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Abstract- Recent advances in computing and communication 

enable the concept of smart homes that contain programmable 

appliances. Knowing that most household tasks do not need to be 

performed at specific times, but rather within a preferred time 

period, this paper studies the problem of optimal power 

generation scheduling in an isolated Microgrid, exploiting the 

flexibility to schedule energy-consuming tasks in smart homes. 

We formulate the problem as a non-linear optimization problem 

and present two scheduling protocols to solve it: GA-INT, a 

genetic algorithm that utilizes task interruptions, and PRO-S, a 

heuristic-based algorithm, which strives to smooth out peaks in 

the load profile. Numerical simulations demonstrate that PRO-S 

successfully reduces the complexity of the problem, while 

guaranteeing performance that approximates GA-INT’s. The 

latter returns optimal or nearly optimal solutions, but with long 

execution times.  

Keywords—Microgrid; Programmable Appliances, Optimal 

Generation Scheduling; Unit Commitment Problem, Genetic 

Algorithm; Smart Homes; 

I. INTRODUCTION 

The optimal scheduling of power generation, also known as 

Unit Commitment (UC) problem, is one of the most 

challenging problems in power systems optimization [1]. In a 

Microgrid (MG), which is basically small scale power system 

with the ability to self-supply and islanding, the MG Central 

Controller (MGCC) has to coordinate the MG distributed 

generation (DG) sources in order to provide enough power to 

satisfy the load demand, while striving to achieve some 

optimal objective. This usually involves determining 

hundreds of discrete and continuous variables subject to 

numerous linear, quadratic, and sometimes non-linear 

constraints depending on the DG source characteristics and 

load demands. The DG sources can comprise of different 

technologies including Diesel engines, micro turbines, fuel 

cells as well as photovoltaics, wind turbines, and hydro 

turbines, with capacity varying from few kW to 1-2 MWs 

([2], [3]). 

 
Fig. 1: System under Consideration 

In this work, we address the UC problem in the context of an 

“islanded” MG that supplies electricity for smart homes. The 

smart homes contain programmable appliances, which can be 

scheduled for operation [4]. We consider appliance operations 

as schedulable tasks with power and timing demands. The 

smart appliances communicate with the MGCC about user-

scheduled tasks, for example, over power lines. Fig. 1 depicts 

an exemplary schematic description of the system under 

consideration.  

We assume that tasks get scheduled on a day-ahead basis, so 

that the MGCC can schedule the DG sources’ operation for 

the upcoming day. We do not consider the power demands 

due to spontaneous small loads, such as TV set, computer, or 

microwave oven, but rather assume that the MG has reserved 

generator capacity to produce enough continuous power to 

meet those needs. Additionally, we only focus on scheduling 

dispatchable power sources, such as Diesel engines and fuel 

cells, and we leave the integration of renewable energy 

sources for future work. 

II. RELATED WORKS 

The UC problem in MG has gained interest in the past few 

years. Works [5]-[9] as well as [1] study MG optimal power 

generation for forecasted fixed (mostly hourly) electric loads. 

In contrast, references [10]-[14] investigate the UC problem 

for MG with schedulable load/tasks, which is similar to our 

work. However, unlike [10], [11], and [12], our work is based 

on a practical generators’ model, which includes startup costs 

and generators’ states in addition to energy-consuming tasks 

scheduling. Furthermore, we allow the optimization 

procedure to interrupt and resume tasks execution, which is in 

contrast to non-interruptible tasks in [10] and [12]. We also 

focus our work on scheduling the operation of thermal units, 

which is in contrast to Angelis et al. work in [13] that 

considers main grid energy and renewable energy.  Though 

[14] considers the startup costs of dispatchable sources in the 

problem formulation, these costs are not used in the numerical 

simulations presented in that paper. 

A genetic algorithm (GA), GA-INT, is used to solve the non-

linear optimization problem formulated. GAs are search 

techniques based on the principal and mechanism of natural 

selection and “survival of the fittest” from natural evolution 

([15]). GAs have been proven to be efficient in solving 

problems similar to UC problem, and, in recent decades,  have 

been successfully applied to UC problems in power system 

([9], [16]-[21]). Our contribution also includes a heuristic 

based algorithm, PRO-S, which seeks to flatten the load 

J. Ugirumurera and Z.J. Haas, “Power Scheduling for Programmable Appliances in Microgrids,” 20
th

 IEEE 

International Workshop on Computer Aided Modelling and Design of Communication Links and Networks, Special 

Session on ICT-Based Solutions for the Smart Energy Grid, September 7-9, 2015, University of Surrey, Guildford, UK 

 



 

profile in order to reduce the extra costs due to DG Sources’ 

on/off switching. PRO-S greatly decreases the computing 

time needed to solve the problem, while incurring only 

negligible cost penalties.  

Thus, our work’s contributions include: 

 Formulating the UC problem for MG utilizing a more 
realistic generators’ model, which comprises startup costs 
and generators states. 

 Determining generators’ optimal power scheduling, 
exploiting tasks scheduling, especially tasks pausing. 

 Evaluating the effect of task schedulability and generators’ 
startup costs on MG operation costs via simulations. 

 Designing PRO-S, a heuristic algorithm that greatly reduces 
the problem’s time complexity, while earning minimal cost 
increases. 

III. SYSTEM MODEL 

We use a discrete time model, where the total scheduling time 

is T timeslots, which corresponds to 24 hours. Knowing that it 

takes few minutes to start up a thermal generator, a shorter 

sampling rate (5 min) is used in our model. 

A. The DG Source Model 

The MG consist of N uniform generating units, characterized 

by production cost coefficients ca and cb, where ca is the 

maintenance cost per timeslot (in $/timeslot), and cb is the 

fuel cost per timeslot per kilowatt (in $/kW). The generators 

have the same power generating capacity PG (in kW). Each 

generator also has a time-dependent startup cost SCn(t) (in 

$/timeslot). In practice, a generator’s capacity varies between 

a minimum and a maximum power generating limit ([22]), 

however, in this work, we assume constant output power for 

simplicity. We also assume that shutdown cost for each 

generator is equal to zero. The total cost to generate PG kW is 

found by [23] to be: 

 PGcbcaPGC *)(   (1) 

The generators also have a minimum up time TU, and a 

minimum down time TD. The violation of such constraints 

can lead to shortness in the generating unit’s lifetime ([5]). 

The startup cost SCn(t) depends on how long a generator has 

been off ([1]) by timeslot t: 
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In (2), toffn(t) is the continuous off time of unit n by time t, 

and TC is the cold start time for a generator. hc and cc are the 

host startup cost and cold startup cost, respectively.  

Each source also has startup time ST (in timeslots), which is 

the necessary time to switch the generator from the off state to 

the active state. We also consider the generators initial states 

using Gn, and Ln. Gn is the number of timeslots generator n 

has to be initially on due to TU, while Ln is the number of 

timeslots source n has to be off at the outset due to TD. 

B. The Task Model 

We consider J tasks planned by customers for their appliances 

to be performed the next day. Each task j is characterized by 

the tuple {pj, rj, si, li}, where pj is task j’s power demand (in 

kW), rj is its duration (in timeslots), si is its earliest possible 

start time, and li is its latest possible finish time. 

C. The Task Allocation Model 

Similar to the job-to-server allocation model used in [24], we 

design a J x T x N matrix A to keep track of tasks’ allocation 

to the different generators during the considered time. In this 

matrix, an entry aj,t,n indicates the amount of power produced 

by generator n for the task j during the timeslot t. A generator 

cannot produce negative power, and the power generation 

limit for each generator has to be maintained: 
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A horizontal plane matrix in A is an N x T dimensional matrix 

Aj that shows power generation for task j on the different 

generators over the T timeslots. Given a matrix Aj, we define a 

unary matrix operation lz: Aj → Z
+
, which returns the number 

of all-zeroes leading columns in Aj. Task j starts execution at 

xj = lz(Aj) + 1. Power scheduling has to insure that xj is 

greater or equal to sj, the earliest start time of task j: 

 
jj
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We design another function tz:  Aj → Z
+
, which returns the 

number of all-zeroes trailing columns in Aj. We can then find 

task j’s finish time as: fj = T – tz(Aj). fj has to be less or equal 

to lj in order to meet the task’s deadline: 

 
jj

lf   (6) 

We also use a unary function nz: Aj → Z
+
 to determine the 

number of non-zero columns (columns with at least one non-

zero entry) in Aj, so as to find the number of timeslot where 

power was generated for task j. The number of non-zero 

columns for a task j has to be equal to its duration value. 
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Equation (8) states that the power generated for a task j during 

slot t is either zero or pj.  

D. The DG Source States 

We construct another N x T dimensional matrix B, where each 

entry indicates the state of a generator n during timeslot t. We 

let 0, 1, and 2 refer to the active state, the off state, and the 

startup state, respectively. Matrix B is obtained from matrix 

A, since the generators have to be on whenever they are 

producing power for tasks. We define the above constraints 

as: 
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Equation (10) ensures that generator n is on whenever matrix 

A indicates that unit n is generating power.  

We define the following unary matrix operations to determine 

a generator’s state during a particular timeslot t: 

 As: bt,n → Z
+
, which returns 1 if bt,n is equal to 0, and 

returns 0 otherwise. 



 

 Os: bt,n → Z
+
, which returns 1 if bt,n has value 1, and 

returns 0 otherwise. 

 Ss:  bt,n → Z
+
, which returns 1 if bt,n has value 2, and 

returns 0 otherwise.  

We use the above operators to ensure that the generators’ 

initial states are maintained as specified by Gn, and Ln: 
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We also define allowable state transitions for the generators 

from one timeslot to the next, as shown in the Table I.  

We use the following constraint to ensure generator allowable 

state change: 
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The mod operator ensures that generators can switch from the 

startup state (indicated by 2) to the active state (designated by 

0). 

 







TUt

ti

intntn
bbandbif

1

,1,,
0,02  (14) 

 







TSt

ti

intntn
TSbSsbandbif

1

,1,,
)(,21  (15) 

 0,21
1,1,,


 TStntntn
bbandbif  (16) 

 







TDt

ti

intntn
TDbOsbandbif

1

,1,,
)(,10  (17) 

Constraint (14) indicates that a generator that switches from 

the startup state to the active state has to stay on for at least 

TU timeslots, while constraint (15) specifies that a generator n 

that switches from the off state to the startup state has to 

spend TS timeslots in the startup state. Constraint (16) states 

that after TS startup timeslots, the generator in the startup 

state has to be on. Constraint (17) indicates that a generator in 

the active state that is shut down will remain off until at least 

TD timeslots have elapsed.  

E. Problem Statement 

Our goal is to determine the generating units’ states during 

the T timeslots, so as to minimize the total operating costs, 

while meeting the tasks’ power and timing requirements. The 

MG operation cost, C, is calculated from the generators’ 

power production cost and the startup costs. We state the 

optimization problem as follows:  
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such that (3)-(17) hold. 

IV. SOLUTION METHODS 

A. Genetic Algorithm: 

The problem as formulated above is a non-linear mixed 

integer programing problem. We design a genetic algorithm, 

GA-INT, to solve it. We implement GA-INT in Matlab on a 

3.20 GHz Intel Core computer with 4GB of RAM. The 

parameters in the GA-INT are described in Table II.  

TABLE I: Allowable State Transitions 

State at t State at t+1 

0 0, 1 

1 1, 2 

2 2, 0 

B. Heuristic Algorithm 

The heuristic algorithm, PRO-S, is also implemented in 

Matlab. As shown in Fig. 2, PRO-S first creates a J x T 

matrix, D, and populate it in the following way: each row, Dj, 

corresponding to task j’s power consumption, is populated 

with value pj in columns D[j,aj] through D[j,lj]. The 

remaining entries in Dj contain zeros. Each row Dj contains lj-

aj+1-rj extra pj values. We derive a load profile array Q of 

length T, such that: 
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In order to remove the extraneous pj, PRO-S proceeds in a 

greedy manner. In each iteration, PRO-S identifies elements 

in Q with the largest value qmax. It then tries to lower qmax in Q 

by zeroing out some extraneous pj’s in D that contribute to the 

qmax entries, starting with those rows with the largest pj values. 

At the end of the iteration, PRO-S updates Q from the current 

D matrix. It also saves the current qmax value, so that in the 

following iterations only those Q entries with value less than 

qmax are considered. PRO-S repeats this greedy choice until all 

extra pj’s are eliminated from D.   

The goal of PRO-S is to finish with a load curve that is as 

smooth as possible, which minimizes the change in power 

production from one slot to the next. We use the final load 

array Q to determine, ut, the required number of active 

generators in each slot t by: 
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Using the ut values, we create a generator state matrix B, so 

that each timeslot t has ut active generators. For each t, the 

active generators are chosen starting with those generators 

with positive Gn values, since these generators are already on 

by the beginning of the scheduling period. The remainder of 

the generator states is determined so as to minimize the 

additional costs; i.e., a generator is turned off whenever it is 

not needed, unless incurring the startup cost is more 

expensive, in which case it is kept on.  From matrix B, we 

determine the total operating cost using (18).  

V. CASE STUDY 

We simulated an isolated MG powering a remote 

neighborhood of smart homes.  The MG is made up of small 

identical thermal units and their characteristics are shown in 

Table III. Each home is assumed to contain at most seven 

programmable appliances, where each appliance submits 

daily a number of tasks. The tasks’ arrivals were generated 

following a Poisson distribution, with the constraint that the 

lj-sj could not be more than 4*rj. Other tasks’ characteristics 

are shown in Table IV, where Mk is the daily arrival rate per 

task type, and Hk refers to the average number of tasks per 

task type, per home. We compare PRO-S to GA-INT, and 

show that PRO-S’ performance is nearly as good as GA-

INT’s. 



 

TABLE II: GA Parameters 

Parameter Value 

Population Size 1000 

Probability of Crossover 60% 

Probability of Mutation 40% 

Stopping Criteria No Improvement in fitness value for 50 

generations 

 

Fig. 2: Heuristic Algorithm, PRO-S 

TABLE III: Parameter of DG Sources 

Generator Characteristics 

PG (kW) 2.12 

ca ($/timeslot) 0.015 

cb ($/kW) 0.005 

hc ($/timeslot) 0.2 

cc ($/timeslot) 0.4 

TS (timeslots) 2 

TU (timeslots) 5 

TD (timeslots) 2 

TC (timeslots) 2 

 

 

TABLE IV: Electricity Consuming Tasks [25] 

The performance of GA-INT and PRO-S are both compared 

to the Early Starting Time (EST) scheme ([10]). In the EST 

scheme, domestic appliances are turned on at their given 

earliest starting time, which is similar to common living 

habits where users turn on appliances as soon as they want to 

use them.  

A. Test Case Results  

We first present results from one simulation trial, where 

appliances submit a total of 250 tasks, with a mean load of 

42.3681 kW. As depicted in Fig. 3, without load scheduling, 

this simulation instance requires at least 39 generators in 

order to meet the peak load. On the other hand, GA-INT 

requires only 24 generators, while PRO-S needs no more than 

26. Fig. 4 demonstrates that PRO-S’ load scheduling closely 

follows GA-INT’s. Hence, in this case, GA-INT’s cost 

reduction over PRO-S was less than 1% (Table V).  

 
Fig. 3: Comparison of Number of Active Generators vs. time 

 
Fig. 4: Load Scheduling Comparison 

 

 

 

Task Type 
pj  

(kW) 

rj 

 (timeslots) 

Mk 

(tasks/day) 

Hk 

(tasks/home) 

Space Heater 3.4 18 60 6 

Electric Car 3.5 30 30 3 

Spin Dryer 3 12 30 3 

Air Conditioner 3 12 80 8 

Laundry Machine 1.5 6 20 2 

Swimming Pool 

Heating 
4.5 24 10 2 

Dish Washer 1 8 20 2 



 

TABLE V: Cost Reduction Results 

Algorithm 
Operation 

Cost ($) 

Cost Reduction 

over EST (%) 

GA-INT Cost 

Reduction over PRO-S 

(%) 

GA-INT 167.7632 31.52 
0.95 

Heuristic 169.376 30.86 

ETS 244.976 
  

 
Fig. 5: Operation Costs Comparison 

 
Fig. 6: Cost Reduction over EST 

TABLE VI: GA-INT and PRO-S Time Comparison 

Mean Load (kW) GA-INT (s) PRO-S (s) 

4.24 4821 10.56 

16.95 21189 8.24 

25.42 15753 8.81 

33.89 27633 7.18 

42.37 35653 7.10 

46.60 32259 7.64 

55.08 33110 8.37 

59.32 67144 7.59 

74.14 49953 7.37 

84.74 63068 6.69 

B.  Varying Mean Load  

We compare PRO-S to GA-INT and EST in scenarios where 

the mean load varies. In each test scenario, the tasks’ pj values 

are multiplied by a constant that changes from 0.1 to 2, which 

in turn changes the mean load by the same factor. The 

generators’ capacity is kept the same. For each scenario, we 

run 10 instances that have the same mean load, but differ in 

their tasks starting times and deadlines values as well as 

generators initial conditions. We then determine the average 

cost reductions observed over those instances. 

Fig. 5 shows that PRO-S operation costs follow closely GA-

INT’s as the mean load increases, while Fig. 6 demonstrates 

that GA-INT’s registers no more than 7% cost savings over 

PRO-S, which falls below 5% as the load increases. This 

emphasizes that PRO-S performance is nearly as good as GA-

INT’s whenever the load demand is not negligible. An 

important advantage of PRO-S is that PRO-S greatly reduces 

the problem’s time complexity, solving it in few seconds 

only, while GA-INT needs about 4800 sec for the same case, 

which increases with the mean load (Table VI).  

C. Varying the Number of Tasks 

We also evaluate how PRO-S performs vis-à-vis GA-INT and 

EST as the tasks’ daily arrival rate increases from 50 up to 

500 tasks. A 50 tasks system corresponds to a two-home 

model, while 500 tasks simulate a 20 home system. For each 

model, we run 10 trials with the same number of tasks, and 

average out the results. As before, the 10 trials deviates in 

their tasks’ starting times and deadlines values, and generators 

initial conditions.  

From Fig. 7, we notice that PRO-S’ operation costs 

approximate GA-INT’s even as the number of submitted tasks 

grows. Fig. 8 shows that GA-INT performance improvement 

over PRO-S diminishes from about 9% to less than 5% as the 

tasks’ arrival rate rises. Fig. 8 also illustrates that GA-INT 

and PRO-S cost reduction over EST decreases as the number 

of submitted tasks rises. This is due to the system’s load 

demand becoming more constant as the task arrival rate 

grows. This reduces the opportunity for load scheduling to 

curtail costs.  

We also observe that GA-INT’s and PRO-S’ curves in Fig. 8 

are not smooth. This is explained by generators having a 

constant output power, so that even if the load demand 

requires only 0.1 kW from a generator, the generator still 

outputs 2.12 kW. Fig. 9 shows PRO-S’ cost reduction curve 

when the tasks’ pj values are multiplied by 21.2, while the 

generators capacity remains the same. This curve is more 

regular compared to PRO-S’ curve when the pj values are 

unchanged. Thus, as the pj’s grow, the generators’ output 

power becomes smaller and more continuous in relation to the 

tasks’ load demand, which smoothens out the cost reduction 

curve. GA-INT’s cost reduction profile also evens out as pj’s 

rise, since PRO-S performance nears GA-INT’s.  

 
Fig. 7: Operation Costs Comparison 

 
Fig. 8: Cost Reduction over EST 
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Fig. 9: PRO-S Cost Reduction with pj*21.2 vs PROS Cost Reduction with pj 

Table VII: Time Complexity Comparison 

Daily Task Arrival Rate GA-INT (s) PRO-S (s) 

50 3598 0.60 

100 7825 1.13 

150 11675 2.75 

200 36112 7.42 

250 39720 6.597 

300 54141 10.43 

350 49717 8.36 

400 59563 12.00 

450 84111 12.51 

500 96306 23.00 

In this case again, PRO-S only needs few seconds on average 

to solve the problem, while GA-INT requires at least an hour 

to solve a 50 task problem and more than 10 hours when the 

number of daily tasks is greater than 200 (Table VII). 

Hence, since we know that GA-INT finds the best or nearly 

the best solution, we conclude that PRO-S returns solutions 

that are also close to the optimal solution, especially when the 

mean load and task arrival rate are high.  

VI. CONCLUSION 

This paper formulates the problem of optimal power 

generation in an “isolated” MG as a non-linear mixed integer 

problem, and implements two algorithms, GA-INT and PRO-

S, to solve it. GA-INT is a genetic algorithm that exploits task 

interruption and task shifting, and produces optimal or near-

optimal solutions. Since GA-INT is time expensive, we also 

design a heuristic-based algorithm, PRO-S, to reduce the 

complexity of the problem. Simulation results demonstrates 

that, in medium to high load situations, PRO-S indeed reduces 

greatly the time complexity of the problem by solving it in 

few seconds, while incurring less than 5% in extra cost in 

comparison to GA-INT. The latter requires at least an hour in 

low load situations, and can take more than 10 hours when the 

daily task arrival rate is greater than 200. However, even in 

low load scenarios, GA-INT cost reduction was no more than 

9% over PRO-S.  
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