
Deadline-aware Energy Management in Data Centers

Cengis Hasan
School of Informatics

The University of Edinburgh, UK
email: chasan@inf.ed.ac.uk

Zygmunt J. Haas
School of Electrical and Computer Engineering

Cornell University, Ithaca, NY, USA
email: haas@ece.cornell.edu

Abstract—We study the dynamic energy optimization problem
in data centers. We formulate and solve the following offline
problem: given a set of jobs to process, where the jobs are
characterized by arrival instances, required processing time,
and completion deadlines, and given the energy requirements of
switching servers ON or OFF, in which time-slot which server has
to be assigned to which job; and in which time-slot which server
has to be switched ON or OFF, so that the total energy is optimal
for some time horizon. We formulate the offline problem as a
binary integer program that can be considered as a new version of
generalized assignment problem which includes new constraints
stemming from deadline characteristics of jobs and the activation
energy of servers. We propose an online algorithm that solves the
problem heuristically, and we compare it to random assignment
solution.

Index Terms—job scheduling, data centers, deadline-aware
energy management, generalized assignment problem, online
algorithm.

I. INTRODUCTION

Energy consumption is one of the most important practical
and timely problem associated with data centers for cloud
computing. The urgency of this problem has been identified
by both, the governmental agencies and the industry. While
policies that consider the physical design of the data centers
have been studied in the technical literature rather thoroughly,
the operational characteristics of the data centers (e.g., the
required performance of the executed applications, such as
the type of services and the applications being supported, their
QoS requirements, associated background server maintenance
processes, etc.) have rarely been accounted for. In particular,
there is a need to investigate the implications of exploiting the
operational characteristics of the data centers in the context of
energy management policies, as those could lead to potentially
significant energy savings and operational cost reduction of a
computer cloud.

In this work, we study the effect of the deadline charac-
teristics of the jobs (applications) and their requirements on
the design of the data centers’ energy management policies.
A particular interest of our study is to solve the dynamic
energy optimization problem. Assuming a time interval, we
seek to minimize the total energy consumed during this time
interval. We solve the offline problem, in which we know the

The work of Z. J. Haas was supported in part by the NSF Grant number:
ECCS-1308208. C. Hasan was a postdoctoral research associate at Cornell
University when this work was carried out.

arrival times of the jobs, their service demands and deadlines.
In particular, the offline problem is defined as follows:

• consider a discrete time horizon: T = {1, . . ., tmax } where an
element in T is a time-slot,

• a server can be either in the ON or the OFF states,
• in any time-slot, a server can serve at most one job,
• in any time-slot, a job can be served by at most a single

server,
• a job has to be served within its deadline constraint, i.e., the

job’s service demand has to be completed before the job’s
deadline,

• a server needs nON consecutive slots (i.e., the setup time)
and EON energy per time-slot in order to transition from the
OFF state to the ON state,

• a server consumes Eslot energy per time-slot when it serves
a job.

Based on these constraints, we calculate the minimal total
energy in the following way:

find: in which time-slot which server has to be
assigned to which job; and in which time-slot which
server has to be switched ON or OFF.

We refer to the above problem as offline problem, to indicate
that all the jobs’ characteristics (arrival instance, processing
duration, and completion deadline) are known before the
problem is solved. The corresponding online problem is one in
which some of the jobs arrive after the execution of other jobs
have already started and, thus, the characteristics (and even the
existence) of all the jobs is not known at the time that the initial
assignment is made. Therefore, the offline solution becomes a
lower bound for evaluating of an online algorithm. Note that
an online algorithm can find a solution for present time only.
We propose an online algorithm which aims to minimize the
total cost per time-slot. The cost is composed of the energy
cost per time-slot and a weighted sum of deadline and service
demand of the jobs. When a server is not assigned to a job,
we keep this server ON during a portion of time. This is a
similar approach studied in [1]. We calculate every possible
assignment of servers to jobs present in the system based on
the above cost definition. Then, we find which assignment
of servers to jobs minimizes the total cost per time-slot. We
show that this problem corresponds to the assignment problem,
which is solvable in polynomial time using the well-known
Hungarian algorithm.978-1-5090-1445-3/16$31.00 c© 2016 IEEE (CloudCom’16)

A. Related Work

The methods aiming to reduce data center power con-
sumption could be classified into four approaches [1]: power-
proportionality, which attempt to guarantee that servers con-
suming power in proportion to their utilization [2]–[4]; energy-
efficient server design, which attempt to determine the proper
server architecture for a given workload [5]–[7]; dynamic
server provisioning, which attempts to determine the times
when the servers should be kept on or off [8], [9]; con-
solidation and virtualization, which attempts to reduce the
power consumption by resource sharing [10]–[12]. We refer
the reader to [13]–[17] for further literature related to our
work.

The dynamic version of the generalized assignment problem
is directly related to the offline problem that we study in
this paper. Actually, our problem could be considered as a
version of the dynamic generalized assignment problem which
includes new additional constraints. In [18], the authors firstly
put forward the dynamic generalized assignment problem, and
they formulate the continuous-time optimal control model in
order to develop an efficient time-decomposition procedure for
solving the problem. The discrete time version is studied in
[19] by associating a starting time and a finishing time with
each task. The authors also use column generation algorithm
to compute lower bounds.

II. THE OFFLINE PROBLEM

We represent by N = {1, . . ., |N |} the set of servers, and
J = {1, . . ., |J |} the set of jobs. A job j is characterized by
its arrival time-slot t j and the completion deadline as t j +∆j ,
where ∆j denotes the execution duration of job j. We denote
by Tj = {t j, . . ., t j +∆j } the maximal lifetime of a job within the
system. Consider tmax = maxj∈J (t j +∆j), then the total time
horizon is T = {1, . . ., tmax }. We would like to calculate the
optimal assignments that minimize total energy consumption
respecting the deadlines of the jobs, starting from time-slot 1
until tmax . The duration of a time-slot is τ. Thus, the deadline
of a job is given by ∆j = n jτ, where n j is an integer. The
initial service demand of any job j is denoted by w j in terms
of processor cycles. Each server is characterized by its speed
si = [processor cycles/second], ∀i ∈ N . So, the total processing
demand that a server can handle during a time-slot is siτ. If
the service demand of job j is w j and server i is assigned
to job j, then at the end of the current time-slot the service
demand of job j is reduced to w j − siτ. We assume that a
server needs nON time-slots in order to switch from the OFF
state to the ON state. A server in the ON state consumes Eslot
energy per time-slot. During transition from the OFF state to
the ON state, a server expends EON energy per time-slot. Let
us define the following binary integer variable,

xi jt =
{

1, server i is assigned to job j in time-slot t
0, otherwise.

(1)
Note that if x∅jt = 1, it means that no server is assigned to
job j in time-slot t (it can be assumed that the job is in hold).

Furthermore, it is also possible for a server to be ON, yet not
to be assigned to any job in a time-slot, i.e. xi∅t = 1. Based
on these definitions, we assume that any server i in time-slot
t is in the OFF state if the following holds true:∑

j∈J∪∅

xi jt = 0. (2)

We also define a new variable yit with the following meaning:

yit =

{
1, server i is in transition from OFF to ON in time-slot t
0, otherwise.

(3)
For example, let nON = 3, and server i is switched ON in time-
slot 5. Then, yit = 1, only for t = {5,6,7}. Note also that if
yit = 1 then, as long as nON > 0, it is always true that xi∅t = 1,
otherwise it is not true, i.e. if yit = 0 then, xi∅t = 0 or 1. This
constraint can be given by

yit ≤ xi∅t, ∀i ∈ N,∀t ∈ T . (4)

Thus, the minimal total energy can be calculated by

min
x,y

(∑
i∈N

∑
j∈J∪∅

∑
t∈Tj

Eslotxi jt+
∑
i∈N

∑
t∈T

(EON−Eslot)yit
�����
Constraints

)
,

(5)
where note that if any server i is switched ON in time-slot t,
i.e. yit = 1 then, xi∅t = 1 (due to eq. (4)), thus it corresponds
to only EON energy expenditure in objective part of eq. (5),
i.e. Eslotxi∅t + (EON−Eslot)yit = EON. The “Constraints” in eq.
(5) are elaborated below. As we mentioned above, if a server
is in the OFF state in time-slot t − 1, and it is switched ON
in time-slot t, then it will spend nON consecutive time-slots to
transition to the ON state. Using the above definitions, in order
to satisfy that all jobs are fully served, we need the following
constraints: ∑

i∈N∪∅

∑
t∈Tj

siτxi jt ≥ w j, ∀ j ∈ J (6)

which means that until the ∆j/τ time-slot, job j has to be
handled. We define s∅ = 0, meaning that if a job is not assigned
to a particular server in a time-slot, its service demand will
not be processed during that time-slot. The constraint allowing
at most one job to be assigned to a server in a time-slot can
be given by ∑

j∈J∪∅

xi jt ≤ 1, ∀i ∈ N,∀t ∈ Tj . (7)

We also need to guarantee that only one server can be assigned
to a job or we can choose not to assign any server during a
time-slot (i.e. it is not possible to assign more than one server
to a job): ∑

i∈N∪∅

xi jt = 1, ∀ j ∈ J,∀t ∈ Tj . (8)

We also set x∅∅t = 0, ∀t ∈ T . Moreover, whenever an OFF
server is switched ON in time-slot t, then the server cannot
be assigned to any job during consecutive nON time-slots. If a

server is OFF in time-slot t −1 and switched ON in time-slot
t, then the following constraints must hold:

if
∑

j′∈J∪∅ xi j′(t−1) = 0 and xi∅t = 1,
∑t+nON−1

t′=t yit′ ≥ nON

This if-then constraint can be replaced with the following:

t+nON−1∑
t′=t

yit′ ≥ nONxi∅t
*.
,
1−

∑
j′∈J∪∅

xi j′(t−1)
+/
-
,∀i ∈ N,∀t ∈ T̃ . (9)

where T̃ = {1, . . ., tmax − nON + 1}. We denote as zit =
xi∅t

(
1−

∑
j′∈J∪∅ xi j′(t−1)

)
the variable which takes value 1 if

server i is switched OFF in time-slot t−1 and it is switched ON
in time-slot t, otherwise the variable is equal to 0. We are able
to transform the multiplication in variable zit as following:

zit ≤ xi∅t, ∀i ∈ N,∀t ∈ T̃

zit ≤ 1−
∑

j′∈J∪∅

xi j′(t−1), ∀i ∈ N,∀t ∈ T̃

zit ≥ xi∅t −
∑

j′∈J∪∅

xi j′(t−1), ∀i ∈ N,∀t ∈ T̃ . (10)

Note that the following must always hold:

nON
∑
t∈T

zit =
∑
t∈T

yit, ∀i ∈ N (11)

zit ≤ yit, ∀i ∈ N,∀t ∈ T . (12)

If a server is OFF, it is forbidden to switch it ON last nON
consecutive time-slots of last arriving job:

if
∑

j′∈J∪∅ xi j′(tmax−nON−1) = 0,
∑tmax−1

t′=tmax−nON
yit′ ≤ 0

which can be transformed to the following form:

tmax−1∑
t′=tmax−nON

yit′ ≤ nON
∑

j′∈J∪∅

xi j′(tmax−nON−1), ∀i ∈ N . (13)

On the other hand, no job can be assigned to an OFF server:

if
∑

j′∈J∪∅ xi j′(t−1) = 0,
∑

j′∈J∪∅ xi j′t ≤ 0,∀i ∈ N,∀t ∈ T .

which can be simplified to∑
j′∈J∪∅

xi j′t ≤
∑

j′∈J∪∅

xi j′(t−1), ∀i ∈ N,∀t ∈ T . (14)

The optimization that we formulated above is a binary integer
problem. Therefore, as it is known, it is NP-hard to calculate
the optimal value in such a case.

III. ONLINE HEURISTICS

An online algorithm is one that can process its input piece-
by-piece in a serial fashion, i.e., in the order that the input is
fed to the algorithm, without having the entire input available
from the start. In contrast, an offline algorithm is given the
whole problem data from the beginning and is required to
output an answer which solves the problem at hand. Bearing
this in mind, we propose an online heuristic algorithm for
solving the offline problem.

A. Assumptions and Cost Function

We consider that the algorithm needs only the information
of the current time-slot t and the previous time-slot t −1. We
denote by J (t) the jobs in the system in time-slot t, the
available servers SON(t), the unavailable servers SOFF(t), the
servers being in the activation process SA(t) in time-slot t.
Let us also define the jobs-to-server ratio per time-slot as
following: |J (t) |/(|SON(t) | + |SA(t) |). Moreover, nJ is the
number of jobs to be accumulated in order that we can activate
an OFF server. We assume that

1) if server i is not assigned to a job in time-slot t, then the
algorithm starts the waiting time τW (i, t) for server i;

2) if τW (i, t) ≥ twait, then the algorithm switches server i from
ON to OFF where twait is the maximal wait time;

3) if |J (t) |/(|SON(t) | + |SA(t) |) ≥ nJ , then activate an OFF
server;

Let δ j (t) represent total delay of job j until time-slot t since
its first occurrence in the system. Let us consider the following
cost of assigning server i to job j in time-slot t:

ci jt = Eslot+ exp
(
δ j (t −1)−∆j

τ

) (
w j (t −1)− siτ

)+
(15)

where by (δ j (t − 1) −∆j)/τ, we normalize the difference by
time-slot length τ letting to characterize the cost of delay. On
the other hand, (w j (t−1)− siτ)+ is a monotonically decreasing
function with respect to the increasing values of time-slots.
The cost of not assigning a server to job j in time-slot t can
thus be given by

c∅jt = exp
(
δ j (t −1)−∆j

τ

)
w j (t −1). (16)

If no job is assigned to server i in time-slot t, the cost is only
the energy consumed during a time-slot ci∅t = Eslot. We set
c∅∅t = 0 if no server is assigned to no job.

B. Total Cost Minimization per Slot

Consider that we would like to calculate the total mini-
mal cost per time-slot based on the above cost definitions.
We below show that this problem is exactly the classical
assignment problem being solvable in polynomial time. Denote
as the number of ON servers and the jobs in time-slot t as
|SON(t) | and |J (t) |, respectively. Recall that a server may
not be assigned to a job as well as no server can be assigned
to a job. Consider some “virtual servers” of which number is
equal to |J (t) | in addition to ON servers in time-slot t. We
represent by ∅i , the ith virtual server. Besides, consider some
|SON(t) | “virtual jobs” in addition to the jobs in time-slot t.
We show by ∅j , the jth virtual job. We define those virtual
elements that will substitute the empty set in formulations.
Thus, we have totally |SON(t) |+ |J (t) | both ON servers and
jobs in time-slot t. Below, an example is given. We define
ci∅ j t = ci∅t , ∀ j ∈ {1,2, . . ., |SON(t) |} as well as c∅i jt = c∅jt ,
∀i ∈ {1,2, . . ., |J (t) |}. It is obvious that c∅i∅ j t = c∅∅t = 0,
∀i ∈ {1,2, . . ., |J (t) |} and ∀ j ∈ {1,2, . . ., |SON(t) |}. The total

minimal cost in time-slot t can be calculated by following
binary integer program:

min
x

∑
S̃ON (t)

∑
J̃ (t)

ci jt xi jt subject to∑
j∈J̃ (t)

ci jt xi jt = 1, ∀i ∈ S̃ON(t),

∑
i∈S̃ON (t)

ci jt xi jt = 1, ∀ j ∈ J̃ (t),

xi jt ∈ {0,1}, ∀i ∈ S̃ON(t),∀ j ∈ J̃ (t) (17)

where S̃ON(t) = SON(t) ∪
{
∅1, . . .,∅ |J (t) |

}
and J̃ (t) = J (t) ∪{

∅1, . . .,∅ |SON (t) |
}
. The formulation corresponds exactly to the

classical assignment problem. The optimal solution of any as-
signment problem can be found using well-known Hungarian
algorithm.

IV. ONLINE ALGORITHM

Let us introduce the variables and sets used in the algorithm:
• SON (t): set of available servers in time-slot t
• SOFF (t): set of unavailable servers in time-slot t
• SA(t): set of servers in activation process in time-slot t
• τA(i, t): time spent until time-slot t since activation of server

i
• τW (i, t): waiting time until time-slot t of server i
• τ̃A(t): vector of time spent until time-slot t since activation
• τ̃W (t): vector waiting time until time-slot t
• bW (i, t): the flag bit showing if server i should be in waiting

state in time-slot t
• b̃W (t): vector of the flag bits
• δ j (t): total delay of job j until time-slot t since its first

occurrence in the system
• w j (t): remained demand of job j in time-slot t
• A(t): assignment matrix in time-slot t
We show by f (·|step k) a set or variable evolved within the
algorithm in step k. The algorithm works step by step as
described in Algorithm 1.

Algorithm 1: Online Algorithm

1. forall s ∈ SA (t) ,
if τA (s, t) ≥ tsetup
a) Add server s to SON (t), i.e. SON

(
t |step 4

)
= SON (t)∪ s

b) Remove server s from SA (t), i.e. SA
(
t |step 4

)
= SA (t) \s

c) Remove τA (s, t) from τ̃A (t): τ̃A
(
t |step 4

)
= τ̃A (t) \τA (s, t)

d) set bW
(
s, t |step 4

)
= 0

e) set τW
(
s, t |step 4

)
= 0

endif
endfor

2. forall s ∈ SON
(
t |step 4

)
,

if bW
(
s, t |step 4

)
= 1 and τW

(
s, t |step 4

)
≥ twait

a) set SOFF
(
t |step 5

)
= SOFF (t)∪ s

b) set SON
(
t |step 5

)
= SON

(
t |step 4

)
\s

c) set b̃W
(
t |step 5

)
= b̃W

(
t |step 4

)
\b

(
s, t |step 4

)
d) set τ̃W

(
t |step 5

)
= τ̃W

(
t |step 4

)
\τ

(
s, t |step 4

)
endif
endfor

3. if |J (t) |
|SON (t) |+ |SA (t) | ≥ nJ ,

a) set SOFF
(
t |step 6

)
= Remove |J (t) | − ��SON

(
t |step 5

) �� −��SA
(
t |step 4

) �� servers from SOFF
(
t |step 5

)
b) set SA

(
t |step 6

)
= SA

(
t |step 4

)
∪

{SOFF
(
t |step 4

)
\SOFF

(
t |step 5

)
}

forall s ∈ SA
(
t |step 6

)
a) set τ̃A

(
t |step 6

)
= τ̃A

(
t |step 4

)
∪ τA (s, t)

endfor
c) set τ̃A

(
t |step 6

)
= τ̃A

(
t |step 6

)
+ τ

else
a) set τ̃A

(
t |step 6

)
= τ̃A

(
t |step 4

)
+ τ

endif
4. set cost matrix C(t)
5. Calculate optimal assignments for time-slot t:

A (t) = Hungarian [C(t)]
6. set STEMP = ∅.

forall s ∈ SA
(
t |step 6

)
,

if server s is not assigned to a job in time-slot t,
a) add server s to STEMP, i.e. STEMP = STEMP∪ s
else
if bW

(
s, t |step 5

)
= 1,

a) set bW
(
s, t |step 8

)
= 0

b) set τW
(
s, t |step 8

)
= 0

endif
endif
endfor

7. Choose randomly a server i ∈ STEMP
if bW

(
i, t |step 5

)
= 0

a) set bW
(
i, t |step 9

)
= 1

b) set τW
(
i, t |step 9

)
= τ

else
8. a) set τW

(
i, t |step 9

)
= τW

(
i, t |step 5

)
+ τ

endif
9. if server i ∈ SA

(
t |step 6

)
is assigned to job j∈ J (t) in time-slot

t
a) w j (t +1) = w j (t)− siτ
else
a) w j (t +1) = w j (t)

10. forall j∈ J (t)
a) set δ j (t +1) = δ j (t)+ τ
endfor

V. POSSIBLE ENHANCEMENTS IN ONLINE ALGORITHM

In the current version of online algorithm, the decision of
optimal assignments is performed only taking into account
the available information preceding two subsequent slots;
that can be improved by using some statistical inference
techniques where the assignment cost’s exponential part given
in equation 15 will be updated dynamically. On the other
hand, jobs-to-servers ratio can be transformed to total ser-
vice demand per total server speed in the following way:∑

j∈J (t) w j (t)/
∑

i∈SON (t) si . So, the activation of a new server
could be decided whenever

∑
j∈J (t) w j (t)/

∑
i∈SON (t) si ≥

minj∈J (t)
(
t j +∆j − t

)
. Another enhancement may be to define

a new criterion of activation or switching OFF a server which
takes into consideration periodically the average number of
jobs, service demand, and deadline of jobs. For example, the
distribution of hourly number of jobs, service demand, and
deadline of jobs is found and applied in the criterion.

TABLE I
COMPARISON OF ONLINE TOTAL ENERGY COST WITH RANDOM, OPTIMAL AND RELAXED OPTIMAL TOTAL ENERGY COST. |N | = 3, |J | = 8.

Example [si]i∈N
[
wj

]
j∈J

[
tj

]
j∈J

[
∆ j

]
j∈J

Online Random Assignment Optimal Relaxed
1 [4 2 2] [4 1 2 5 5 5 1 3] [2 2 3 3 3 5 5 5] [3 4 2 2 4 4 4 3] 3500 543960 2200 1300
2 [2 2 4] [1 1 5 3 2 1 4 1] [2 2 2 3 4 4 5 6] [2 4 2 2 4 3 2 3] 2940 93380 1800 900
3 [4 3 2] [3 1 2 1 3 2 3 2] [2 2 3 4 4 6 6 6] [3 2 3 3 4 4 2 4] 3440 137780 1600 850
4 [4 4 4] [4 4 2 3 3 3 5 2] [2 2 2 2 4 6 6 6] [2 3 3 2 2 4 2 4] 137400 138880 1800 1300
5 [4 3 4] [4 3 1 4 3 1 2 4] [2 2 3 4 4 4 6 6] [4 3 4 4 2 2 4 4] 3800 273400 1600 1100

Fig. 1. Average total energy cost with respect
to nJ .

Fig. 2. Average number of jobs handled within deadline
with respect to nJ .

Fig. 3. Average total energy cost with respect
to twait.

TABLE II
COMPARISON OF ONLINE TOTAL ENERGY COST WITH RANDOM ONLINE

TOTAL ENERGY COST FOR DIFFERENT VALUES OF PARAMETERS.
EXAMPLE 4 IN TABLE 1 IS STUDIED. (OA = ONLINE ALGORITHM, RA =

RANDOM ASSIGNMENT)

twait = 1

nJ 1 2 3 4 5 6 7 8
OA 137400 92600 92600 47400 47400 47400 47400 47400
RA 138880 138160 228200 92600 137800 183000 47400 183000

twait = 2

nJ 1 2 3 4 5 6 7 8
OA 3600 3600 3600 3600 3600 3600 3600 3600
RA 5400 4200 4200 3600 4200 6600 4800 4200

VI. NUMERICAL RESULTS

We introduce random assignment algorithm which is similar
to online algorithm but having a random assignment matrix
in step 8. Random assignment matrix is obtained by random
permutations. In each numerical result, we assume that τ =
1 second, Eslot = 200 Jouls, EON = 160 Jouls.

Small Size Examples: In Table 1 and Table 2, the speed of
servers, service demands of jobs, arrival slots of jobs, deadlines
of jobs follows a uniform distribution taking integer values
from [1,4], [1,5], [2,6], [1,4]×τ, respectively. We assume that
all servers are ON, initially.

In Table 1, we assume that twait = 1 second, nJ = 1, nON =

250. The comparison in Table 2 is based on |N | = 3 servers and
|J | = 8 jobs. Note that even in case of a small size example,
the random assignment algorithm is far from optimal cost. In
Example 4, an extreme case occurs where none server is ON

Fig. 4. Average total energy cost with respect to |J |.

when 4th job arrives to the system in time-slot 5. This happens
because of our choice of twait = 1 second which causes to
switch OFF all servers. Since nON = 250, the activation of a
server increases the total energy cost. In Table 2, for different
values of twait and nJ , we compare online total energy cost
with random online total energy cost. Note that when twait
increases, both algorithms do better. Increasing nJ could also
improve the performance of online algorithm; but, it is not
always guaranteed for random assignment algorithm.

Critical Values of nJ and twait: In Figure 1 and Figure 2, the

Fig. 5. Average number of jobs handle within deadline with respect to |J |.

following parameters are assumed: twait = 2 seconds, nJ = 5,
nON = 10, and |J | = 30. The speed of servers, service demands
of jobs, arrival slots of jobs, deadlines of jobs, initial states
of servers follow a uniform distribution taking integer values
from [2,4], [10,20], [2,200], [10,20]× τ, [0,1], respectively.

In Figure 1, average total energy cost with respect to nJ
is depicted for |N | = 1, 2 and 3. The figure implies that
increasing values of nJ tends to result in a positive effect on
average total energy cost; but, it also shows that for |N | = 4,
the curve is not monotonically decreasing with respect to nJ .

In Figure 2, average number of jobs handled within deadline
with respect to nJ is depicted for |N | = 1, 2 and 3. It is
inevitable that average number of jobs handled within deadline
decreases with increasing values of nJ .

In Figure 3, we plot how average total energy cost changes
with respect to twait. We again assume that nON = 250. Figure 3
implies that the average total energy could be very dependent
on twait. We see that in the considered default values, for
twait ≥ 2, the average total energy cost decreases dramatically.
Changing the number of servers and jobs do not affect the
critical value of twait.

Comparison of Online Algorithm with Random Assign-
ment: In Figure 4 and Figure 5, the following parameters are
assumed: twait = 2 seconds, nJ = 5, nON = 250. Figure 4 plots
the change of average total energy cost as well as Figure 5
depicts the change of average number of jobs handled within
deadline with respect to number of jobs for |N | = 6, 7, and 8.
The advantage of online algorithm is inevitable in the figures.

VII. CONCLUSIONS AND FUTURE WORK

We studied the dynamic energy optimization problem in
data centers. The corresponding offline problem has been
formulated and solved using binary integer programming. We
showed that the offline problem is a new version of dynamic
generalized assignment problem including new constraints
issuing from deadline characteristics of jobs and difference
of activation energy of servers. Furthermore, we proposed
an online algorithm that solves the problem heuristically and
compared it to random assignment.

As an immediate extension in the offline problem, we can
take into account more than two states of the servers, i.e.

instead of only ON and OFF modes, we can also consider
IDLE, HIBERNATE modes, etc. We can introduce a new time
cost in case of a preemption which corresponds to migration a
job from a server to another one. Moreover, another constraint
can be geographically separated servers as well as we can
define hierarchy among jobs and forbid a particular job to be
assigned to a particular server. A possible work could also
discuss to do flexibility by some factor in deadline constraints
of jobs.

REFERENCES

[1] A. Gandhi, “Dynamic server provisioning for data center power manage-
ment,” PhD Thesis, Carnegie Mallon University, Pittsburgh, 2013.

[2] L. A. Barroso and U. Hlzle, “The case for energy-proportional comput-
ing,” IEEE Computer, vol. 40, no. 12, pp. 33-37, 2007.

[3] K. Choi, R. Soma and M. Pedram, “Fine-grained dynamic voltage and
frequency scaling for precise energy and performance trade-off on the
ratio of off-chip access to on-chip computation times,” in Proceedings
of the Conference on Design, Automation and Test in Europe, DATE’04,
Paris, France, 2004.

[4] C.-H. Hsu and W.-C. Feng, “A power-aware run-time system for high-
performance computing,” in Proceedings of the 2005 ACM/IEEE Confer-
ence on Supercomputing, SC’05, Seattle, WA, USA, 2005.

[5] H. Amur and K. Schwan, “Achieving power-efficiency in clusters with-
out distributed,” in Workshop on Energy Efficient Design, Saint-Maolo,
France, 2010.

[6] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl and R. Gupta,
“Augmenting network interfaces to reduce PC energy usage,” in Pro-
ceedings of the 6th USENIX Symposium on Networked Systems Design
and Implementation, NSDI’09, Boston, MA, USA, 2009.

[7] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch and R. Bianchini,
“CoScale: Coordinating CPU and memory system DVFS in server
systems,” in Proceedings of the 45th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO’12, British Columbia, Canada,
2012.

[8] A. Gandhi, M. Harchol-Balter, R. Raghunathan and M. A. Kozuch, “Dis-
tributed, robust auto-scaling policies for power management in compute
intensive server farms,” in IEEE Sixth Open Cirrus Summit (OCS), 2011,
Atlanta, GA, USA, Oct. 2011.

[9] M. Lin, A. Wierman, L. Andrew and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” in Proceedings of 2011 IEEE
INFOCOM, INFOCOM’11, Shanghai, China, 2011.

[10] B. Urgaonkar, P. Shenoy and T. Roscoe, “Resource overbooking and
application profiling in shared hosting platforms,” SIGOPS Operating
Systems Review, vol. 36, no. SI, pp. 239-254, December 2002.

[11] A. Verma, P. Ahuja and A. Neogi, “pMapper: power and migration
cost aware application placement in virtualized systems,” in Proceedings
of the 9th ACM/IFIP/USENIX International Conference on Middleware,
Middleware’08, Leuven, Belgium, 2008.

[12] R. Nathuji, A. Kansal and A. Gha, “Q-clouds: Managing performance
interference effects for QoS-aware clouds,” in Proceedings of the 5th
European Conference on Computer Systems, EuroSys’10, Paris, France,
2010.

[13] N. Bansal, T. Kimbrel, K. Pruhs, “Speed scaling to manage energy and
temperature,” Journal of ACM, vol. 54 no. 1, 2007.

[14] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, M.
Sviridenko, “Buffer overflow management in QoS switches,” SIAM J.
Comput., vol. 33 no. 3, pp. 563-583, 2004.

[15] P. Chuprikov, S. I. Nikolenko, K. Kogan, “On demand elastic capacity
planning for service auto-scaling,” IEEE INFOCOM, 2016.

[16] P. Chuprikov, S. I. Nikolenko, K. Kogan, “Priority queueing with
multiple packet characteristics,” IEEE INFOCOM, 2015.

[17] S. I. Nikolenko, K. Kogan, “Single and multiple buffer processing,”
Encyclopedia of Algorithms , pp. 1988-1994, 2016.

[18] K. Kogan and A. Shtub, “DGAP - The dynamic generalized assignment
problem,” Annals of Operations Research, vol. 69, no. 0, pp. 227-239,
1997.

[19] L. Moccia, J.-F. Cordeau, M. F. Monaco and M. Sammarrab, “A column
generation heuristic for a dynamic generalized assignment problem,”
Computers & Operations Research, vol. 36, no. 9, pp. 2670-2681, 2009.

