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Abstract—One of the most important practical and timely 
operational problem associated with the performance of data 
centers for cloud computing is energy consumption. The 
fundamental approach for saving energy in a data center is right-
sizing the number of servers; i.e., the determination of the 
minimum required number of servers to meet the load demand, 
allowing unnecessary servers to be turned off, so that energy 
usage can be minimized. The main challenge in designing such 
right-sizing algorithms is the fact that servers cannot be turned 
on instantaneously, so typically some estimation of the futuristic 
load is needed. Of course, the more uncorrelated the load arrival, 
the less accurate is such estimation. As the problem of right-
sizing is NP-complete, a heuristic algorithm is required for 
practical deployment. In this paper, we first develop an efficient 
offline right-sizing heuristic, and we demonstrate that its 
performance is close to optimal. Rather than classifying jobs into 
a fixed number of types as prior works do, every arriving job is 
characterized with its own latency tolerance profile. Our offline 
heuristic, taking advantage of this latency tolerance, attempts to 
rearranges the jobs’ processing times, so that the overall servers’ 
demand is “smoothed”. Then, based on the offline algorithm, we 
design an online algorithm that computes the real-time servers’ 
right-sizing according to the arriving workload. As the key result 
of this paper, we show that the performance of the online 
algorithm closely approximates the performance of the offline 
algorithm, and that both closely approximate the optimal 
solution. We also demonstrate that the use of our algorithm 
corresponds to an over 50% operational cost reduction of a data 
center. 

Keywords—data centers; right-sizing; job profiling; energy-
efficient algorithm 

I.  INTRODUCTION  
With the development of cloud computing, the number and 

the popularity of data centers has increased significantly. 
However, data centers consume vast amounts of energy, with 
substantial portion of this energy being used for powering and 
cooling servers’ systems. Thus, saving energy in data centers 
becomes a very important and timely problem. The 
fundamental approach for saving energy in a data center is 
right-sizing the number of servers; i.e., the determination of the 
minimum required number of servers to meet the load demand, 
allowing unnecessary servers to be turned off, so that energy 
usage can be minimized.  However, since the load of a data 
center is unpredictable, and often characterized by low 
temporal correlation, right-sizing is a challenging problem. 

Although there have been a lot of research efforts in 
studying the right-sizing problem (e.g., [1] −  [6], [12], [13]), 
the characteristics of the applications and the specific attributes 
of the jobs handled by the data centers have not been 
adequately taken into account. Consequently, a goal of this 
paper is to develop an online algorithm that makes use of the 
latency tolerance of jobs as to attempt to smooth the servers’ 
demand over time, so that service can be provided with smaller 
number of servers, thus saving overall data center’s energy.  

The rest of this paper is organized as follows. Section II 
presents our models of the servers and the workload, which are 
used to formulate the energy optimization problem. Section III 

solves the offline optimization problem by taking advantage of 
jobs’ latency tolerance. Using the offline algorithm, Section IV 
describes the design of our online algorithm. Section V 
presents the performance analysis, and Section VI concludes 
the paper. 

II.  MODEL FORMULATION 
A. Workload Model 

We assume that time is divided into time-slots and that the 
total “experiment” time lasts T time-slots, {1, …. , T�. We 
further assume that all events occur at the time-slots 
boundaries; i.e., let t��{1, ..., T} stand for a scheduling instant. 
Note that the length of each time-slot is assumed to be on the 
order of the time needed to activate a server (i.e., time needed 
to power on a server – see below). Also, let the average arrival 
rate of requests to the data center during a time-slot t be �� .  

Each job � � �	
 � 
 ��
��� (where 
�is the set of all the jobs in 
the system) is characterized with three parameters: the arrival 
time ��, the amount of workload ��(in slots), and the lifetime 
��(in slots), where the latter is the maximum time that the job is 
allowed to spend in the data center.  
B. Server Model 

We consider homogeneous servers model. Each server may 
be in one of the three states, which are: on, off, and switching. 
This three-state model was adopted by many papers addressing 
the problem of data centers right-sizing (e.g., [1], [12]). 
• The on state: A server is powered and ready to process jobs, 

and it expends ����� energy per time-slot no matter whether 
the server actually processes a job or not.  

• The off state: A server is not powered, it cannot process any 
job, and it does not consume any energy. 

• The switching state: A server transitions from the off to the 
on state. The server will remain in the switching state for    
��� time-slots, at the end of which the server will enter the 
on state. While in the switching state, the server is powered 
and consumes ��� energy per time-slot, but is not available 
for jobs processing.  
We make an assumption that going from the state on to the 

state off costs no extra energy and that such a transition can 
occur immediately while the unfinished jobs on that server can 
be transferred to other servers with no cost. Also, a server can 
be turned off while in the switching state without any extra 
energy, and such a transition occurs instantaneously. Finally, as 
it is common in this field (e.g., [1], [5], [12]), we assume that a 
server can serve only one job at a time. 

C.  The Energy Optimization Problem 
We label ������ and � ����as the number of servers that 

are in the on state and that are in the switching state, 
respectively, at the beginning of the time-slot t.�!��� is the 
number of jobs that will be processed during the time-slot t. 
"����  is a binary variable, where "���� =1 if the job j is 
processed during the time-slot t, and�"����= 0 otherwise. # is 
the total number of servers in the data center. 

Given the above models, the goal of our algorithm is to 
decide when to switch servers on or off, as to minimize the 
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total energy cost during the time [1, ..., T], 
jobs’ latency requirements. Specifically, 
problem is formulated as follows: 

 
 
minimize 

$ %����� & '����� ( ��� & ' ���)
*+, -����

subject to 

      '����� . /���, � 0 	
1
 �T.              
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     4�5� $ "���� 0 ��
67 879,
�+67                       

     4�5�"���� 0 :
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III. THE OFFLINE HEURISTIC

The offline algorithm assumes that all the
4j, ��, �� , and ��) is known before the “exper
at time t=1).  We can then look at the task o
distribute 1’s in a matrix of ��
�� ? 3 , such th
each row), there are exactly ��  1’s and th
within the time-slots �=�, =� ( �� @ 	�, wher
place corresponds to "���� 0 	. (Such a matr
a feasible solution.) In other words, the p
distribute the workload ��  in the ��  time-sl
time-slot =�) for each job j. Each such an as
"����, requires a certain number of servers to
corresponds to some required amount of ene
required number of servers in each time-
determine when to turn on/off servers, so tha
number of servers in the on state is minimized
hand, the number of servers in the on state m
demand. The optimal solution is, then sele
energy solution from among all the feasible s

A. Workload Distribution Problem 
As discussed above, we can represent the

for all the jobs as a matrix, with a corres
!���, which depicts the number of require
example, assume three jobs: �,  = 1,��A  = 2
BA 0 	
  BC 0 1
  D, 0 E
  DA 0 1
  D, 0
represented by a row in the “assignment gra
), and if "���� 0 	, then the corresponding tim
with ‘1’, where the number of ‘1’s of a job m
workload, and also every ‘1’ must be within 
which represents the lifetime of the job. 
optimal assignment for these three jobs, as 
demand curve for the assignment. 

 

Fig. 1: (a) Assignment graph; (b) Server demand curve. 
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Fig. 2: (a) Initial assignment graph; (b) 
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Fig. 5: (a) Next iteration of assignment graph; (b) Server demand curve. 

 
Fig. 6: (a) Final assignment graph; (b) Server demand curve. 

Next, we present the offline heuristic in pseudo-language: 

The offline heuristic algorithm 
 1:   for each j� 
 do 
 2:       for t = =� to =� ( �� @ 	 do 
 3:           "���� 0 	 
 4:       end for 
 5:   end for 
 6:   M� 0 �N�N 0 O
 N � M� 
 7:   L�	� 0 ����	� 
 8:   L��� 0 �P�9,� ( ����	�
 t 0 1
� 
 ��� 
 9:   Q��� 0 �L��� @ �!���
 � 0 	
� 
 ��� 
 10:   for �= 1 to ��� do 
 11:       if  Q��� < : then 
 12:           
� 0 ���"���� 0 	� 
 13:          for R 0 	 to @�Q��� do 
 14:              set "���� 0 : for � � 
� and � 0      

STUVWX%�G� @ ���J��- 
 15:              update 
� 0 ���"���� 0 	� 
 16:          end for 
 17:      end if 
 18:  end for 
 19:  while  Y� s.t. $ "���� < ��

67 879,
�+67  do 

 20:      
 0 
\��� 
 21:      Z 0 Z ( 	 
 22:  end while 
 23:  while Y�
 [K �K $ "���� > ��  do 
 24:    for t = 1 to T do     
 25:       �\ 0 STU]SN�%!���- 
 26:       
\ 0 ���"���\� 0 	� 
 27:       for j = 1 to |
\� do 
 28:          if Y � � 
\ , � 0      STUVWX%�G� @ ���J��-  
 29:             and %�G� @ ���J�� > : do 
 30:             set "���� 0 : 
 31:             return 
 32:          end if  
 33:       end for   
 34:    end for  
 35:  end while 
 36:  while  Y� s.t. !��� > # do 
 37:      
� 0 ���"���\� 0 	� 
 38:      � 0 � STU]SN�%��-
 ^ � 
� 
 39:      4� � �	
 � 3�
 "���� 0 :  
 40:       
 0 �
�_{j} 
 41:       Z 0 Z ( 	 

 42:  end while 
Lines 1-5 of this algorithm assign for each job all the 

possible time-slots, starting from the job’s arrival time-slot. 
Lines 6-18 calculate the server limit and then improve !��� to 
match the server limit L��� from time-slot 1 to time-slot  ���. R 
is the set that contains the remaining switching time of all 
switching servers. 
� is the job set that contains all the jobs that 
were to be processed in time-slot t. Then the algorithm checks 
in lines 19-22 if there is any job with assigned time less than its 
workload. If so, the algorithm drops that job and updates the 
jobs set J and "����; it also updates the number of lost jobs n. 

Lines 23-35 represent the process of flattening the curve 
!��� by removing its peak repeatedly: finding the time-slot 
with the heaviest load and, for all the jobs that have been 
assigned in this time-slot, finding the one with the biggest 
redundancy, removing its assignment and updating �!���. At 
the end of this part, the assignment has no remaining 
redundancies. In lines 36-42, the algorithm checks whether 
there is any time-slot that has workload larger than the number 
of servers, deletes excess jobs and updates the assignment and 
the jobs set. 

At the end of the algorithm’s processing, the final 
assignment "���� and the server demand function !���
 � 0
	
1
 � 
 3K � 0 	
1� �
�  are obtained. From this final 
assignment, the decisions to turn servers on or off are 
performed  for  each time-slot t���{1, ..., T}, so that the energy 
cost is minimized (see the next subsection). 

B. The Server Decision Problem 
At the beginning of each time-slot, we want to make the 

necessary decisions to turn servers on or off, so that the total 
energy cost is minimized, as long as the server demand could 
be satisfied. 

After we solved the workload distribution problem above, 
we obtained the function !���, which is the least number of 
servers that should be in the on state in time-slot t. Using this 
function, we can calculate the (earliest) time until when any 
number of servers is needed to be on. Denote the earliest time 
that x servers are needed to be on as !9,�X�. Note that the 
decision of keeping a number of servers on or transitioning 
them to the switching state depends not only on !9,�X�, but 
also on the relationship between the values of ���,������ , and 
���, as discussed in the following. 

Energy Saving Analysis for the case `ab . `cdae 
In what follows, i represents the current time-slot in which 

the decision is to be make, and �f is the next time-slot in which 
a currently unused server is needed again. 

 Case 1: �f- i < ��� �( 	. That is to say, there is not enough 
time to turn the server off and then turn it on again to meet the 
demand, then this server should be kept on anyway. 

Case 2: �f - i .  ��� �( 	 , %�f @ �R- & ������ ; ��� � & ��� . In 
this case, there is enough time to turn the server off and then 
turn it on again to meet the demand, however, keeping it on 
costs less energy. Therefore, this server should be kept on. 

Case 3: �f - i .  ��� �( 	 , %�f @ �R- & ������ > ��� � & ��� . In 
this case, there is enough time to turn the server off and then 
turn it on again to meet the load, and also turning it off and 
then turning it on again costs less energy, so this server should 
be turned off. 

The offline decision algorithm for `ab . `cdae 
 1:    �\gh = ]SN�%iLjjG k lmnlopmq

r & ���
 ��� ( 	- 
 2:    s\gh  = ]SN%/���- 
 � 0 �R
 � 
 R ( �\gh @ 	 

406



 3:   if L�R� . s\gh  then 
 4:       ����R� 0 s\gh  
 5:       � �R� 0 : 
 6:    else if L�R� < s\gh ; L�R� (  � �R� 
 7:          � �R� 0 L�R� ( � �R� @ s\gh  
 8:          else if  s\gh > L�R� ( ' �t� then 
 9:               � �R� 0 � �R� ( VRZ��# @ L�R� @ � �R�, 
                                  s\gh @ L�R� @ � �R�} 
 10:         end if 
 11:      end if  
 12:  end if  

The algorithm first calculates the longest time a server can 
be idle �\gh. Then calculate the maximum demand from time-
slot i to time-slot i+�\gh @ 	, denoted as s\gh . The servers 
decision then would be made based on the relationship between 
s\gh , L�R�
�and � �R�.  
Energy Saving Analysis for the case `ab < `cdae 

When ���  is smaller than ����� , turning on servers just 
before they are needed will save energy. 

The offline decision algorithm for `ab < `cdae 
 1:   suvww 0 ]tO%L�X� @ �!�X�-
 X � %R
 R ( ��� @ 	- 
 2:    s\gh 0 ]SN%!�X�-
 X 0 R � 
 R ( ��� 
 3:   ����R� 0 ����R� @ suvww  
 4:   if s\gh @ L�t� ( suvww ; � � �R� then 
 5:      � �R� 0  s\gh @ L�t� ( suvww 
 6:     else  � �R� 0 � �R� ( ]tO��# @ L�t� ( suvww @

�� �R�
 s\gh @ L�t� ( suvww @�� �R��  
 7:  end if  

The algorithm first calculates the minimum difference 
between servers limit and servers demand, suvww 0
VRZ%L�X� @ �!�X�- 
 X � �R
 R ( ��� @ 	�  and also calculates 
the maximum demand s\gh  from the time-slot i to i+���. Then 
the servers’ decisions are made based on the relationship 
between s\gh , suvww, L�R�
 and � �R�.  

IV. THE ONLINE HEURISTIC  
To come up with an online algorithm, we use the offline 

heuristic algorithm in each time-slot with the existing workload 
(past arrivals) and an anticipated average future workload to 
obtain an “optimal” assignment. Then based on this 
assignment, we make decisions for the servers in the current 
time-slot.  For simplicity, we choose the average workload as 
the anticipated future load; this choice also tends to optimize 
the overall performance of our scheme. Note that unlike the 
offline algorithm, the online algorithm does not assume the 
overall workload for future time is known, all that affect its 
decision is the existed jobs and estimated workload while the 
decision will be adjusted according to the real arrived jobs 
whenever necessary. 

A. Job Distribution Algorithm 
The main difference between the online heuristic and the 

offline heuristic is that the online algorithm will be used at the 
beginning of every time-slot to determine which jobs would be 
processed during the current time-slot.  The proposed online 
heuristic algorithm uses the average workload and lifetime as 
the predicted future job arrivals. Then for the combination of 
the existing jobs and the predicted future jobs, the demand 
curve flattening is applied, while considering the current server 
limitation. 

Another difference of the online algorithm is that we do not 
drop any job that are to be processed in the future, because the 
actual load in the future may be actually lower than the average 
load that is used to calculate the current assignment. 
Consequently, the heuristic offline algorithm is modified as 
following to come up with the online algorithm. (Assume that 
the current time for the algorithm is the time-slot i.) 
The online heuristic algorithm 

 1:   for each j� 
 do 
 2:      for t = =� to =� ( �� @ 	 do 
 3:         "���� 0 	 
 4:       end for 
 5:   end for 
 6:   M� 0 �N�N 0 O
 N � M� 
 7:   L�R� 0 ����R� 
 8:   L�R ( �� 0 �P�� ( ����	�
 t 0 	
� 
 ��� @ 	 
 9:   Q��� 0 L��� @ �!����
 � 0 R
 � 
 R ( ��� @ 	 
10:   if  Q�R� < : then 
11:       
� 0 ���"��R� 0 	� 
12:     for Z 0 	 to !�R� @ L�R��do     

   13:    set "���� 0 :  for � � 
�  and � 0 STUVWX%�G� @
���J��- 

 14:           update 
� 0 ���"��R� 0 	�      
 15:       end for       
 16:   end if       
 17:   while  Y� s.t. $ "���� < ��

67 879,
�+67  do   

 18:      
 0 
\��� 
 19:      Z 0 Z ( 	 
 20:   end while  
 21:  while Y�
 [K �K $ "���� > ��  do 
 22:    for t = i to T do     
 23:       �\ 0 STU]SN�%!���- 
 24:       
\ 0 ���"���\� 0 	� 
 25:       for j = 1 to |
\� do 
 26:          if Y � � 
\ , � 0      STUVWX%�G� @ ���J��-        

and %�G� @ ���J�� > : do 
 27:             set "���� 0 : 
 28:             return 
 29:          end if  
 30:       end for   
 31:    end for  
 32:  end while 

Lines 1-5 of the algorithm assign all possible time-slots for 
each job to obtain a redundant assignment. From this 
assignment, we obtain the workload function !���. Lines 6-16 
calculate the server limit and then improve the !�R� function 
to match the server restriction function L�R� for current time-
slot. After that, the algorithm checks if there is any job that has 
been assigned less time than its workload (line 17-20), and if so 
drops that job, updating the number of lost jobs. Also, "���� is 
updated accordingly. Lines 21-32 flatten the curve !���  by 
repeatedly smoothing the peaks of the curve.  

From the final assignment, the decisions for the servers at 
each time-slot t���{1, ..., T} are derived, so that the total energy 
cost is minimized. 

B. Server Decision Algorithm 
The decision algorithm for the case of ��� . �����  is the 

same as the offline decision algorithm. 

The online decision algorithm for `ab < `cdae 
 1:   suvww 0 ]tO%L�X� @ �!�X�-
 X � %R
 R ( ��� @ 	- 
 2:    s\gh 0 ]SN%!�X�-
 X 0 R � 
 R ( ��� 

407



 3:   if suvww . : then 
 4:       ����R� 0 ����R� @ suvww  
 5:   end if 
 6:   if s\gh @ L�t� ( suvww ; � � �R� and suvww . :    then 
 7:      � �R� 0  s\gh @ L�t� ( suvww 
 8: else if s\gh @ L�t� ( suvww > � � �R�  and  suvww . :     

then 
 9:������������� �R� 0 � �R� ( ]tO��# @ L�t� ( suvww @

� �R�
 s\gh @ L�t� ( suvww @ �� �R�� 
10:         else if suvww < : then 
11:    �� �R� 0 � �R� ( ]tO�@suvww
 Hs\gh @ �L�t� @

�'(t� 
12:                end if 
13:         end if 
14:  end if  

Similar to the offline decision algorithm, the online 
decision algorithm for the case of ��� < ����� (lines 1-2) first 
calculates the minimum difference suvww  between the servers 
limit curve and the servers demand curve, as well as the 
maximum demand s\gh  from time-slot i to time-slot i+��� . 
Then the decisions are made for servers that need to be on 
based on whether suvww  is greater than zero (lines 3-5). The 
decisions for servers that need to be switching depend on suvww 
and the relationship between %s\gh @ L�R� ( suvww-  and 
� �R��(lines 6-14). 

V. PERFORMANCE EVALUATION 
To evaluate and compare the performance of the proposed 

algorithms, we define a utility function that takes into account 
the energy used to process the jobs and the “cost” due to lost 
jobs. The rationale for this utility function is that there is a clear 
tradeoff between the energy consumption and the job 
completion rate; e.g., an algorithm can use very little energy, 
but at the expense of low job completion rate. More 
specifically, we formulate the total cost, x
 as follows: 

x 0 ����g� ( yz                                  (7) 
where ����g�  is total energy cost, z is the number of lost jobs 
(i.e., failed to complete processing within their lifetimes), and 
y is a scaling factor that expresses the relative importance of 
energy ����g�  vs. lost jobs z. For simplicity, we assume that { 
is equal for all jobs; however, if the jobs have different level of 
importance, equation (7) could be adjusted to express the 
relative importance of a lost job vs. the cost of energy.  

We simulated and compared the performance of the 
proposed two heuristics (offline and online), as well as a “non-
scheduling algorithm”. The non-scheduling algorithm is an 
online algorithm with the strategy that every job is processed 
as soon as it arrives at the data center. In this algorithm, we 
assume that the service discipline is first come first serve 
(FCFS) and that the waiting queue is infinite (the job loss is 
entirely due to missing their deadlines). Thus, any job whose 
execution is not completed before its deadline is removed from 
the system. The arrival jobs are simulated by Poisson random 
variables with the average arriving rate of |. The workload and 
lifetime of each jobs are simulated in the same way, with the 
average workload �}  and the average lifetime �~. 
A. Comparison with the optimal offline algorithm 

The problem of finding the optimal assignment is, of 
course, NP-complete. However, comparison of our heuristics 
with the optimal solution, even for a small-size cases, can 
provide a good indication on the well our heuristics perform. 

For comparison purposes, we designed a “brute-force” 
scheme based on binary integer programming to calculate the 
optimal offline assignment according to formula (1)-(6) and 
implemented it in MATLAB for cases of up to 20 time-slots. 
The results of the comparison are shown in Fig.7. The results 
in the figure demonstrate that: 
(1) Our offline algorithm performs close to our online 

algorithm 
(2) Both our heuristics perform close to the optimal solution 
(3) Both our algorithms reduce the total cost by more than 

50%, compared to the non-scheduled cases. 

Furthermore, Table 1 shows the difference in total cost 

(referred to as “relative error”) of the two heuristics as 
compared with the optimal algorithm, demonstrating that the 
relative error (in %) decreases with larger simulation cases. 
These results suggest that the error of our heuristics continues 
to be small for large, real-life cases.  

B. Comparison of the online with the offline heuristics 
We compared the performance between the online heuristic 

 
Fig. 7. Total cost vs. simulating time with different algorithms. (����* = 1, 
��� = 1.5, N=30, | 0 1, { 0 �, �} 0 E, �~ 0 �.) 

 �� =9 �� =10 �� =11 �� =12 �� =13 �� =14 

��������% 5.26 4.16 4.13 3.98 4.53 4.07 

�������% 7.9 7.9 8.48 8.05 8.12 8.05 
 �� =15 �� =16 �� =17 �� =18 �� =19 

��ww�v��% 3.67 4.2 3.85 3.79 3.57 

����v��% 7.41 6.95 7.37 7.82 7.12 

TABLE 1. ERROR OF THE HEURISTICS 

 
(1)                                                                (2) 

 
(3)                                                                (4) 

Figure 8:   (1) Total cost vs. | ({ 0 ��. (2) Error between online and offline 
heuristics. (3) Total cost vs. | ({ 0 	:�. (4) Error between online and offline 
heuristics. (����* = 1, ��� = 1.5, N=30, �� 0 1:, �} 0 E, �~ 0 �.)
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and offline heuristic against |�, with the results shown in Fig.8. 
The difference between the heuristics decreases with an 
increase in |
 as shown in Fig.8(2). Comparing Fig.8(1) with 
Fig.8(3), we can observe the effect of increasing { from { 0 � 
to { 0 	:. The results demonstrate that dropping jobs has a 
significant impact on the total cost. Furthermore, we observe 
that larger |  decreases the difference between the two 
heuristics, suggesting that the online algorithm performs better 
in heavy-loaded systems. 

The impact of the ratio ���J�����  is shown in Fig.9(1). 
���J�����  is an indication of  how much more expensive it is to 
switch a server off and then on, rather than leaving the server 
on and idle. Both the online and the offline algorithms involve 
switching off/on servers to save energy, so the total cost 
increases with (���J������. However, when ���J�����  becomes 
large enough, the advantage of right-sizing becomes less 
pronounced, because ���  is so large that we do not bother 
switching servers off.  

As shown in Fig.9(2), there is no significant  impact caused 
by changing the prediction window for the online algorithm. 

Fig.9(3) shows the total cost vs. setup time ���. Both the 
online and offline heuristic results increase with ���, since the 
larger ��� is, the more jobs would be dropped when there is a 
temporary increase in load. Moreover, when the system load is 
smaller than the expected load for short time durations, the 

algorithms tend to keep servers on in case the load increases 
within the ���  time-slots. However, the online algorithm is 
more affected by ��� than the offline algorithm due to the fact 
that the online algorithm relies on predicting the future load, 
and that inaccuracy of such predictions become more 
significant when the ����increases. 

C. Comparison with another scheduling scheme 
In order to test the performance of our algorithms, we also 

compare our heuristics with the algorithm proposed in 
reference [12], denoted as “Lin’s algorithm” below.   
Lin’s algorithm 

In Lin’s paper, there are two types of optimization in terms 
of QoS requirement, the one that considers service with hard 
QoS constraints is similar to our job’s lifetime assumption. 
That optimization is formulated as: 

minimize      $ X��
�+, ��� k�qhqr ( � $ �X� @ X�9,� �

�+,                       

subject to     X� . �� and s��qhq� ; z� 
 The duration of time-slot of Lin’s model � � �:
	
 � 3� 

matches the timescale at which the data center can adjust its 
capacity, which is similar to ���  in our model. ��  is the 
electricity price at time-slot t. X� is the number of active servers 
at time-slot t. � is the cost to turn on a server. �� is the mean 
arrival rate at time-slot t. The power cost function is ���� 0
�� ( �,�. The average delay is s��� 0 	 �� @ ��� . Since the 
service rate of a server � is normalized to 1, � 0 ��JX� ; 	. 

Since we don’t consider the electricity price impact and 
load dependent energy consumption, we set �, 0 :� in our 
simulations, thus making the energy consumption load-
independent. Also, we set �� 0 	, so that the electricity price 
does not affect the optimization. Then the optimization model 
of Lin’s paper reduces to: 

minimize     $ X��
�+, �� ( � $ �X� @ X�9,� �

�+,                                 
subject to     X� . �� and s��qhq� ; z� 

 The total cost of Lin’s optimization consists of the energy 
consumed by active servers and switching servers. The 
minimum number of active servers at time t is constrained by 
the condition X� . �� and s��qhq� ; z� . In order to find out the 
right timing to turn on/off servers to minimize the total energy, 
they introduce the lazy capacity provisioning algorithm. This 
algorithm is motivated by the structure of the optimal offline 
solution. 
The main difference between our algorithm and Lin’s 
algorithm 

The optimization object of Lin’s algorithm is the same as 
ours − to save the energy cost by adjusting the number of 
active servers. One of the main differences between Lin’s 
algorithms and our heuristics is that the number of active 
servers in Lin’s algorithms is determined by the mean arrival 
rate while taking the mean delay into account. The mean delay 
is calculated by the theoretical queuing model. To achieve a 
desired average delay, the number of servers must be large 
enough, so that the arrival rate for each server guarantees the 
average delay, z� : s���� 0 	 �	 @ �q

hq
�� ; z� � X� .

�� �	 @ ,
�q

� �. For our algorithm, we treat each job individually, 
we assign the processing time to each job based on its 
workload and lifetime, while considering the overall workload. 
Jobs in our model can be suspended and transferred to different 
servers to resume. While in Lin’s model jobs allocated to a 
server form a queue, jobs cannot change server, and when a job 
is being processed the service cannot be turned off. 

In Lin’s algorithm, the decision of the number of servers is 
made every 10-min time-slot, with the assumption that the job 
interarrival time and the response time are much shorter than 
the time-slot. In order to compare our algorithm with Lin’s 
algorithm, we divide each 10-min time-slot into many shorter 
time-slots (we refer to those as “short time-slots”) that match 
the workload of jobs. We let the average workload be 2 short 
time-slots long, the average lifetime be 6 short time-slots long. 
We set � 0 �
 �� 0 	  for Lin’s algorithm, while ��� 0
�
 ����� 0 	 for our algorithm. 
Comparison of the offline algorithms 

We run simulations comparing our and Lin’s offline 
algorithms. In the following graphs, the red curve represents 
the number of servers over time as calculated by Lin’s 
algorithm (the model of services with hard QoS constraints), 

 
(1)                                                               (2) 

 
(3) 

Fig.9 (1) Total cost vs. ���J����*. (����*  = 1, N=30, ���=1, �� 0 1:, | 0
�
 { 0 �.) (2) Total cost C vs. prediction window ��. (����* = 1, ��� = 1.5, 
���=1, N=30,�| 0 � { 0 �.) (3) Total cost C vs. setup time ���. (����* = 1, 
��� = 1.5, �� 0 1:, N=30,�| 0 �
 { 0 �, �} 0 E, �~ 0 �) 
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and the blue curve represents the overall workload using our 
algorithm. As can be seen, the number of servers using our 
algorithm is much less than the number of servers of Lin’s 
algorithm. Furthermore, no jobs are dropped using our 
algorithm, while a job is going to spend more time than the 
lifetime (average delay) with a probability of 0.37 in Lin’s 
model. 

 
(a)                                                          (b) 

Fig.10  (a) The number of servers over time using Lin’s algorithm (red curve) 
and overall workload (blue curve) using our algorithm with a simple workload 
trace [5 6]. (b) The number of servers over time using Lin’s algorithm (red 
curve) and overall workload (blue curve) using our algorithm with a simple 
workload trace [6 5 6 8]. 

Since, given the arriving rate at each time-slot, the cost 
difference between our and Lin’s offline algorithms is 
independent between time-slots, we simulated the comparison 
only for a limited number of time-slots. (The workload trace [5 
6] used in the simulation Fig.10(a) means the arrival rate of the 
first time-slot is 5 jobs per short time-slot, the arrival rate of the 
second time-slot is 6 jobs per short time-slot, each time-slot is 
divided into 200 short time-slots. The workload trace [6 5 6 8] 
is of the same meaning.) 
Comparison of the online algorithms 

In order to tradeoff the switching cost and the lost job cost, 
we modified our online decision algorithm as: switch on more 
servers only when the duration of heavy load is longer than a 
threshold. 

The online decision algorithm for `ab . `cdae 
 1:   �\gh = ]SN�%iLjjG k lmnlopmq

r & ���
 ��� ( 	- 
 2:    s\gh  = ]SN%/���- 
 � 0 �R
 � 
 R ( �\gh @ 	 
 3:    s��� = ]SN%/���- 
 � 0 �R
 � 
 R ( ��� 
 4:   if L�R� . s\gh  then 
 5:       ����R� 0 s\gh  
 6:       � �R� 0 : 
 7:   end 
 8:    if  L�R� < s��� ; L�R� (  � �R� 
 9:          � �R� 0  s��� @ L�R�  
 10:  end 
 11:  if s��� > L�R� (  � �R� 
 12:  for n = 1: �VRZ��# @ L�R� @ � �R� , s��� @ L�R� @
� �R�} 

 13:       if  R%L�R� ( ' �t�+n]�. threshold 
 14:                     � �R� ( ( 
 15:                 end if 
 16:        end for 
 17:  end if  

The following graph shows the comparison result of online 
algorithms with a simple workload trace. ([1 2 2 4], the arrival 
rate of the first time-slot is 1 jobs per short time-slot, the arrival 
rate of the second time-slot is 2 jobs per short time-slot, the 
arrival rate of the third time-slot is 2 jobs per short time-slot, 
the arrival rate of the fourth time-slot is 4 jobs per short time-
slot.) Lin’s online algorithm Lazy Capacity Provisioning  
(LCP(w)) assumes that at time �, LCP(w) knows the arrival 
rate for � ; � ( �, w is the prediction window. Also there is an 

assumption in Lin’s online algorithm that the switching time is 
one time-slot. So the number of active servers at the time-slot � 
using LCP(w), N������� , should be decided at the beginning of 
the time-slot � @ 	 . Then the algorithm implies that at the 
beginning of the slot � @ 	, the arriving rates |,
 |A
…�|�  are 
known for w = 0. 

In our simulation we set the prediction window used in 
Lin’s algorithm w = 0, and we assume that at any time the 
arrival rates of the following two time-slots are known, these 
arrival rates are used in our algorithm to calculate the estimated 
future workload too. 

In this simulation, the total energy using Lin’s algorithm 
LCP(0) is 8100, the total energy using our online heuristic 
algorithm is 4690. The number of lost jobs using Lin’s 
algorithm is 331, the number of lost jobs using our online 
heuristic is 132. The energy using our algorithm saves 42.1% 
energy compared to Lin’s algorithm, and it also decrease the 
number of lost jobs by 60.1% compared with Lin’s algorithm. 

 
Fig.11  The number of servers over time for algorithms with a simple workload 
trace [1 2 2 4]. 

We test the impact of the short time-slot’s duration as well. 
The small time-slot’s duration determines the decision 
frequency of the servers for our online algorithm. Below are 
the graphs showing the number of servers over time for the two 
algorithms with different durations of short time-slots for our 
algorithm. The performance of our algorithm almost remains 
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Fig.12 The number of servers over time with different short slot’s lengths for our 
algorithm. (Upper left graph is 100 small slots per time-slot, upper right graph is 
200 small slots per time-slot, the lower graph is 300 small slots per time-slot.). 
 

Decision 
frequency 
of our 
algorithm 

Energy 
(our 
algorithm) 

the 
Number 
of Lost 
Jobs (our 
algorithm) 

Energy 
(Lin’s 
algorithm) 

the 
Number 
of Lost 
Jobs 
(Lin’s 
algorithm)

100 slots 14277 390 23100 1037
200 slots 14029 369 23100 1037
300 slots 14159 342 23100 1037

TABLE II. RESULTS WITH DIFFERENT SMALL TIME-SLOT’S LENGTH
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the same with different slot durations. (Simulated with the 
workload trace [1 2 2 4 3 5 4 6 2 3 4].) 

The comparison results demonstrate significant 
improvement of our scheme, even for very random workload. 
The main reason for the result is our model makes use of job’s 
lifetime to arrange the servers to get smooth and relatively low 
workload, and also our algorithm allows jobs transfer between 
different servers. 

VI. RELATED WORK 
The topic of energy saving problem in data centers has been 

studied by a number of researchers. Some researchers develop 
algorithms based on Lyapunov Optimization technique ([1], 
[3], [8]), while considering different optimization modeling.  
Reference [1] focuses on reducing power cost along with queue 
stability and considers cost vs. delay trade-off; thus the 
approach taken by this work is suited for delay tolerant 
workloads, such as massively parallel and data intensive 
MapReduce jobs. Other researchers focus on virtualized data 
centers (e.g., [3], [10], [11]). For example, the reference [3] 
designed an algorithm that makes use of the queueing 
information available in the system to implicitly learn and 
adapt to unpredictable changes in the workload of virtualized 
data centers.  

A different approach taken by [7] explored dynamic energy 
pricing and designed algorithm for achieving optimal 
geographical load balancing: routing to a data center further 
from the request source uses cheaper energy. The reference 
[10] considers collaborative filtering techniques, which are 
frequently used in recommendation systems; instead of 
learning each new workload in detail, the system leverages 
information it already has about applications it has seen to 
express the new workload as a combination of known 
applications. The Reference [5] suggests a simple last-empty-
server-first job-dispatching strategy and each server 
independently solving a classic ski-rental problem.  

We observed that in previous works the most common 
metric used in the optimization problem is job delay (e.g., [1], 
[8]), while the other aspects of QoS and the demand difference 
between different jobs haven’t been fully studied. This is one 
of several aspects where our work differs – our algorithms 
incorporate latency tolerance measures (a lifetime) for each 
arriving job. 

VII. SUMMARY AND CONCLUSIONS 
In this paper, we have presented two novel heuristic 

algorithms for solving the right-sizing problem of data centers. 
As the problem of finding the optimal assignment is NP-
complete, heuristics are necessary to provide practical solution. 
One particular aspect of our work that sets it apart from other 
works is that our algorithms incorporate latency tolerance 
measures (a lifetime) for each arriving job.  

We first developed an offline heuristic, which is based on 
the observation that reducing the number of times that  the 
servers are off and on has a benefit effect on the total energy 
consumption. We used this fact to “smooth” the servers’ 
demand curve through leveraging the fact that jobs have some 
leeway when they are executed within their lifetime in the 
system. Based on the offline heuristic, we developed an online 
algorithm by predicting the future arrivals of jobs and their 
corresponding parameters.  

We compared the performance of the two heuristics, the 
non-scheduling execution of the jobs, and the optimal 
algorithm.  Our comparison results demonstrate that: (1) Our 
offline algorithm performs close to our online algorithm, (2) 
Both our heuristics perform close to the optimal solution, and 
(3) Both our algorithm reduce the total cost by more than 50%, 
compared to the non-scheduled case. 

We also compared the performance of our heuristics with 
another scheme proposed in [12], which is referred to as the 
“Lin’s algorithm”. The results showed significant performance 
improvement of our algorithms. 

Due to its low complexity and ability to handle large real-
life scenarios, our algorithm presents a practical solution to 
data-centers right-sizing problem. 
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