodes are compromised.

 Resistance—the network capability to avert an attacker from fully controlling the

network.

 Scalability—the capability to support security in very large networks (on the order

of hundreds to thousands of nodes).

 Self-organization and flexibility—the capability to adaptively restructure the

security scheme as a result of network changes;

 Robustness—the capability of the network to continue to operate in spite of

irregularities (e.g., security attacks, hardware failure, etc). (Robustness is a more

generalized notion than resiliency, as resiliency is focused on providing security

services while under attack, whereas robustness considers providing general

network services while under attack.)

 Energy efficiency—the degree to which the network lifetime is maximized by

preserving energy.

 Assurance—the confidence that the major elements of information security

(e.g., confidentiality, integrity, availability, etc.) are adequately met [2].

7

2. Basic Security Challenges and Approaches

2.1 Cryptography Schemes

Cryptography is the basic element in any security system. It deals with encrypting the

message in order to achieve secure communication in the presence of third party

adversaries. There are two types of encryption methods: symmetric key cryptography,

which uses the same key for encryption and decryption, and asymmetric (public) key

cryptography, which uses different keys for encryption and decryption. Compared to

asymmetric key cryptography schemes, symmetric key cryptography schemes have the

advantage of lower computational overhead because they involve relatively simply bit-

wise operations (e.g., XOR) that can be directly implemented in hardware, but they

require more complex key distribution and key management schemes ([11]).

There has been extensive work done on the evaluation of different cryptography schemes.

In [12], Ganesan, et al. investigated the performance of five different symmetric key

cryptography schemes (RC4, IDEA, RC5, MD5, and SHA1), over six different hardware

platforms that use 8/16/32-bit word size (Atmega 103, Atmega 128, M16C/10, SA-1110,

PXA250, and UltraSparc2). Their experiments indicate that: (1) the cycle overhead (i.e.,

the number of clock cycles to perform a cryptographic operation on a hardware platform)

is mostly uniform within each word-size class (8/16/32 bit), but there are differences

among the three word-size classes; (2) the impact of caches (i.e., the additional clock

cycles due to cache misses in memory fetch) is negligible; and (3) hashing techniques

require almost an order of a magnitude higher clock cycle overhead than symmetric key

encryption techniques. Table 2 shows the execution times for the various encryption

algorithms on the various platforms. Figure 1 shows the byte overhead for the various

algorithms and platforms. They also derived a model to assess the computational overhead

of embedded architectures for encryption protocols, in general.

Table 2: Execution times (in µs) for algorithms, platforms,

and plaintext sizes (in bytes). (From [12])

Algorithm Size Action Atmega

103

Atmega

128

M16C/10 strong

ARM

Xscale

(400)

Xsacle

(200)

Sparc

(440)

MD5 0 Digest 5863 1466 1083 46 26 53 23

 1-26 Digest 5890 1473 1075 46 26 53 23

 62-80 Digest 10888 2722 2011 74 45 90 39

SHA-1 1 Digest 15249 3812 2651 69 12 102 27

 3 Digest 15781 3945 5303 69 12.3 103 27

 56 Digest 14543 3636 7955 133 25.8 205 55

 64 Digest 31107 7777 10907 145 25.7 207 56

RC5 16 Init 9641 2410 2074 41 45 91 28

 Enc 1651 413 197 3 3 6 2

 Dec 1636 409 202 3 3 7 2

IDEA 16 Init enc 1523 381 727 26 15.54 47 11

 Init enc 9417 2354 1927 76 25.16 69 36

 Enc 2555 325 596 16 3.24 17 9

 Dec 2614 325 597 16 3.27 17 9

RC4 Init 1886 472 2455 155 66.8 216 96

 Enc 344 86 123 10 5 9 4

8

Figure 1: Normalized overhead for algorithms, platforms and, plaintext sizes (in bytes).

(From [12])

Although public key cryptography schemes have received much less attention in WSN

security due to their expensive computational overhead, there are several studies that

discuss the possibilities of incorporating public key cryptography schemes into WSN. In

[13], Gaubatz, et al. showed that special purpose ultra-low power hardware

implementations of public key algorithms can be used in sensor nodes. They implemented

three different public key cryptography schemes (Rabin’s Scheme [14], NtruEncrypt and

NtruSign [15], and Elliptic Curve Cryptography [16, 17]) in a sensor node that is

embedded with a custom-designed low-power co-processor to handle all the computation-

intensive tasks. They concluded that the use of public key cryptography can reduce the

amount of traffic overhead due to key management in WSN, and that the computational

cost is within acceptable limits and sufficiently fast on their special-purpose hardware.

Wander et al. in [18] also performed a series of experiments to quantify the energy costs

of authentication and key exchange based on ECC [16, 17] and RSA [19] public key

cryptography schemes on an 8-bit microcontroller platform. Their studies indicate that

authentication and key exchange protocols using optimized software implementations of

public key cryptography are quite viable on small wireless devices. They also recommend

ECC over RSA for larger energy savings.

Another cryptography technique is watermarking. In [20], Koushanfar and Potkonjak

proposed the first watermarking approach for protecting data and information generated in

wireless embedded sensor networks. They considered a sensor network application in

which sensor nodes collect data (the data-acquisition phase) to solve nonlinear

optimization problem (the data-processing phase). Node signatures are embedded during

the data-acquisition and data-processing phases, without compromising the quality of the

recorded data or the results od data processing. They conducted two experiments—

0

0.5

1

1.5

2

2.5

3

3.5

4

Atmega 103

Atmega 128

M16C/10

StrongARM

Xscale(200)

Xscale(400)

Sparc(440)

9

acoustic atomic trilateration and light source determination—to study the trade-offs

between the security protection and the watermarking overhead and to study the situations

where such watermarking scheme is the most effective.

2.2 Key Management Schemes

Key management deals with distributing and storing encryption and decryption keys to

implement secure communication. A trivial solution to key management is to use a global

key for all the sensor nodes. However, in this scheme, if any node in the network is

compromised, then the adversary obtains the global key and the whole network security is

defeated. Another trivial solution is to have each node store N-1 different keys (where N is

the total number of nodes in the network), with each key corresponding to a different node

in the network. However, this solution is too complex, as a sensor node’s limited memory

may be insufficient to store the N-1 keys, especially for a large network. Clearly, key

management is an important yet challenging task, in particular for encryption schemes

that use symmetric key cryptography.

There have been extensive research works done in the area of key management schemes.

Here, we discuss four categories of key management schemes—key pre-distribution

schemes, hybrid cryptography schemes, key infection schemes, and key management in

hierarchy networks. Figure 2 shows the taxonomy of key management.

Figure 2: Taxonomy of key management protocols

2.2.1 Key pre-distribution schemes

In key pre-distribution schemes, sensor nodes store some initial keys before the nodes are

deployed [21]. Key pre-distribution schemes are further divided into probabilistic schemes

and deterministic schemes.

For probabilistic schemes, the existence of one or more common predistribution keys

between intermediate nodes is not certain, but is instead guaranteed only probabilistically.

Eschenauer and Gligor in [22] proposed one of the earlier probabilistic schemes. In their

scheme, a ring of keys is distributed to each sensor node before node deployment. Each

key ring consists of a randomly chosen k keys from a large pool of P keys, which is

10

generated off-line. A pair of nodes can communicate if they share any key among their

key rings. Although a pair of nodes may not always have a shared key, if a path between

them exists, they can use that path to exchange a key that establishes a direct link. An

enhancement over this scheme is proposed by Chan, et al. in [23], in which a q-composite

random key pre-distribution scheme is proposed. This scheme requires q keys (q>1)

instead of just 1 common key among the key rings of a pair of communicating nodes. The

authors showed that the q-composite key scheme strengthens the network’s resilience

against node capture when the number of captured nodes is small. Figure 3 shows how the

fraction of additional communications that the attacker can compromise varies with the

number of nodes captured by the attacker. As a point of reference, comparing the two

cases of q = 1 and q = 2, in terms of the amount of additional compromised

communications in a network with 50 compromised nodes is 9.52%, and 4.74%,

respectively. The disadvantage of the q-composite keys schemes is that a larger portion of

the network is revealed to the adversary as larger number of nodes becomes compromised.

This scheme thus trades off the protection against an unlikely large-scale network attack

in order to significantly improve the strength of the random key pre-distribution scheme

against smaller-scale attacks. Another probabilistic scheme is GKMPSN proposed by Zhu

and Zhang in [24]. GKMPSN is a centralized group key distribution scheme, in which a

network controller broadcasts new group keys, as well as node revocation information

(i.e., information that identifies a compromised node), to all the nodes whenever a

compromised node is detected. Prior to the deployment of the network, each node stores a

random set of keys out of a common large key pool. The group re-keying operation then

takes two steps. In the first step, the pre-deployed random keys at each node are used to

create secure channels between nodes in order to deliver new keying materials to

legitimate nodes. In the second step, each node uses the received keying materials to

update both the group key and the pre-deployed keys that are invalidated by the

compromised nodes. GKMPSN has an attractive property of partial statelessness, in which

a node can decode the current group key, even if the node missed a few previous group re-

keying operations. This is an attractive feature as: (1) typically packet losses are high in

WSN due to unreliable communication, and (2) the scheme facilitates new nodes joining

the network after initial network deployment.

Figure 3: Probability that a random communication link between two randomly chosen

nodes can be decrypted by an adversary, as a function of the number of nodes captured

11

by the adversary (excluding the two communicating nodes). Key ring size is 200, and

probability of successful key-setup with a neighbor is 0.33. (From [23])

For deterministic schemes, any two intermediate nodes are guaranteed to share one or

more predistributed keys. An example of a deterministic scheme is LEAP (Localized

Encryption and Authentication Protocol) proposed by Zhu, et al. ([25]). LEAP is

motivated by the observation that different types of messages have different security

requirements and that a single keying mechanism is not suitable for meeting these

different security requirements. LEAP supports the establishment of four types of keys for

each sensor node—an individual key shared with the sink node, a pairwise key shared

with another sensor node, a cluster key shared with multiple neighboring nodes, and a

group key that is shared by all the nodes in the network. The individual key allows a node

to securely send sensor readings to the sink node. The pairwise key prevents a

compromised node’s attack, because once a compromised node is detected, its neighbors

will typically immediately revoke the pair-wise keys shared with that compromised node.

However, even if the compromised node is not detected for some time, its damage is only

limited to its near neighbor, as the pair-wise keys are only shared between one-hop

neighbors. The cluster key is used for secure local broadcast, for example routing control

information. The group key authenticates the sink node to the sensor nodes to facilitate

secure network-wise operations, such as key refreshments. Blom in [26] proposed another

pair-wise deterministic key distribution scheme. The scheme can defend against up t

compromised nodes. In pre-distribution phase the sink node generates a (t+1)-by-N matrix

 over some finite field GF(q), where N is the total number of nodes in the network and

(t+1) is the codeword size. The matrix is known to all the nodes in the network. Then

the sink node creates a (t+1)-by-(t+1) symmetric matrix over GF(q). This allows the

sink node to compute a matrix with the property that is a symmetric

matrix (since . Each node i in the

network is assigned with a public column vector =ith column of , and a private row

vector =ith row of . Then, for nodes i and j to establish a pairwise key, they can

exchange and , and compute their pairwise key

 . Assuming there are m < t +1 compromised nodes, then these nodes know m

rows and, due to symmetry, m columns of . A node needs to know at least (t+1)

elements in a codeword in order to acquire information about other element in the

codeword of other nodes. Therefore, if there are less than (t +1) cooperating nodes, no

information about the unknown key is revealed. It has been proven in that the Blom

scheme securely protects the pairwise key if any t+1 columns of are linearly

independent.

2.2.2 Hybrid cryptography schemes.

Hybrid cryptography schemes use computationally expensive asymmetric key

cryptography at the sink nodes and computationally cheaper symmetric key cryptography

at all other sensor nodes. An example of hybrid scheme is proposed by Huang, et al. in

[27], which is based on a combination of elliptic curve cryptography and symmetric key

operations. This scheme reduces the high cost of elliptic curve random point scalar

multiplications at the sensor side and replaces them with low cost and efficient symmetric

key based operations. On the other hand, it authenticates the two identities based on

12

elliptic curve implicit certificates to avoid the typical key management problem in pure

symmetric key based protocols.

2.2.3 Key infection schemes

In key infection schemes, keys are sent in plaintext and thus are not secure. However,

these schemes assume that the number of adversaries at key establishment phase is very

small. For example, Anderson, et al. in [28] proposed a scheme in which each node

bootstraps itself by broadcasting an initial key in the clear. Nodes then exchange keys and

build up trust structures as they perform network and resource discovery. The scheme

assumes that the adversary can only monitor a small proportion of the communications

during deployment phase (i.e., initial key setup phase), but is fully capable of launching

attacks after the deployment phase. This is often a realistic assumption, because the initial

deployment duration is on the order of seconds, while the overall lifetime of the network

can be up to years. Despite the apparent insecurity of this scheme, the proposed scheme

uses multipath secrecy amplification and multi-hop key propagation to enhance the

security of the network, such that at most a fixed proportion of communications links can

be eavesdropped. Multipath secrecy amplification combines keys propagated along

different paths to update pairwise keys. For example, consider three nodes W1, W2, and

W3, with pairwise keys k12, k13, and k23. Suppose W1 wants to update k12 to k12’. W1 can

ask W3 to send the key-update request to W2. The request from W1 to W3 is encrypted

using k13, and the request from W3 to W2 is encrypted using k23. Therefore, if k12 is the

only key being compromised, the adversary cannot update to a new k12’ as long as neither

k23 nor k13 is compromised. Table 3 compares the ratio of the compromised links of the

two schemes: the basic key infection scheme and the security amplification scheme (SA),

showing the improvement of the latter scheme. In the table, is a varying density of the

adversarial nodes (referred to as “black dust”), assuming values of 1%, 2%, and 3%, and d

is the average number of neighbors of a node. Multi-hop key propagation uses

intermediate nodes to temporarily store the pairwise key update information for two nodes

at the ends of a path. For example, if W1 links to W2, W2 links to W3, and W1 wants to

update k13 to k13’, then W1 and W3 can invoke W2’s help to set up a new key that W2

immediately forgets, so a potential node compromising W2 in the future does not reveal

k13’. Multi-hop key propagation supports end-to-end, rather than link-level cryptography,

which helps energy efficiency as sink-to-node communications can be encrypted using

end-to-end keys rather than translated at intermediate nodes. With the assumption of

limited adversaries at the initial key deployment phase, and with the enhancement using

multipath secrecy amplification and multi-hop key propagation, the simulation showed

that the key infection scheme is almost as secure as using pre-loaded initial keys.

d

basic SA basic SA basic SA

2 1.20% 0.97% 2.29% 2.00% 3.38% 2.93%

3 1.81% 1.37% 3.44% 2.67% 5.42% 3.93%

4 2.30% 1.80% 4.45% 3.71% 6.50% 5.55%

5 2.93% 2.37% 5.73% 4.68% 8.73% 6.75%

Table 3: Improvement of secrecy amplification (SA) over the basic key infection scheme

(From [28])

13

2.2.4 Key management in hierarchy networks

Some key management schemes take advantage of the fact that nodes are often

categorized into different types, such as sink nodes, gateway nodes, and sensor nodes, and

different types of nodes have different computational resources. In [29], Jolly et al.

present a key management scheme in a clustered sensor network. The method uses pre-

deployed symmetric keying, in which sensor nodes store a minimum number of keys that

they share with other nodes. Gateway nodes store a larger number of keys, and the sink

nodes have no restrictions and store all the keys in the network. Their simulation showed

that the energy consumption overhead for the key management is remarkably low and

they report an order of magnitude of energy saving. Chorzempa, et. al., in [30] proposed

another hierarchical key management scheme for WSNs. The scheme is called SECK

(Survivable and Efficient Clustered Keying), with three tiers of nodes. The bottom tier

consists of low-end sensor nodes, which are clustered. Each cluster is managed by a

second-tier cluster head to perform data aggregation and forwarding. At the top tier there

is a globally trusted sink node. After initial network deployment, the low-end sensor

nodes undergo a location training phase to establish clusters, and cluster coordinate

system is used in low-end node recovery procedure. Clusters are then used for

establishing and updating administrative keys. A session key between a pair of nodes can

then be obtained from administrative keys. Simulations suggested that the scheme is

resilient against multiple node captures, and can efficiently recluster and salvage

compromised nodes. Figure 4 depicts the comparison of the resiliency against node

capture of the SECK scheme and the basic probabilistic pairwise scheme of Eschenauer

and Gligor [22], while showing that the resiliency of both schemes is comparable.

Realizing that the Eschenauer and Gligor scheme is considered as having good resiliency,

one can conclude that the SECK scheme has overall good resiliency property as well.

Figure 4: The ratio of keys captured vs. the ratio of the captured nodes. (From [22])

2.3 Attack Detection and Prevention

Section 1.3 briefly discussed several basic attacks and defenses in WSNs. This section

extends the previous discussion and focuses on attack detection and prevention

mechanisms for two well-known attacks in WSNs: the Sybil attack and the Wormhole

attack. Another, a more complex issue, compromised node detection, is discussed here as

well.

14

2.3.1 Sybil attack detection and prevention

Newsome et al. systematically analyzed the Sybil attack and its defensive measures in

[31]. In the Sybil attack, a node illegitimately claims multiple identities. This attack can be

exceedingly detrimental to many important functions of WSN. Figure 5 demonstrates

Sybil attack, where an adversary node ‘AD’ is present with multiple identities. ‘AD’

appears as node ‘F’ to ‘A’, as node ‘C’ to ‘B’, and as node ‘A’ to ‘D’, so when ‘A’ wants

to communicate with ‘F’, it sends the message to the adversarial node ‘AD’.

Figure 5: Sybil Attack

 In distributed storage for WSNs, the Sybil attack can defeat replication and fragmentation

mechanisms in a distributed hash table, such as GHT [32]. Thus, the system may not

realize that while it replicates or fragment data across a number of nodes, in fact, it is

storing data on a number of Sybil identities which were created by the same malicious

node. For routing, the Sybil attack can defeat multipath or dispersity routing protocols,

such that seemingly disjoint paths could, in fact, traverse through a single malicious node

which represents several Sybil identities. In geographic routing protocols, a Sybil node

could appear as being present in more than one place at the same time. For data

aggregation, the Sybil attack can have one malicious node contribute to the aggregate

many times to alter the aggregate reading. For voting, the Sybil attack allows a malicious

node to vote multiple times to control outcome of a vote, such as in a blackmail attack.

For fair resource allocation, a Sybil node can claim multiple identities and therefore

obtain more network resources. For misbehavior detection, Sybil nodes could “spread the

blame” by making it appear that the level of misbehaving of the Sybil identities is large

enough for the system to take an action. Defenses against the Sybil attack include radio

resource testing, random key predistribution, position verification, and registration [31].

In radio resource testing [31], it is assumed that any sensor node has only one radio, and

that a radio is incapable of simultaneously sending or receiving on more than one channel.

When a node A wants to test whether any of its neighbors are Sybil nodes (i.e., a node

with multiple identities), the node A can assign to each of its neighbors a different channel

to broadcast some messages. The node A can then choose randomly a channel to listen to.

Due to the assumption that each node has only one radio, if A does not hear anything on a

chosen channel, then the node A can be suspect that the node being assigned to that

channel is a Sybil node. Figure 6 shows the probability of not detecting the presence of

15

some Sybil nodes using this method.

In random key predistribution [31], each node is assigned a subset of a large set of keys,

such that any two nodes share at least a secret key for communication, and no two nodes

are assigned the same subset of keys. As a result, the sensor node can be uniquely

identified by the subset of keys that it possesses. A network is able to verify the identity

of a node by the keys that the node possesses, referred to as key validation. To launch a

successful Sybil attack, the attacker is challenged to find the exact subset of keys of a

node to steal the node’s identity. The estimated probability of a randomly created Sybil

identity being effective is depicted in Figure 7 as a function of the number of

compromised nodes. As a point of reference, for an attack to succeed, the attacker needs

to compromise at least 150 nodes (in the full validation case).

Position verification is another approach to defend against Sybil attacks [31]. This

approach is only applicable in static WSNs (i.e., where sensor nodes are not mobile). In

this approach, the network verifies the positions of each node. Sybil nodes can be detected

because the Sybil nodes advertised by a single malicious node now all have the same

physical position, which would raise an alarm, as the assumption is that a single physical

location could be associated with at most one node.

Registration is another potential solution against Sybil attacks [31]. In this approach, there

is a trusted central authority that manages the network. The central authority keeps a list of

trusted nodes and deployment of nodes. In order to detect a Sybil attack, an entity would

poll the network; the results would then be compared with the information about the

known deployment. To prevent attack, any node could query the central authority for

checking the trusted node list. This scheme requires that the central authority must be able

to store the trusted node list and deployment information securely.

Figure 6: Probability of no Sybil nodes being detected while using the radio defense in

the case of a channel being assigned to every neighbor (From [31])

16

Figure 7: Probability of a randomly created Sybil node being effective in the key pool

scheme as a function of the number of compromised nodes (From [31])

2.3.2 Wormhole attack detection and prevention

In the wormhole attack, an attacker records packets at one location in the network, tunnels

them to another location, and retransmits the packets at the other location, making it

appear as the two parts of the tunnel are in close proximity to each other. Figure 8

demonstrates the wormhole attack, where ‘WH’ is the adversary node which creates a

tunnel between nodes ‘E’ and ‘I’. These two nodes now apprear as they are at most at the

distance of two hops from each other.

Figure 8: The Wormhole Attack

The wormhole attack can form a serious threat in wireless networks. For example, the

wormhole attacker can gain unauthorized access, disrupt routing, or perform a Denial-of-

Service attack. In [33], Hu et al. described the wormhole attack and proposed a

mechanism called packet leashes for detecting and defending against wormhole attacks. A

leash is an additional part of a packet that limits the packet’s maximum allowed

transmission distance. The authors introduced two types of leashes—geographic leash,

which limits the distance a packet travels, and temporal leash, which limits the time a

packet lives (and hence limits the travelling distance, as packet’s speed is limited by its

17

speed of propagation). To construct a geographical leash, each node is assumed to know

its own position, and all nodes in the network are assumed to have loosely synchronized

clocks. Consider two nodes: source, s, and receiver, r. Let ps, pr, ts, and tr denote

positions and times of nodes s and r, respectively. If v is an upper bound on the velocity

of any node, and ∆ is the maximum clock difference between any two nodes, then upon

receiving a packet from source s, the receiver can compute an upper bound on the

distance between the sender and itself, as dsr ≤ || ps – pr || + 2v (tr - ts + ∆) + δ, where δ is

the maximum relative error in location information between any two nodes. To use

temporal leashes, the packet includes an expiration time, after which the receiver does not

accept the packet. The expiration time is based on the allowed maximum transmission

distance and the speed of light. A specific protocol, called TIK (TESLA with Instant Key

disclosure), is also presented in [33] to implement temporal leashes. TIK consists of three

states: sender setup, receiver bootstrapping, and sending and verifying authenticated

packets. In the sender setup phase, the sender uses a pseudo-random function F and a

secret master key X to derive a series of keys K0, K1, … , Kw, where Ki = FX(i). The

pseudo-random function is assumed to be secure in the sense that it is computationally

intractable for an attacker to find the master secret key X, even if all the keys K0, K1, … ,

Kw are known. In addition, without the secret master key X, it is computationally

intractable for an attacker to derive a key Ki that the sender has not yet disclosed. Each Ki

expires after some time interval I, which is selected by the sender. In the receiver

bootstrapping phase, the receiver synchronizes with the source to agree on the initial time

T0 and the time interval I. Finally, in the sending and verifying authenticated packets

phase, if the sender sends a packet P at time Ti, then the sender also sends a message

authentication code (HMAC) of P generated using some undisclosed key Ki+j, in which j

is large enough such that P arrives at the receiver before time Ti+j and Ki+j has not yet

been disclosed. The receiver can wait until time Ti+j for the source to release the key Ki+j,

and verify the HMAC for P. The timing diagram of a TIK packet is shown in Figure 9,

where τ is the propagation time between the nodes. The protocol assumes that all the

clocks are synchronized within the maximum timing error of . Upon receipt of the

HMAC value and based on the time as the time of disclosure of the key , the receiver

confirms that the corresponding key was not yet sent by the sender. After all the

verifications of the protocol were successfully completed, the receiver accepts the packet.

Figure 9: Timing of a packet in transmission of the TIK protocol. (From [33])

18

2.3.3 Compromised node detection

Besides attack detection and prevention, compromised node detection is another important

problem in WSN security. Compromised node detection is usually implemented by

software or hardware code-testing schemes. However, for WSNs, hardware-based code-

testing schemes are often not feasible for lightweight sensor nodes. Software-based code-

testing is more promising, because it requires neither dedicated hardware nor physical

access to the device. Software-based approaches are usually based on a challenge-

response scheme, where the verifier (usually the sink node) challenges a prover (a target

device) to compute a checksum of its memory [34]. Examples of software-based code-

testing schemes are SWATT [35] and SCUBA [36].

SWATT (SoftWare-based ATTestation for Embedded Devices)[35] by Seshadri et al. is a

software-based attestation technique to verify the memory contents of embedded devices.

For each sensor device, SWATT adds an external verifier that is physically distinct from

the device. The verifier and the device then run the challenge-response protocol of

SWATT. To ensure that the device can return the correct answer only if its memory

contents are correct, the verification procedure uses a pseudorandom memory traversal, in

which the verifier sends to the device a randomly-generated seed for the device to

generate a pseudorandom starting memory address for the verifier to access. The verifier

then traverses the memory randomly, and iteratively updates a checksum of the memory

contents. Since the verifier’s memory traversal is random, the attacker cannot predict

which memory location is accessed, and therefore after a certain number of iterations of

memory accesses, the verifier can eventually detect whether the memory is maliciously

altered.

SCUBA (Secure Code Update By Attestation) [36] by Seshadri et al. is another example

of software-based code-testing scheme. SCUBA enables a sensor network to detect

compromised nodes. Once a compromised node is detected, SCUBA allows the network

to either repair the compromised node through code updates, or revoke the compromised

node. SCUBA is based on ICE (Indisputable Code Execution), which is a challenge-

response-based protocol that ensures that a remote sensor node does not execute a

malicious executable. To achieve this, each sensor node is installed with a special

executable called the ICE verification function. The ICE verification function is

responsible for checking the integrity of an executable on the sensor node, and also for

setting up an execution environment to provide atomic execution for this executable (i.e.,

when an executable is executed in this execution environment, no other executable can

interrupt this execution). To ensure that the ICE verification function itself is untampered,

the ICE verification function is implemented as a self-checksumming code, which is a

sequence of instructions that compute a checksum over themselves, such that the

checksum would be wrong or the computation would be slower if the sequence of

instructions were modified. The SCUBA protocol then works as follows. To invoke a

sensor node’s executable X, the invoker node (e.g., a sink node) first sends a “check

integrity and execute” request to the sensor node. The ICE verification function on the

sensor node then checks for the integrity of X, and executes X if the integrity checking

passed. After finishing the execution of X, the sensor node sends the execution result,

together with the checksum returned by the ICE verification function, back to the invoker.

The invoker can detect whether the sensor node’s executable is compromised by

reviewing the ICE checksum.

19

3. Secure Routing

Many WSN routing protocols are based on traditional ad hoc network routing protocols.

The original focus of ad hoc routing protocols was on performance, but security issues

were extensively studied as research on ad hoc routing protocols matured (e.g. [37, 38, 39,

40, 41, 42]). Of course, secure routing is also an important requirement for WSN

applications. This section examines existing approaches to secure routing for WSNs.

Figure 10 shows the taxonomy of secure routing. A comprehensive discussion of many of

the attacks on routing protocols is also presented in [43] by Karlof et al.

Figure 10: Taxonomy of Secure Routing

3.1 Traditional Routing Protocols for Ad Hoc and Sensor Networks

Routing protocols for ad hoc and sensor networks can be broadly classified into three

categories: proactive, reactive, and hybrid [44]. In proactive routing protocols, nodes

periodically exchange routing information, so typically correct routes are almost always

known at the time a routing request is placed. Examples of proactive routing protocols

include DSDV[45], TBRPF[46], and OLSR[47]. In reactive routing protocols, nodes

exchange routing information only when a communication request is pending. Examples

of reactive routing protocols include DSR[48], AODV[49], LMR[50], ABR[51] and

TORA[52]. Hybrid routing protocols are a mixture of proactive and reactive routing

protocols. ZRP [53] and FSR[54] are examples of hybrid routing protocols. Proactive

routing protocols have lower latency, since routing information is consistently maintained;

however such protocols are wasteful in communication overhead when the traffic activity

is small and, especially, when the network is highly mobile. In contrast, reactive routing

protocols incur smaller communication overhead at the expense of larger delays. Thus,

reactive protocols may be more practical for low-activity and mobile ad hoc networks,

while proactive protocols may better fit highly-active and more static networks. Similarly,

for mobile sensor networks which support applications that require infrequent

communications, reactive protocols might be a better choice. Hybrid routing protocols

typically outperforms proactive and reactive routing protocols, because they use a

combination of the two [55], and often optimize their performance based on the network

conditions [53,56].

The original designs of many of the ad hoc network routing protocols are based on

performance metrics (e.g., energy efficiency) rather than on security provisions, but there

have been numerous works that extend these original ad hoc network routing protocols to

20

improve security. Zapata in [37] noted that ad hoc networks protocols are being designed

without security in mind. He proposed the secure ad hoc on-demand distance vector

(SAODV) routing protocol to address the problem of securing a MANET network.

SAODV assumes that each node has a signature key pair from a suitable asymmetric

cryptosystem. Further, each ad hoc node is capable of securely verifying the association

between the address of a given ad hoc node and the public key of that node. AODV uses

two mechanisms to secure its messages: Digital signatures and Hash chains. Digital

signatures are used by AODV to authenticate the non-mutable fields of a message. Hash

chains are used in AODV to secure the mutable part of a message, which is hop count

information. On the other hand, for route error messages, a node uses digital signatures to

sign the whole message, and any neighbor of the node that receives such a route error

message authenticates the signature.

Papadimitratos and Haas [39, 57] proposed the Secure Message Transmission (SMT)

protocol, which is based on the notion of information dispersion. SMT assumes that there

is another underlying protocol capable of discovering routes in the network (e.g., SRP [7]),

although the routes may contain malicious nodes. SMT adds redundancy and partitions the

information into fragments, while transmitting the fragments across multiple routes, so that

even if some of the fragments are lost (i.e., those that are sent over the routes with

malicious nodes), the remaining fragments suffice to reconstruct the original transmission.

While SMP transmits data simultaneously over multiple routes, a modification of SMT, the

Secure Single Path (SSP) protocol, transmits data over multiple routes in an alternative

manner. The salient feature of these protocols is that they do not rely on trustworthiness of

nodes in the network (with the exception, of course, of the source and the destination

nodes). Indeed, the protocols can deliver highly reliable and low-delay communication

even when a large fraction of the network nodes act maliciously. The protocols are, in

particular, useful for reliable and secure real-time communications, when retransmissions

may not be an option. As a point of reference, SMT can deliver 93% of messages without

retransmissions, even when 50% of the nodes randomly drop packets. Figure 11 depicts an

example of the SMT operation.

Figure 11: SMT transmission of a single message through dispersion

Ariadne [40], by Hu, Perrig, and Johnson, is an on-demand secure routing protocol for ad

hoc networks. Ariadne’s goal is to prevent attacks by tampering with uncompromised

routes (i.e., routes formed by uncompromised nodes), and also prevent many types of

DoS attacks. The operation of the Ariadne protocol is based on the target node

authenticating the Route Requests. This is accomplished by the initiator including a

Time
Source

Destination

ACK

Re-transmit

Dispersed

ACK

Dispersed

Message

Lost

Fragments

Fully

reconstructed

message

Lost

Fragment

21

MAC, which is calculated over the unique data in the Route Request, and using key Ksd.

Ariadne uses three alternative mechanisms for route data authentication, which are:

TESLA protocol, Digital signatures, and standard MACS. Additionally, per-hop hashing

technique is used to confirm that there is no missing node in the list of nodes in the

request. The design of the protocol is based on a reactive routing protocol DSR [48] and a

broadcast authentication protocol TESLA [58, 59]. The operation of DSR is divided into

Route Discovery and Route Maintenance. In Route Discovery, the source node S

broadcasts a ROUTE_REQUEST message containing the identifier for the destination

node D (which is referred to as the “target”). There are two situations in which discarding

of a ROUTE_REQUEST occurs. One such a situation is when the node’s address is

already listed in the route’s record. Discarding the request avoids a request propagating

around a loop. The other such a situation involves discarding the request upon

determination that the host has recently seen a copy of the same request, one carrying the

same initiator address and the same request id. This guarantees that a later copy of the

request that arrived at this node by a different route is removed. If the request is not

discarded, the node appends its own identifier to the ROUTE_REQUEST message and

re-broadcasts the message. When ROUTE_REQUEST reaches the target D, D replies

with a ROUTE_REPLY message, which contains the routing information, back to the

source node S. Node S then uses the route in ROUTE_REPLY message to forward data to

the node D. Route Maintenance is a mechanism used to detect broken links on an

established route. If any of the intermediate hop transmission along the path fails, the

node unable to make the next hop transmission returns a ROUTE_ERROR message back

to S, and S repeats the Route Discovery phase. TESLA uses a secret key to generate

message authentication code (MAC) for messages to ensure broadcast authentication. The

secret key should be kept secret by the message originator, so that no other node can

forge the MAC, however, the receiving nodes need the secret key for verification. Instead

of using a computationally expensive asymmetric cryptography scheme such as RSA

[19], TESLA achieves this asymmetry from loose time synchronization and delayed key

disclosure. In TESLA, the sender chooses a random initial key , and generates a one-

way key chain by repeatedly computing a one-way hash function H on its starting value:

 . To compute any previous key from a key in which

 , a node can compute Then, at time slot , the key is used to

generate the MAC. At the next time slot , is published, so that the receiving nodes

can verify the MAC using . If the source node has additional broadcast messages to

send, is used to generate the MAC for the new messages at time Similar to

DSR, Ariadne also has a Route Discovery phase and a Route Maintenance phase. To

support secure routing, the ROUTE_REQUST, ROUTE_REPLY, and ROUTE_ERROR

messages are all authenticated using the TESLA scheme described above.

Marti et al. in [38] proposed a reputation-based secure routing for ad hoc networks. In

reputation-based routing, the next-hop of a path is chosen based on reliability of links and

reputation of nodes. Marti et al. used a watchdog that identifies misbehaving nodes and a

path-rating scheme that helps routing protocols to avoid these nodes; Watchdog and

Pathrater are the two mechanisms used to detect and mitigate routing misbehavior. These

mechanisms are implemented on top of source routing protocols. Detection of

misbehaving nodes is done by the Watchdog by keeping a buffer of packets that were

22

recently sent. The Watchdog then attempts to verify whether a packet has, indeed, been

forwarded by the next node by overhearing the transmissions of the neighboring nodes.

The Watchdog removes the packet from its buffer when it determines that the packet has

been forwarded by the next node. If after a timeout the packet is still in the buffer, a

failure count of the node that was responsible for forwarding on the packets is

incremented by the Watchdog. If the count surpasses a particular threshold, the node is

considered a misbehaving node. The Pathrater is run by every network node. The most

likely reliable route is chosen by taking into the consideration the knowledge of

misbehaving nodes and the data about links’ reliability.

The algorithm of the Pathrater assigns ratings to nodes in five steps: firstly, when the

Pathrater becomes aware of a node in the network, the Pathrater assigns the node the

rating of 0.5 (every node assigns itself the value of 1.0.) Secondly, at periodic time

intervals (of 200ms), the Pathrater increments the ratings of nodes on all actively used

paths by the value of 0.01, with the maximum rating value being 0.8. Thirdly, when the

Pathrater detect a misbehaving during packet forwarding, it decrements a misbehaving

node’s rating by 0.05. Fourthly, negative path values suggest that there is one or more

suspected misbehaving nodes on the path. Of course, the goal is to choose the path with

the highest ratings.

Figure 12: The relationship between monitor, reputation system, path manager, and

trust manager. (Based on [41])

The Grudger Protocol by Buchegger and Boudec in [41] is also a reputation-based secure

routing for ad hoc networks. Detecting and isolating misbehaving nodes becomes

possible by utilizing the Grudger Protocol. Trust relationships and routing decisions are

based on behavior of other nodes, which is gathered through experience, observation, or

reports. It is intended to be implemented and run on top of any existing ad hoc routing

protocols, such as DSR or AODV. Each node of the Grudger protocol consists of four

components: monitor, reputation system, path manager, and trust manager. The monitor

detects deviance by watching its neighborhood. This is accomplished by listening to the

transmissions of the next node to verify that it forwards the packet. As a result,

23

nonconformities can be detected. The trust manager plays an important role in three

aspects: firstly, using trust function it calculates the trust levels of nodes and manages

trust levels in a trust table; secondly, the incoming ALARM messages are filtered based

on the trust level of the reporting nodes and maintaining information about received

alarms in an alarm table; thirdly, forwarding the ALARM messages according to the

friends list. The reputation system is in charge of maintaining a table of the ratings of the

nodes. A rating is determined based on a function that includes the node’s own

experience, the observations, and the reported experience. The path manager re-ranks

paths based on a security metric, deletes paths which contain malicious nodes, ignores

route requests generated by malicious node, and ignores requests for a route which

contains a malicious node in the source route (while alerting the source node).

Figure 12 describes the relationship between the four components of the Grudger Protocol

(the monitor, the reputation system, the path manager, and the trust manager).The

operation is explained as follows in four steps. Step 1: When the monitor detected a

suspicious event, such information is passed on to its reputation system. Step 2: The

reputation system determines whether the event happened more often than some

predefined threshold, and if so, the rating of the node that caused the event is adjusted by

the reputation system. Step 3: If the resulting rating of the node is too high, then the path

manager removes all the routes that contain this node from the cache of the paths. The

trust manager then sends out an ALARM message. Step 4: Upon receipt of such an

ALARM message by a monitor component from a node that is (at least) partially trusted,

the monitor passes such a received ALARM message on to the trust manager, and the

ALARM table in the trust manager is updated. Depending on the level of evidence, the

information about the node reported in the ALAM will be passed on to the reputation

system.

Despite the effectiveness of those secure routing protocols for ad hoc networks, they may

not always be directly applied to WSNs. This is because WSNs usually have a directional

data flow, from the data collector nodes towards the sink nodes; whereas in ad hoc

networks, data flows are more uniform among nodes. Routing protocols designed for ad

hoc networks do not take this directional data flow characteristic into considerations.

Therefore, depending on the situation WSNs may need their own versions of such secure

routing protocols.

3.2 Multipath Routing

Multipath routing protocols take advantage of the redundancy of sensor nodes in the

network. They are robust against limited number of compromised nodes, at the expenses

of larger communication overhead. INSENS (Intrusion-tolerant Routing Protocol for

Wireless Sensor Networks), proposed by Deng et al. in [60], is an example of a multipath

routing protocol. The main goal of INSENS is to support operation in spite of the harm

caused by an intruder who was able to compromised sensor nodes with the intention to

inject, modify, or block packets. INSENS assumes that after the initial deployment,

sensor nodes can have only bounded mobility. INSENS is effective against DoS attacks

and false routing information spreading. In this scheme, each node shares a secret key

only with the sink node and not with other nodes. To defend against DoS attacks,

24

broadcast is only permitted by the sink node. To defend against false routing information

spreading, initially the sink node computes a multi-hop, multi-path data forwarding tree

in three rounds. In round 1, the sink node broadcasts route request message to all sensor

nodes. In round 2, the sensor nodes reply back to the sink node with their local

topological information. In round 3, the sink node computes a routing table, and then

securely unicasts it to each sensor node in a breadth-first manner. This forms a data

forwarding tree rooted at the sink node. Data forwarding then proceeds according to this

data forwarding tree. Multipath routing in INSENS enhances intrusion tolerance, so that

even if an intruder compromises a node or a path, alternate forwarding paths still exist on

the data forwarding tree. Bidirectional verification is used to protect against the rushing

attack. Nodes joining and leaving a network are supervised by secure maintenance

mechanisms.

In Figure 13, multiple routes are derived between each source and destination. The intent

is that these paths should be as independent as possible; i.e., that the paths share in

common minimum number of nodes and links. In the best case, only the source node and

the destination node are common between two paths. In fact, the second path should

exclude the nodes on the first path (area S1 in Figure 13), their neighbors (area S2), and

the neighbors of their neighbors (area S3). One or more intruders along some paths can

jeopardize the delivery of some of the copies of a message. However, as long as there is

at least one path that is not affected by an intruder, the destination will receive a correct

copy of the message.

Figure 13: Selection of paths in the multipath routing policy. (From [60])

3.3 Secure Routing for Cluster or Hierarchical Sensor Networks

Many WSN architectures are “cluster-based”. In such architectures, each cluster has a

cluster head and many subordinates, and the cluster head is very close (one-hop or only

few-hops away) from all subordinates in its cluster. Subordinates collect data and send

the data to the cluster head, and then the cluster head determines routing path and

transmits aggregated data. LEACH in [61], proposed by Heinzelman et al., is one of the

first cluster-based routing protocols that significantly reduces energy consumption.

LEACH is a self-organizing, adaptive clustering protocol that uses randomization to

distribute the energy load evenly among the sensor nodes. After sensor node deployment,

nodes cluster themselves and elect one cluster head for each cluster. Since cluster heads

25

typically perform more intensive processing, they are more prone to faster battery

drainage and reduced lifetime. To reduce this problem, LEACH randomly rotates the

cluster-head position. Furthermore, to reduce energy and to enhance system lifetime, the

transmissions to the cluster head are compressed using local data fusion. The cluster

head selection process is done probabilistically: each sensor node elects itself to be a

local cluster head with certain probability. A cluster head broadcasts its status (e.g.,

remaining energy, location information, etc.) to other sensors. The non-cluster head

nodes then join a cluster by choosing the cluster head that requires the minimum

communication energy. After all the nodes are arranged into clusters, every custer-head

generates a schedule to be used by the nodes that belong to the cluster-head. The energy

dissipated in the sensor can be minimized by turning off the radios of nodes, when the

nodes are not transmitting. The LEACH protocol also equalizes the energy used by the

nodes, so that nodes are depleted of energy at about equal rate, thus allowing maintaining

a more uniform coverage of the environment.

Operation of the LEACH algorithm is based on rounds, and the algorithm comprises the

following phases: (a) the advertisement phase, (b) the cluster set-up phase, (c) the

schedule creation phase, and (d) the data transmission phase.

There are two steps in the advertisement phase; the cluster-heads are chosen in the first

step by having each node, select a random number between 0 and 1. If this number is

less than the threshold , then the node serves as a cluster-head in the current round.

The threshold function is set as follows:

 {

where is the intended percentage of cluster heads, is the number of the current round,

and represents the set of nodes that have not served as cluster-heads in the last ⁄

rounds. The second step in the advertisement phase consists of forming the clusters:

transmitting with the same power, the cluster-heads transmit their advertisement using the

CSMA (Carrier Sense Multiple Access) protocol. Each non-cluster-head node selects its

cluster-head (and, thus, the cluster) for this round based on the measured signal strength of

the received advertisement transmissions. During the cluster set-up phase, a non-cluster-

head node transmits its selection to the cluster-head and, thus, becomes a member of the

cluster. The cluster-head node generates a TDMA schedule, which is based on the number

of the nodes in its cluster, and which indicates to each node when a node can transmit. In

the data transmission phase, the non-cluster nodes transmit to the cluster head based on the

TDMA schedule. When all the data from the non-cluster nodes have been received by the

cluster head, the cluster head compresses the data into a single signal, which the cluster

head then transmits to the base station. To reduce the interference between the

transmissions of the nodes in different clusters which are in close proximity one to another,

the clusters use different CDMA (Code Division Multiple Access) codes to communicate.

The cluster head send the information about the choice of a particular spreading code to the

nodes in its cluster. Using the particular spreading code, the cluster head can then extract

26

the information sent by its nodes, while reducing the interference caused by transmission of

nodes in other clusters.

Despite the energy-efficiency characteristic of LEACH, Karlof et al. in [43] pointed out

that such cluster-based protocols are susceptible to the Sybil attack, in which a

compromised node can claim multiple identities and advertises itself as multiple cluster

heads. Tubaishat et al. proposed in [62] a cluster-based routing protocol, the Secure

Routing Protocol for Sensor Networks (SRPSN). The goal of the SRPSN protocol is to

protect the data packet in the sensor networks from different types of attacks. It uses a

group key management scheme, which contains group communication policies, group

membership requirements and an algorithm for generating a distributed group key for

secure communication. This secure routing protocol stores the routing table in a cache.

The protocol uses hierarchical architecture and highly efficient symmetric cryptographic

operations. In the group key management scheme, the key computation starts from the

initiator node by using its partial key. The group key is computed by a leader using the

partial keys which are contributed by every sensor node in a group; i.e., one can consider

this as a “bottom up approach,” as the accumulation of the partial keys is done from a leaf

nodes up to the parent nodes. A modified multiparty Diffie-Hellman protocol [63] is used

for computing group key, while the updating of group keys is done using the concept of

key trees. The routing information messages (e.g., route request and route reply

messages) are then encrypted using the group key.

Cluster-based secure routing protocols are also used in wireless sensor and actuator

networks (WSANs), which is a special type of WSNs that consists of both, low-power

sensor nodes that form the traditional WSN and high-power actuator nodes. Therefore,

while WSNs are mostly concerned only with sensors-to-sensors communications,

WSANs have to consider four types of communications: sensors-to-sensors, sensors-to-

actuators, actuators-to-sensors, and actuators-to-actuators. Furthermore, the natures of the

four types of communications are different. For example, sensors-to-sensors

communication is usually many-to-one (sensors to the sink) or many-to-many (sensors to

sinks), whereas actuators-to-actuators communication is usually peer-to-peer. Huet al., in

[64] proposed a secure routing protocol based on WSAN’s hierarchical network

architecture. A scalable and energy-efficient routing architecture, referred to as Ripple-

zone (RZ), is employed to implement WSAN security. A multiple-key management

scheme, together with the Ripple-zone routing architecture, improves the security of in-

network processing, for example, of the data aggregation operation. The scheme uses a

Member Recognition Protocol (MRP) to allow actuators and sensors to self-organize

themselves into separate domains, with each actuator as the domain center. As shown in

Figure 14, within each domain, sensor nodes are grouped into ripple zones around the

domain center actuator, such that nodes in a ripple zone all have the same number of hops

to the actuator. Within each ripple zone, sensor nodes are further clustered, and each

cluster elects a sensor node as the cluster head or “master”. A “master” is responsible to

accumulate data from the sensors in its zone. The “master” then transmits the data to the

“master” in the next “ripple,” which is located closer to the actuator. Each node (sensor or

actuator) shares a global key and a pairwise key with the sink node, which are updated

periodically. In the high-level (among actuators), two types of keys exist: session key

(SK), which is used to secure data packet transmission, and a backbone key (BK), which

27

is used to secure control packets that include session key re-keying information. Figure 15

shows the relationship between these two keys. To protect against attacks, the session

keys (SKs) are periodically re-keyed, while the refreshing of the backbone key (BK) is

event-triggered, based on events such as actuator insertion, node death, or node

compromise. A chain of session keys is generated at the sink node by continuously

applying a known one-way hash function, and the key chain is sent to the actuators. An

actuator keeps a buffer to store the key chain in order to tolerate multiple key losses. To

support different security levels for different types of messages, multiple types of keys are

introduced in the low level: Master-to-Actuator Key (MAK), Inter-Master Pairwise Key

(MPK), Sensor-to-master Pair-wise Key (SPK), Zone Key (ZK), and Ripple Key (RK). A

MAK is shared between each master and its domain actuator and is used for direct master-

to-actuator secure communication. MPK is used occasionally to establish secure channels

between two masters that belong to two actuator domains. SPK is shared between a

master and each of the sensors in its zone. ZK is used for data aggregation and also for

propagation of a query message to the whole cluster and is shared among all sensors in

the same cluster. RK is used to achieve hop-to-hop security in an actuator domain. This

multi-key management scheme allows for the establishment of a secure routing protocol

based on ripple-zone, in which messages are routed in a hop-by-hop manner across ripple

zones.

Figure 14: Ripple-zone-based WSAN routing. (From [64])

Figure 15: Backbone Key (BK) and Session Key (SK). (From [64])

28

3.4 Broadcast Authentication

Broadcast is a fundamental operation in many networks, and it is an essential component

in many routing protocols. Perrig et al. in [65] proposed μTESLA, an authenticated

broadcast protocol for the SPINS (Security Protocols for Sensor Networks). In general,

authentication operation based on asymmetric cryptography is too computationally

intensive for WSN nodes. μTESLA overcomes this problem through the concept of

delaying the disclosure of symmetric keys. To send an authenticated packet, the sink

node computes a MAC (message authentication code) on the packet with a key that is

secret at that point in time. Upon receiving the packet, the node temporarily stores the

packet in a buffer and waits for the key disclosure from the sink node. At the time of key

disclosure, the sink node broadcasts the verification key to all the receivers. When a

node receives the disclosed key, it can verify the key. If the key is correct, the node

can use it to authenticate the packet. Each MAC key Ki is a key of a key chain,

generated by a public one-way function , such that , where the

subscript denotes the time interval.

4. Secure Localization Schemes

Depending on the application, localization can be an essential service in a WSN. For

example, a location-based routing protocol, GPSR (geographic routing protocol)

proposed by Karp et al. in [66], relies on accurate position of sensor nodes to

perform routing. Localization is a well-studied topic, but almost all localization systems

operate in a non-adversarial setting [67]. Secure localization only recently emerged as an

active area of research. Secure localization schemes can be categorized into two groups—

beacon-based and non-beacon-based.

4.1 Beacon-Based Schemes

In the beacon-based schemes, some nodes in the WSN (referred to as beacon nodes) are

equipped with GPS hardware. These beacon nodes can correctly identify their own

location via GPS signals. The beacon nodes can then help the non-beacon nodes to obtain

their location information. The localization schemes can be categorized into two types of

schemes: “range dependent” and “range-independent”. In the range-dependent schemes,

the calculation of a node’s location is based on the estimates of distances and angles to

reference points, where the locations (coordinates) of the reference points are known.

Such estimates are usually obtained by one of the following ways: received signal

strength, Time of Arrival (ToA), Time Difference of Arrival (TDoA), and Angle of

Arrival (AoA) [67].

On the other hand, the range-independent localization schemes do not rely on the nodes

performing time, angle, or power measurements. For example, Lazos et al. in [68]

proposed a range-independent localization algorithm called SeRLoc that is beacon-based.

SeRLoc is a distributed algorithm based on a two-tier network architecture that allows

sensors to passively determine their location without interacting with other sensors. There

are two types of nodes: sensor nodes equipped with omnidirectional antennas, and locator

29

nodes equipped with multi-directional antennas and GPS. Locator nodes first obtain

their accurate location via GPS, and then each locator transmits beacons with their

individual coordinates and coverage areas. Each sensor node collects location

information from all the locator nodes that it can receive and then, using this information,

assembles a search area of its own location. After receiving enough beacons from

different locators, the sensor estimates its location as the center of gravity of the

overlapping region of the coverage areas. After analytically evaluating the probability of

sensor displacement due to security threats in WSNs, such as the wormhole attack, the

Sybil attack, and compromise of network entities, they showed that SeRLoc provides

accurate location estimation even in the presence of these threats. See Figure 16 for

additional details.

Figure 16: A sensor estimates its location as a Center of Gravity based on the beacons

from locators L1, L2, L3, and L4. (Based on [68])

Li, et al. in [69] proposed a robust statistical method for secure localization using

triangulation. In triangulation, a sensor node gathers a collection of {(x,y,d)} values,

where d is an estimated distance from the sensor node to a beacon node at location (x,y).

In the ideal case, these {(x,y,d)} values map out to a parabolic surface

 Thus, to estimate its location, the sensor node can simply solve

for a Least Square problem from the gathered data set {(x,y,d)}. However, in the

presence of adversaries, some of the (x,y,d) values can be outliers. Therefore,

instead of using Least Square, the authors proposed to use Least Median Square [70] for

achieving robustness in localization. Unlike Least Square, which minimizes the sum of

the residue squares, Least Median Square minimizes the median of the residue

s q u a r e s . As a result, outliners have a much smaller effect on the optimization cost

function, which makes the location estimation more robust. Contamination ratio () is the

fraction of the samples that are outliers and the noise level is assumed to be Figure 17

shows the square root of mean square error (MSE) as a function of distance

 √ (measurement of the strength of the attack). In
particular, the performances at two pairs of and values are presented in the figure;

(a): ()=(0.2, 20) and (b): ()=(0.3, 15). The results demonstrate that the estimation

error of ordinary LS increases with , which is caused by the non-robustness of LS to

outliers. On the other hand, the estimation error of LMS exhibits a different behavior; it

first increases until reaching a maximum (which occurs at a critical value of , then the

30

estimation error slightly decreases, and finally stabilizes. These results could be

interpreted as saying that, if LMS is used for localization, the adversary does not gain by

mounting a too powerful attack.

Figure 17: The performance comparison between LS and LMS for localization. (From

[70])

4.2 Non-Beacon-Based Schemes

Since equipping sensor nodes with GPS hardware can be costly, in some practical

environments beacon-based localization schemes may not be feasible. In non-beacon-

based schemes, a node calculates the position of another node of interest by making an

estimation based on the known locations of existing nodes. Non-beacon-based schemes

are less accurate, but are also less expensive to implement than beacon-based schemes

[67].

Fang et al. in [71] proposed a non-beacon-based localization scheme. The scheme is

based on the following observation: in practice, it is quite common for sensor nodes to

be deployed in groups. The locations of the groups (deployment points) are pre-

determined prior to deployment and are stored in each sensor’s memory. Sensors from

the same group can be placed in locations which follow some a priori known spatial

probability distribution, for example, a two-dimensional Gaussian distribution. With this

prior deployment knowledge, sensors can estimate their locations by observing the group

memberships of its neighbors. The scheme modeled the localization problem as a

statistical estimation problem and used the Maximum Likelihood Estimation method to

estimate the location.

5. Secure Data Aggregation

WSN applications that involve extensive amount of data processing typically do not have

all the processing done at the central sink node, but instead some processing could be

done by the network. Such in-network processing via data aggregation in large-scale

sensor networks has been shown to improve scalability, eliminate information

redundancy, and increase the lifetime of the network, but the drawback is that data

aggregation renders the security problem more difficult [72].

In a large-scale data processing network, sensor nodes can be classified into two groups.

Most of the nodes are data collector nodes that are only responsible for collecting sensor

31

measurements. The other nodes are data aggregator nodes that perform aggregation

functions upon receiving data from collector nodes. The massive data processing

performed by the collector-aggregator architecture can significantly reduce the

communication overhead in the network. However, from a security perspective, there are

two types of potential threats: the first one is that aggregators can receive false data

from collectors; the second one is that the sink node receives false data from

compromised aggregators [10]. Secure data aggregation schemes are developed to

overcome these two threats. These schemes can be classified into plaintext-based schemes

and cipher-based schemes.

5.1 Plaintext-Based Schemes

In the plaintext-based secure data aggregation schemes, intermediate nodes in the path can

read the data in transit. Hu, et al. in [73] proposed such an example. In this scheme, each

node A is initialized before deployment with a symmetric secret key, , shared with the

sink node. Time is slotted, so that as time progresses, a sequence of temporary encryption

keys will be generated for node . For example, in time slot , the temporary encryption

key for would be . After each time slot , the temporary encryption key

 will be revealed to all sensor nodes. The data aggregation proceeds as follows.

Consider the following sequence of connected nodes: , as in Figure 18.

At time slot , node transmits its reading , identifier , and a message

authentication code to its next hop node . Node will hold the data

until time slot , when is revealed. This same sequence of operations is done at

node (i.e., at the time of slot , sends { , , } to). At the time of

the slot , and are revealed to all the nodes. Therefore node can verify the

integrity of , and if is verified, then forwards ’s message { , , }

to . Similarly, can verify ’s and ’s integrity using and , respectively. If

the verification test at passed, can perform aggregation over and . This data

aggregation scheme is therefore a delayed aggregation—aggregation is performed not at

the immediate next hop, but at a later hop. As a result, the intermediate node has to forward

both its own data and the received data to the last node, and therefore an additional

transmission cost is incurred. However, delayed aggregation benefits data integrity—an

adversary who obtains key material from a compromised node cannot tamper with many

sensor readings.

Figure 18: Example Sensor Network. (Based on [73])

32

5.2 Cipher-Based Schemes

In cipher-based secure data aggregation schemes, intermediate nodes on the path cannot

read the data in transit. One implementation of such a scheme is Concealed Data

Aggregation (CDA), proposed by Girao, et al. in [74]. CDA is based on a concept called

privacy homomorphism (PH) proposed by Domingo-Ferrer in [75]. PH is a particular

encryption transformation with additive and multiplicative homomorphic properties, so

that direct computation over encrypted data is possible. Suppose and are two

rings, where “ ” and “ ” are the corresponding addition and multiplication

operations for both rings. Let denote the set of keys, to be an encryption function

(, and to be a corresponding decryption function (.

Then PH ensures that, for all a, b ∊ Q and k ∊ K, we have ()

(i.e., homomorphic addition), and (i.e., homomorphic

multiplication). CDA uses PH to encrypt aggregated data along the path. The additive

and multiplicative homomorphism properties allow processing data while the data is

encrypted, without the necessity to decrypt the data at each intermediate node. This allows

preservation of data confidentiality and integrity while the data is routed within the

network.

6. Conclusion

In this chapter, we discussed several important aspects of WSN security, including

cryptography schemes, key management schemes, secure routing protocols, secure

localization, and secure data aggregation.

Cryptography schemes are classified into public key cryptography and symmetric key

cryptography. Public key cryptography schemes are more computationally demanding,

but require less care in key distribution and management. Due to limited resources at the

sensor nodes, public key cryptography schemes are often considered infeasible for

WSNs, although recent results showed that some public key cryptography schemes can

be implemented in WSNs by choosing appropriate algorithms, parameters, etc. However,

achieving energy-efficient public key cryptography schemes still need further research.

For symmetric key cryptography schemes, efficient key management schemes need to be

designed.

We discussed four categories of key management schemes—key pre-distribution

schemes, hybrid cryptography schemes, key infection schemes, and key management in

hierarchical networks. Although key management has been an active research area in the

past decade, there are still certain open problems in this area. Current key management

schemes are mostly concerned with static WSNs, and key management schemes for

mobile WSNs still lack appropriate solutions. Most key management schemes require

trustworthy sink nodes, which may not be a valid assumption in many applications;

therefore new schemes need to be designed to secure the sink node.

Currently there are many secure routing algorithms for WSNs, and many of them are

derivatives of secure ad hoc network routing algorithms. We reviewed several ad hoc

network routing protocols, then surveyed two categories of secure routing protocols

33

specifically designed for WSNs—multipath routing and cluster-based routing. Although

many secure routing algorithms can prevent or detect node compromise to some extent,

there is still a window of vulnerability in which a compromised node can go unnoticed

and false routing information may be spread. Designing secure routing protocols to

minimize this window of vulnerability is another important research area. Yet another

consideration for future secure routing research is to expand the evaluation metrics.

Current evaluations of secure routing are mostly focused on security metrics; other

metrics such as QoS need to be considered in addition to security.

Secure localization is divided into two categories: beacon-based and non-beacon-based

schemes. However, both types of schemes are only suitable for static WSNs. Mobile

WSNs secure localization still need further investigation.

Secure data aggregation schemes include plaintext-based and cipher-based schemes. Data

aggregation schemes usually assume aggregators as more powerful sensor nodes than data

collector sensor nodes. Therefore it is desirable to design secure data aggregation schemes

that can be applied in a homogeneous WSN, where all the sensor nodes have equal

capabilities. Another potential research direction in secure data aggregation is to

investigate the tradeoffs between security and energy efficiency gains.

A somewhat newer topic related to WSN that has not been covered in this chapter is that

of security of Internet of Things (IoT) networks. The reader is referred to references [76]-

[81].

Acknowledgements

This work was sponsored in part by the NSF grants numbers ANI-0329905, CNS-0626751,

CNS-1040689, ECCS-1308208, CNS-1352880, and by the AFOSR contract number

FA9550-09-1-0121/Z806001.

References

[1] M. Bishop, “Computer Security: Art and Science,”Addison-Wesley,

2003

[2] G. Stoneburner, C. Hayden, and A. Feringa, “Engineering principles for information

technology security,” NIST Special Publication 800-27, Revision A, June 2004.

[3] M. Healy, et al., “Wireless Sensor Hardware: A Review,” IEEE Sensors, 2008

[4] J. P. Walters, et al., “Wireless Sensor Network Security: A Survey,” Security in

Distributed, Grid, and Pervasive Computing. Ed. Y. Xiao, CRC Press, 2006.

[5] E. Shi, et al., “Designing Secure Sensor Networks,” IEEE Communication

Magazine, 2004.

[6] A. Wood, et al., “Denial of Service in Sensor Networks,” IEEE Computer, 2002.

[7] P. Papadimitratos and Z. J. Haas, “Secure routing for mobile ad hoc networks,” in

Proc. SCS CNDS, San Antonio, TX, Jan. 27–31, 2002, pp.193–204.

[8] J. Jeong, G.Y Lee, and Z.J. Haas, “Prevention of Black-Hole Attack Using One-Way

Hash Chain Scheme in Ad Hoc Networks,” International Conference on Information

Networking, Estoril, Portugal, January 22-25, 2007.

34

[9] L. Zhou and Z.J. Haas, “Securing Ad Hoc Networks,” IEEE Network, vol. 13, no. 6,

1999, pp. 24-30.

[10] X. Chen, et al., “Sensor Network Security: A Survey”. IEEE Commun. Surveys &

Tutorials, 2009

[11] S. A. Camtepe, et al., “Key distribution mechanisms for wireless sensor networks: A

survey,” Computer Science Department at RPI Tech, Rep. TR-05-07, 2005.

[12] P. Ganesan, et al., “Analyzing and modeling encryption overhead for sensor network

nodes,” in Proc. 2nd ACM International Conf. Wireless Sensor Networks

Applications, 2003, pp. 151-159.

[13] G. Gaubatz, et al., “State of the art in ultra-low power public-key cryptography for

wireless sensor networks,” in Proc. 3rd IEEE International Conf. Pervasive

Computing Commun. Workshops, 2005, pp. 146-150.

[14] M. Rabin, “Digitalized Signatures and Public-Key Functions as Intractable as

Factorization,” MIT Laboratory for Computer Science, January 1979.

[15] J. Hoffstein, J. Pipher, J. Silverman, “NTRU: A Ring Based Public Key

Cryptosystem,” in Algorithmic Number Theory (ANTS III), Portland, OR, June 1998.

[16] N. Koblitz, “Elliptic curve cryptosystem,” Mathematics of Computation 48 (177):

203-209. JSTOR 2007884.

[17] V. Miller, “Use of elliptic curves in cryptography,” CRYPTO 85: 417-426.

[18] A. Wander, et al., “Energy analysis for public-key cryptography for wireless sensor

networks,” In IEEE PerCom’05, Pisa, Italy, Mar. 2005.

[19] R.L. Rivest, A. Shamir and L.M. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Communications of the ACM 21(2) (1978)

120-126.

[20] F. Koushanfar, M. Potkonjak, Watermarking Techniques for Sensor Networks:

Foundation and Applications, in Security in Sensor Networks, ed. by Y. Xiao

(Auerbach Publications, Taylor & Francis Group, 2006)

[21] J. Jeong and Z.J. Haas, “Predeployed Secure Key Distribution Mechanism in Sensor

Networks: Current State-of-the-Art and a New Approach Using Time Information,"

IEEE Wireless Communication, August 2008, pp. 42-51

[22] L. Eschenauer, et al., “A key-management scheme for distributed sensor networks,”

in Proc. Conf. Computer Commun. Security, 2002, pp. 41-47.

[23] H. Chan, et al., “Random key predistribution schemes for sensor networks,” in

Proc.IEEE Symposium Security Privacy, 2003, pp. 197-203.

[24] S. Zhu and W. Zhang, “Group Key Management in Sensor Networks,” Book Chapter

from Security in Sensor Networks, edited by Y. Xiao. Auerbach Publications. 2007.

[25] S. Zhu, et al., “LEAP: Efficient security mechanisms for large-scale distributed

sensor networks,” in Proc. 10th ACM Conf. Computer Commun. Security, 2003 pp.

62-72.

[26] R. Blom, “An Optimal Class of Symmetric Key Generation Systems, Advances in

Cryptology,” Proc. of EUROCRYPT84, LNCS, Vol. 209, pp. 335-338, 1984.

[27] Q. Huang, et al. “Fast authenticated key establishment protocols for self- organizing

http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf
http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf
http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf
http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf
http://people.ece.cornell.edu/haas/Publications/WCM09-jeong-haas.pdf

35

sensor networks,” in Proc. 2nd ACM International Conf. Wireless Sensor Networks

Applications, 2003, pp. 141-150.

[28] R. Anderson, et al., “Key infection: Smart trust for smart dust,” in Proc. 12th IEEE

International Conf. Network Protocols (ICNP), 2004.

[29] G. Jolly, et al., “A low-energy key management protocol for wireless sensor

networks,” in Proc. 8th nternational Symposium Computers Commun. (ISCC), 2003,

vol. 1, pp. 335-340.

[30] M. Chorzempa, et al., “SECK: Survivable and efficient clustered keying for wireless

sensor networks,” in Proc. IEEE Workshop on Information Assurance in Wireless

Sensor Networks, pp. 453-458. Phoenix AZ, April 2005.

[31] J. Newsome, et al., “The Sybil Attack in Sensor Networks: Analysis & Defenses”, in

Proc. 3rd International Symposium on Information Processing in Sensor Networks,

2004, pp. 259-268.

[32] S. Ratnasamy, et al., “GHT: a geographic hash table for data-centric storage,” In

WSNA 2002, Sept.

[33] Y. Hu, et al., “Packet leashes: A defense against wormhole attacks in wireless ad hoc

networks,” in Proc. IEEE INFOCOM, 2003.

[34] C. Castelluccia, et al., “On the difficulty of software-based attestation of embedded

devices,” in CCS’09, November 9-13, 2009

[35] A. Seshadri, et al., “SWATT: Software-based attestation for embedded devices,” in

Proc. IEEE Symposium Security Privacy, 2004, pp.272-282.

[36] A. Seshadri, et al., “SCUBA: Secure code update by attestation in sensor networks,”

in Proc. 5th ACM Workshop Wireless Security, 2006, pp. 85-94.

[37] M. G. Zapata, “Secure ad-hoc on-demand distance vector routing,” Mobile Computing

and Communications Review, Volume 6, Number 3, 2002.

[38] S. Marti, et al., “Mitigating routing misbehavior in mobile ad hoc networks,” in

Proc.6th Annual International Conference Mobile Computing Networking, 2000, pp.

255-265.

[39] P. Papadimitratos and Z.J. Haas, “Securing Data Communication in Mobile Ad Hoc

Networks,” IEEE Journal on Selected Issues in Communications (JSAC), special issue

on “Security in Wireless Ad Hoc Networks,” vol.24, no.2, February 2006, pp.343-356.

[40] Y. Hu and A. Perrig, “Ariadne: A secure on-demand routing protocol for ad hoc

networks,” ACM MOBICOM, Sept. 2002, pp. 12-23.

[41] S. Buchegger and J. L. Boudec, “Nodes Bearing Grudges: Towards Routing Security,

Fairness, and Robustness in Mobile Ad Hoc Networks,” Proceedings of the Tenth

Euromicro Workshop on Parallel, Distributed and Network-based Processing, IEEE

Computer Society, Canary Islands, Spain, 2002, pp. 403-410.

[42] M.C. Wong, et al., “Security Issues in Ad Hoc Networks,” Book Chapter from

Security in Sensor Networks, edited by Y. Xiao. Auerbach Publications. 2007.

[43] C. Karlof, et al., “Secure routing in wireless sensor networks: Attacks and

countermeasures,” Elsevier’s AdHoc Networks Journal, Special Issue on

SensorNetwork Applications and Protocols, 1(2-3):293-315, September 2003.

http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-papadimitratos-haas-2006-02.pdf

36

[44] Y. Wang and Y. Tseng, “Attacks and Defenses of Routing Mechanisms in Ad Hoc

and Sensor Networks,” Book Chapter from Security in Sensor Networks, edited by Y.

Xiao. Auerbach Publications.2007.

[45] C.E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-

vector routing (DSDV) for mobile computers,” ACM Conference on

Communications Architectures, Protocols and Applications, Vol. 1 (1994), pp. 234-

244.

[46] B. Bellur and R.G. Ogier, “A reliable, efficient topology broadcast protocol for

dynamic networks,” IEEE INFOCOM, Vol. 1 (1999), pp.178-186.

[47] P. Jacquet, et al., “Optimized link state routing protocol for ad hoc networks,” IEEE

International Multi Topic Conference, Vol. 1 (2001), pp. 62-68.

[48] D.B. Johnson and D.A. Malts, “Dynamic source routing in ad hoc wireless networks,

Mobile Computing,” edited by T. Imielinski and H. Korth, Kluwer Academic

Publishers, 1996, pp. 153-181.

[49] C.E. Perkins and E.M. Royer, “Ad-hoc on-demand distance vector routing,” IEEE

Workshop on Mobile Computing Systems and Applications, Vol. 1 (1999), pp. 90-

100

[50] M.S. Corson and A. Ephremides, “A distributed routing algorithm for mobile

wireless networks,” Wireless Networks, Vol. 1 No. 1 (1995), pp. 61-81.

[51] C.K. Toh, “Associativity-based routing for ad hoc mobile networks,” Wireless

Personal Communications, Vol. 4 No. 2 (1997), pp. 103-139

[52] V.D. Park and M.S. Corson, “A highly adaptive distributed routing algorithm for

mobile wireless networks,” IEEE INFOCOM, Vol. 1 (1997), pp.1405-1413.

[53] Z.J. Haas and M.R. Pearlman, “The Performance of Query Control Schemes for the

Zone Routing Protocol,” IEEE/ACM Transactions on Networking, vol.9, no.4, August

2001, pp.427-438, DOI: 10.1109/90.944341

[54] G. Pei, M. Gerla, and T.W. Chen, “Fisheye state routing: a routing scheme for ad hoc

wireless networks,” IEEE International Conference on Communications, Vol. 1

(2000), pp. 18-22.

[55] P. Samar, M.R. Pearlman, and Z.J. Haas, “Independent Zone Routing: An Adaptive

Hybrid Routing Framework for Ad Hoc Wireless Networks,” ACM/IEEE Transactions

on Networking, vol.12, no.4, August 2004, pp.595-608

[56] M.R. Pearlman and Z.J. Haas, “Determining the Optimal Configuration for the Zone

Routing Protocol,” IEEE Journal of Selected Areas in Communications, vol. 17, no.8,

August 1999, pp. 1395-1414, DOI: 10.1109/49.779922

[57] P. Papadimitratos and Z.J. Haas, ”Secure Message Transmission in Mobile Ad Hoc

Networks,” Elsevier Ad Hoc Networks Journal, vol.1, no.1, July 2003, pp.193-20

[58] A. Perrig, R. Canetti, D. Song and J.D. Tygar, “Efficient and secure source

authentication for multicast,” in: Proceeings of the Network and Distributed System

Security Symposium, NDSS’01 pp.35-46.

[59] A. Perrig, R. Canetti, J.D. Tygar and . Song, “Efficient authentication and signing of

multicast streams over lossy channels”, in: Proceedings of the IEEE Symposium on

Security and Privacy (May 2000) pp. 56-73.

http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-haas-perlman-2001-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/ToN-samar-pearlman-haas-2004-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf
http://people.ece.cornell.edu/haas/Publications/JSAC-pearlman-haas-1999-08.pdf

37

[60] J. Deng, et al., “INSENS: Intrusion-tolerant routing in wireless sensor networks,”

Computer Commun., vol. 29, pp. 216-230, 2006.

[61] W. R. Heinzelman et al., “Energy-efficient communication protocol for wireless

microsensor networks,” in 33rd Annual Hawaii International Conference on System

Sciences, 2000, pp. 3005-3014.

[62] M. Tubaishat, et al., “A secure hierarchical model for sensor network,” ACM

SIGMOD Record, vol. 33, pp. 7-13, 2004.

[63] W. Diffie and M. E. Hellman. “Privacy and Authentication: An Introduction to

Cryptography,” Proceedings of the IEEE, 67(3): 397-427, March 1979.

[64] F. Hu, et al., “Scalable Security in Wireless Sensor and Actuator Networks,” Book

Chapter from Security in Sensor Networks, edited by Y. Xiao. Auerbach Publications.

2007.

[65] A. Perrig, et al., “SPINS: Security protocols for sensor networks,” Springer

 Netherlands Wireless Networks, vol. 8, pp. 521-534, 2002.

[66] B. Karp, et al., “GPSR: Greedy perimeter stateless routing for wireless networks,” In

Proceedings of the 6th Annual International Conference on Mobile Computing and

Networking, pp. 243-254, ACM Press, 2000.

[67] K. Ravichandran and K. M. Sivalingam, “Secure Localization in Sensor Networks,”

Book Chapter from Security in Sensor Networks, edited by Y. Xiao. Auerbach

Publications. 2007.

[68] L. Lazos, et al., “SeRLoc: Robust Localization for Wireless Sensor Networks,” In

Proc.3rd ACM Workshop Wireless Security, 2004, pp. 21-30.

[69] Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust statistical methods for securing

wireless localization in sensor networks,” in Proc. 4th International Symposium

Information Processing in Sensor Networks, 2005.

[70] P. Rousseeuw and A. Leroy, “Robust regression and outlier detection,” Wiley-

Interscience, Sept. 2003.

[71] L. Fang, et al., “A beacon-less location discovery scheme for wireless sensor

networks,” in Proc. IEEE INFOCOM, 2005.

[72] T. Dimitriou and I. Krontiris, “Secure In-Network Processing in Sensor Networks,”

Book Chapter from Security in Sensor Networks, edited by Y. Xiao. Auerbach

Publications. 2007.

[73] L. Hu, et al., “Secure aggregation for wireless networks,” in Proc. Symposium

Applications Internet Workshops, 2003, pp. 384-391.

[74] J. Girao, et al., CDA: Concealed data aggregation in wireless sensor networks, in

Proc. ACM WiSe, 2004.

[75] J. Domingo-Ferrer, “A provable secure additive and multiplicative privacy

homomorphism,” in Proc. Information Security Conf., 2002, pp. 471-483.

[76] L. Atzori, et al., “The Internet of Things: A survey,” Elsevier’s Computer Networks,

June 2010.

[77] R. Roman, et al., Integrating Wireless Sensor Networks and the Internet: A

Security Analysis,” Internet Research, 2009.

38

[78] R. Roman, et al., “Do Wireless Sensor Networks Need to be Completely Integrated

into the Internet?,” Furture Internet of People, Things and Services (IoPTS) eco-

 Systems, Brussels, 2009.

[79] R. Hummen, et al., “A Security Protocol Adaptation Layer for the IP-based Internet

of Things,” Interconnecting Smart Objects with the Internet Workshop, 2011.

[80] T. Zahariadis, et al., “Securing wireless sensor networks towards a trusted Internet of

Things,” IoS Press, ISBN 978-1-60750-007-0, pp. 47-56.

[81] R. Roman, et al., “Key management systems for sensor networks in the context of

the Internet of Things,” Elsevier’s Computers & Electrical Engineering, March

2011.

