
On Power Management Policies for Data Centers

 Zygmunt J. Haas*† and Shuyang Gu†
 *School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

 †Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX
 {haas, sxg121231}@utdallas.edu

Abstract—One of the most important practical and timely
operational problem associated with the performance of data
centers for cloud computing is energy consumption. The
fundamental approach for saving energy in a data center is right-
sizing the number of servers; i.e., the determination of the
minimum required number of servers to meet the load demand,
allowing unnecessary servers to be turned off, so that energy
usage can be minimized. The main challenge in designing such
right-sizing algorithms is the fact that servers cannot be turned
on instantaneously, so typically some estimation of the futuristic
load is needed. Of course, the more uncorrelated the load arrival,
the less accurate is such estimation. As the problem of right-
sizing is NP-complete, a heuristic algorithm is required for
practical deployment. In this paper, we first develop an efficient
offline right-sizing heuristic, and we demonstrate that its
performance is close to optimal. Rather than classifying jobs into
a fixed number of types as prior works do, every arriving job is
characterized with its own latency tolerance profile. Our offline
heuristic, taking advantage of this latency tolerance, attempts to
rearranges the jobs’ processing times, so that the overall servers’
demand is “smoothed”. Then, based on the offline algorithm, we
design an online algorithm that computes the real-time servers’
right-sizing according to the arriving workload. As the key result
of this paper, we show that the performance of the online
algorithm closely approximates the performance of the offline
algorithm, and that both closely approximate the optimal
solution. We also demonstrate that the use of our algorithm
corresponds to an over 50% operational cost reduction of a data
center.

Keywords—data centers; right-sizing; job profiling; energy-
efficient algorithm

I. INTRODUCTION
With the development of cloud computing, the number and

the popularity of data centers has increased significantly.
However, data centers consume vast amounts of energy, with
substantial portion of this energy being used for powering and
cooling servers’ systems. Thus, saving energy in data centers
becomes a very important and timely problem. The
fundamental approach for saving energy in a data center is
right-sizing the number of servers; i.e., the determination of the
minimum required number of servers to meet the load demand,
allowing unnecessary servers to be turned off, so that energy
usage can be minimized. However, since the load of a data
center is unpredictable, and often characterized by low
temporal correlation, right-sizing is a challenging problem.

Although there have been a lot of research efforts in
studying the right-sizing problem (e.g., [1] − [6], [12], [13]),
the characteristics of the applications and the specific attributes
of the jobs handled by the data centers have not been
adequately taken into account. Consequently, a goal of this
paper is to develop an online algorithm that makes use of the
latency tolerance of jobs as to attempt to smooth the servers’
demand over time, so that service can be provided with smaller
number of servers, thus saving overall data center’s energy.

The rest of this paper is organized as follows. Section II
presents our models of the servers and the workload, which are
used to formulate the energy optimization problem. Section III

solves the offline optimization problem by taking advantage of
jobs’ latency tolerance. Using the offline algorithm, Section IV
describes the design of our online algorithm. Section V
presents the performance analysis, and Section VI concludes
the paper.

II. MODEL FORMULATION
A. Workload Model

We assume that time is divided into time-slots and that the
total “experiment” time lasts T time-slots, {1, …. , T�. We
further assume that all events occur at the time-slots
boundaries; i.e., let t��{1, ..., T} stand for a scheduling instant.
Note that the length of each time-slot is assumed to be on the
order of the time needed to activate a server (i.e., time needed
to power on a server – see below). Also, let the average arrival
rate of requests to the data center during a time-slot t be �� .

Each job � � �	
 �
 ��
��� (where
�is the set of all the jobs in
the system) is characterized with three parameters: the arrival
time ��, the amount of workload ��(in slots), and the lifetime
��(in slots), where the latter is the maximum time that the job is
allowed to spend in the data center.
B. Server Model

We consider homogeneous servers model. Each server may
be in one of the three states, which are: on, off, and switching.
This three-state model was adopted by many papers addressing
the problem of data centers right-sizing (e.g., [1], [12]).
• The on state: A server is powered and ready to process jobs,

and it expends ����� energy per time-slot no matter whether
the server actually processes a job or not.

• The off state: A server is not powered, it cannot process any
job, and it does not consume any energy.

• The switching state: A server transitions from the off to the
on state. The server will remain in the switching state for
��� time-slots, at the end of which the server will enter the
on state. While in the switching state, the server is powered
and consumes ��� energy per time-slot, but is not available
for jobs processing.
We make an assumption that going from the state on to the

state off costs no extra energy and that such a transition can
occur immediately while the unfinished jobs on that server can
be transferred to other servers with no cost. Also, a server can
be turned off while in the switching state without any extra
energy, and such a transition occurs instantaneously. Finally, as
it is common in this field (e.g., [1], [5], [12]), we assume that a
server can serve only one job at a time.

C. The Energy Optimization Problem
We label ������ and � ����as the number of servers that

are in the on state and that are in the switching state,
respectively, at the beginning of the time-slot t.�!��� is the
number of jobs that will be processed during the time-slot t.
"���� is a binary variable, where "���� =1 if the job j is
processed during the time-slot t, and�"����= 0 otherwise. # is
the total number of servers in the data center.

Given the above models, the goal of our algorithm is to
decide when to switch servers on or off, as to minimize the

2015 IEEE International Conference on Data Science and Data Intensive Systems

978-1-5090-0214-6/15 $31.00 © 2015 IEEE

DOI 10.1109/DSDIS.2015.82

404

total energy cost during the time [1, ..., T],
jobs’ latency requirements. Specifically,
problem is formulated as follows:

minimize

$ %����� & '����� (��� & ' ���)
*+, -����

subject to

 '����� . /���, � 0 	
1
 �T.

 !��� 0 $ "�����2�
�+, ,�� 0 	
1
 � 3.

 4�5� $ "���� 0 ��
67 879,
�+67

 4�5�"���� 0 :
 	 ; � < =� or � > =� (
 ������(� ��� ; #
 � 0 	
1
 �T

III. THE OFFLINE HEURISTIC

The offline algorithm assumes that all the
4j, ��, �� , and ��) is known before the “exper
at time t=1). We can then look at the task o
distribute 1’s in a matrix of ��
�� ? 3 , such th
each row), there are exactly �� 1’s and th
within the time-slots �=�, =� (�� @ 	�, wher
place corresponds to "���� 0 	. (Such a matr
a feasible solution.) In other words, the p
distribute the workload �� in the �� time-sl
time-slot =�) for each job j. Each such an as
"����, requires a certain number of servers to
corresponds to some required amount of ene
required number of servers in each time-
determine when to turn on/off servers, so tha
number of servers in the on state is minimized
hand, the number of servers in the on state m
demand. The optimal solution is, then sele
energy solution from among all the feasible s

A. Workload Distribution Problem
As discussed above, we can represent the

for all the jobs as a matrix, with a corres
!���, which depicts the number of require
example, assume three jobs: �, = 1,��A = 2
BA 0 	
 BC 0 1
 D, 0 E
 DA 0 1
 D, 0
represented by a row in the “assignment gra
), and if "���� 0 	, then the corresponding tim
with ‘1’, where the number of ‘1’s of a job m
workload, and also every ‘1’ must be within
which represents the lifetime of the job.
optimal assignment for these three jobs, as
demand curve for the assignment.

Fig. 1: (a) Assignment graph; (b) Server demand curve.

The area below the !��� curve is the e
processing all the jobs, this area is the same
assignment, because it equals to $ ���2�

�+, . Ho

while meeting all
the optimization

����������������������������(1)�

 (2)

 (3)

 (4)

�� @ 	 (5)

 (6)

C
e information (i.e.,
riment” starts (i.e.,
of the algorithm to
hat for each job (in
hat all the 1’s are
re a 1 in the (j, t)
rix is referred to as
roblem is how to
lots (starting from
ssignment of jobs,
o be on, and, thus,

ergy. Knowing this
-slot allows us to
t, on one hand, the
d, yet, on the other

matches the �"�����
ecting the smallest
solutions.

e assignment "����
sponding graph of
ed on servers. For
2,��C = 2, B, 0 	

F . Each job is

aph” (e.g., Fig 1(a)
me-slot t is marked
must be equal to its

the grey rectangle
Fig. 1 shows the
well as the server

energy needed for
for every possible
owever, the actual

!��� curve determines the num
turn on (some of which have to
order to satisfy the !���dema
rising edges of the !��� curve
many servers need to be turned
extra energy, so to minimize the
to minimize the number of the
this by ‘flattening’ the server-d
for any job, any assignment is v
the �=�, =� (�� @ 	� interval.

A heuristic way of flattenin
the possible time-slots within th
letting "���� 0 	
 � 0 =�
 �
 =�
server demand curve, and t
redundant assignments in an at
curve until the number of the as
workload for each jobs. Denot
slots as G� , G� 0 �$ "��

67 879,
�+67

should consider the initial state
of the experiment and the fact
turned on instantaneously, not
feasible. For example, we hav
meaning that one server is
transitioning to the on state at
there can be as many servers o
by turning on the servers at th
We can represent this restrictio
modify "���� so that for � � �	

flatten the peak of /��� curve
slots for the job with most r
HG� @ ��IJ�� is the largest),
repetitiously until for all jobs G�

 The execution of our heur
simple example. Fig. 2 shows
shows the assignment after a s
the Fig. 3(b) shows the maxim
can be on at any time-slot, taki
conditions and ��� 0 1K The pr
the server demand curve is sho

Fig. 2: (a) Initial assignment graph; (b)

Fig. 3: (a) Assignment graph conform t
and server limit.

Fig. 4: (a) Next iteration of assignment

mber of servers that needs to be
o be turned on ahead of time, in

and). More particularly, it is the
e that determines when and how
d on. Switching on servers costs
e total energy we should attempt

ese rising edges. We accomplish
demand curve, using the fact that
valid as long as it is made within

ng the curve is first to assign all
he �=�, =� (�� @ 	� interval; i.e.,
(�� @ 	
 to get a redundant

then repeatedly remove these
ttempt to flatten the peaks of the
ssigned time-slots is equal to the
te the number of assigned time-
���
 initially G� 0 �� . Also we
e of the servers at the beginning
t that because servers cannot be
t every server demand curve is
ve ����	� 0 �	 and � �	� 0 :,

on and no server is being
the start of the experiment. But

on as needed after ��� time-slots
he beginning of the time-slot 1.
on as a function L���. We need to

 �
 ����
!��� ; L���. Then we
by removing the assigned time-

redundancy (the job for which
, update !��� and flatten it
0 ��.

ristic is demonstrated with our
s the initial assignment. Fig. 3
ingle iteration. The red curve in

mum number of the servers that
ing into consideration the initial
rocess of repetitious “flattening”
wn in Figs. 3-6.

Server demand curve.

to server limit; (b) Server demand curve

graph; (b) Server demand curve.

405

Fig. 5: (a) Next iteration of assignment graph; (b) Server demand curve.

Fig. 6: (a) Final assignment graph; (b) Server demand curve.

Next, we present the offline heuristic in pseudo-language:

The offline heuristic algorithm
 1: for each j�
 do
 2: for t = =� to =� (�� @ 	 do
 3: "���� 0 	
 4: end for
 5: end for
 6: M� 0 �N�N 0 O
 N � M�
 7: L�	� 0 ����	�
 8: L��� 0 �P�9,� (����	�
 t 0 1
�
 ���
 9: Q��� 0 �L��� @ �!���
 � 0 	
�
 ���
 10: for �= 1 to ��� do
 11: if Q��� < : then
 12:
� 0 ���"���� 0 	�
 13: for R 0 	 to @�Q��� do
 14: set "���� 0 : for � �
� and � 0

STUVWX%�G� @ ���J��-
 15: update
� 0 ���"���� 0 	�
 16: end for
 17: end if
 18: end for
 19: while Y� s.t. $ "���� < ��

67 879,
�+67 do

 20:
 0
\���
 21: Z 0 Z (
 22: end while
 23: while Y�
 [K �K $ "���� > �� do
 24: for t = 1 to T do
 25: �\ 0 STU]SN�%!���-
 26:
\ 0 ���"���\� 0 	�
 27: for j = 1 to |
\� do
 28: if Y � �
\ , � 0 STUVWX%�G� @ ���J��-
 29: and %�G� @ ���J�� > : do
 30: set "���� 0 :
 31: return
 32: end if
 33: end for
 34: end for
 35: end while
 36: while Y� s.t. !��� > # do
 37:
� 0 ���"���\� 0 	�
 38: � 0 � STU]SN�%��-
 ^ �
�
 39: 4� � �	
 � 3�
 "���� 0 :
 40:
 0 �
�_{j}
 41: Z 0 Z (

 42: end while
Lines 1-5 of this algorithm assign for each job all the

possible time-slots, starting from the job’s arrival time-slot.
Lines 6-18 calculate the server limit and then improve !��� to
match the server limit L��� from time-slot 1 to time-slot ���. R
is the set that contains the remaining switching time of all
switching servers.
� is the job set that contains all the jobs that
were to be processed in time-slot t. Then the algorithm checks
in lines 19-22 if there is any job with assigned time less than its
workload. If so, the algorithm drops that job and updates the
jobs set J and "����; it also updates the number of lost jobs n.

Lines 23-35 represent the process of flattening the curve
!��� by removing its peak repeatedly: finding the time-slot
with the heaviest load and, for all the jobs that have been
assigned in this time-slot, finding the one with the biggest
redundancy, removing its assignment and updating �!���. At
the end of this part, the assignment has no remaining
redundancies. In lines 36-42, the algorithm checks whether
there is any time-slot that has workload larger than the number
of servers, deletes excess jobs and updates the assignment and
the jobs set.

At the end of the algorithm’s processing, the final
assignment "���� and the server demand function !���
 � 0
	
1
 �
 3K � 0 	
1� �
� are obtained. From this final
assignment, the decisions to turn servers on or off are
performed for each time-slot t���{1, ..., T}, so that the energy
cost is minimized (see the next subsection).

B. The Server Decision Problem
At the beginning of each time-slot, we want to make the

necessary decisions to turn servers on or off, so that the total
energy cost is minimized, as long as the server demand could
be satisfied.

After we solved the workload distribution problem above,
we obtained the function !���, which is the least number of
servers that should be in the on state in time-slot t. Using this
function, we can calculate the (earliest) time until when any
number of servers is needed to be on. Denote the earliest time
that x servers are needed to be on as !9,�X�. Note that the
decision of keeping a number of servers on or transitioning
them to the switching state depends not only on !9,�X�, but
also on the relationship between the values of ���,������ , and
���, as discussed in the following.

Energy Saving Analysis for the case `ab . `cdae
In what follows, i represents the current time-slot in which

the decision is to be make, and �f is the next time-slot in which
a currently unused server is needed again.

 Case 1: �f- i < ��� �(. That is to say, there is not enough
time to turn the server off and then turn it on again to meet the
demand, then this server should be kept on anyway.

Case 2: �f - i . ��� �(, %�f @ �R- & ������ ; ��� � & ��� . In
this case, there is enough time to turn the server off and then
turn it on again to meet the demand, however, keeping it on
costs less energy. Therefore, this server should be kept on.

Case 3: �f - i . ��� �(, %�f @ �R- & ������ > ��� � & ��� . In
this case, there is enough time to turn the server off and then
turn it on again to meet the load, and also turning it off and
then turning it on again costs less energy, so this server should
be turned off.

The offline decision algorithm for `ab . `cdae
 1: �\gh =]SN�%iLjjG k lmnlopmq

r & ���
 ��� (-
 2: s\gh =]SN%/���-
 � 0 �R
 �
 R (�\gh @ 	

406

 3: if L�R� . s\gh then
 4: ����R� 0 s\gh
 5: � �R� 0 :
 6: else if L�R� < s\gh ; L�R� (� �R�
 7: � �R� 0 L�R� (� �R� @ s\gh
 8: else if s\gh > L�R� (' �t� then
 9: � �R� 0 � �R� (VRZ��# @ L�R� @ � �R�,
 s\gh @ L�R� @ � �R�}
 10: end if
 11: end if
 12: end if

The algorithm first calculates the longest time a server can
be idle �\gh. Then calculate the maximum demand from time-
slot i to time-slot i+�\gh @ 	, denoted as s\gh . The servers
decision then would be made based on the relationship between
s\gh , L�R�
�and � �R�.
Energy Saving Analysis for the case `ab < `cdae

When ��� is smaller than ����� , turning on servers just
before they are needed will save energy.

The offline decision algorithm for `ab < `cdae
 1: suvww 0]tO%L�X� @ �!�X�-
 X � %R
 R (��� @ 	-
 2: s\gh 0]SN%!�X�-
 X 0 R �
 R (���
 3: ����R� 0 ����R� @ suvww
 4: if s\gh @ L�t� (suvww ; � � �R� then
 5: � �R� 0 s\gh @ L�t� (suvww
 6: else � �R� 0 � �R� (]tO��# @ L�t� (suvww @

�� �R�
 s\gh @ L�t� (suvww @�� �R��
 7: end if

The algorithm first calculates the minimum difference
between servers limit and servers demand, suvww 0
VRZ%L�X� @ �!�X�-
 X � �R
 R (��� @ 	� and also calculates
the maximum demand s\gh from the time-slot i to i+���. Then
the servers’ decisions are made based on the relationship
between s\gh , suvww, L�R�
 and � �R�.

IV. THE ONLINE HEURISTIC
To come up with an online algorithm, we use the offline

heuristic algorithm in each time-slot with the existing workload
(past arrivals) and an anticipated average future workload to
obtain an “optimal” assignment. Then based on this
assignment, we make decisions for the servers in the current
time-slot. For simplicity, we choose the average workload as
the anticipated future load; this choice also tends to optimize
the overall performance of our scheme. Note that unlike the
offline algorithm, the online algorithm does not assume the
overall workload for future time is known, all that affect its
decision is the existed jobs and estimated workload while the
decision will be adjusted according to the real arrived jobs
whenever necessary.

A. Job Distribution Algorithm
The main difference between the online heuristic and the

offline heuristic is that the online algorithm will be used at the
beginning of every time-slot to determine which jobs would be
processed during the current time-slot. The proposed online
heuristic algorithm uses the average workload and lifetime as
the predicted future job arrivals. Then for the combination of
the existing jobs and the predicted future jobs, the demand
curve flattening is applied, while considering the current server
limitation.

Another difference of the online algorithm is that we do not
drop any job that are to be processed in the future, because the
actual load in the future may be actually lower than the average
load that is used to calculate the current assignment.
Consequently, the heuristic offline algorithm is modified as
following to come up with the online algorithm. (Assume that
the current time for the algorithm is the time-slot i.)
The online heuristic algorithm

 1: for each j�
 do
 2: for t = =� to =� (�� @ 	 do
 3: "���� 0 	
 4: end for
 5: end for
 6: M� 0 �N�N 0 O
 N � M�
 7: L�R� 0 ����R�
 8: L�R (�� 0 �P�� (����	�
 t 0 	
�
 ��� @ 	
 9: Q��� 0 L��� @ �!����
 � 0 R
 �
 R (��� @ 	
10: if Q�R� < : then
11:
� 0 ���"��R� 0 	�
12: for Z 0 	 to !�R� @ L�R��do

 13: set "���� 0 : for � �
� and � 0 STUVWX%�G� @
���J��-

 14: update
� 0 ���"��R� 0 	�
 15: end for
 16: end if
 17: while Y� s.t. $ "���� < ��

67 879,
�+67 do

 18:
 0
\���
 19: Z 0 Z (
 20: end while
 21: while Y�
 [K �K $ "���� > �� do
 22: for t = i to T do
 23: �\ 0 STU]SN�%!���-
 24:
\ 0 ���"���\� 0 	�
 25: for j = 1 to |
\� do
 26: if Y � �
\ , � 0 STUVWX%�G� @ ���J��-

and %�G� @ ���J�� > : do
 27: set "���� 0 :
 28: return
 29: end if
 30: end for
 31: end for
 32: end while

Lines 1-5 of the algorithm assign all possible time-slots for
each job to obtain a redundant assignment. From this
assignment, we obtain the workload function !���. Lines 6-16
calculate the server limit and then improve the !�R� function
to match the server restriction function L�R� for current time-
slot. After that, the algorithm checks if there is any job that has
been assigned less time than its workload (line 17-20), and if so
drops that job, updating the number of lost jobs. Also, "���� is
updated accordingly. Lines 21-32 flatten the curve !��� by
repeatedly smoothing the peaks of the curve.

From the final assignment, the decisions for the servers at
each time-slot t���{1, ..., T} are derived, so that the total energy
cost is minimized.

B. Server Decision Algorithm
The decision algorithm for the case of ��� . ����� is the

same as the offline decision algorithm.

The online decision algorithm for `ab < `cdae
 1: suvww 0]tO%L�X� @ �!�X�-
 X � %R
 R (��� @ 	-
 2: s\gh 0]SN%!�X�-
 X 0 R �
 R (���

407

 3: if suvww . : then
 4: ����R� 0 ����R� @ suvww
 5: end if
 6: if s\gh @ L�t� (suvww ; � � �R� and suvww . : then
 7: � �R� 0 s\gh @ L�t� (suvww
 8: else if s\gh @ L�t� (suvww > � � �R� and suvww . :

then
 9:������������� �R� 0 � �R� (]tO��# @ L�t� (suvww @

� �R�
 s\gh @ L�t� (suvww @ �� �R��
10: else if suvww < : then
11: �� �R� 0 � �R� (]tO�@suvww
 Hs\gh @ �L�t� @

�'(t�
12: end if
13: end if
14: end if

Similar to the offline decision algorithm, the online
decision algorithm for the case of ��� < ����� (lines 1-2) first
calculates the minimum difference suvww between the servers
limit curve and the servers demand curve, as well as the
maximum demand s\gh from time-slot i to time-slot i+��� .
Then the decisions are made for servers that need to be on
based on whether suvww is greater than zero (lines 3-5). The
decisions for servers that need to be switching depend on suvww
and the relationship between %s\gh @ L�R� (suvww- and
� �R��(lines 6-14).

V. PERFORMANCE EVALUATION
To evaluate and compare the performance of the proposed

algorithms, we define a utility function that takes into account
the energy used to process the jobs and the “cost” due to lost
jobs. The rationale for this utility function is that there is a clear
tradeoff between the energy consumption and the job
completion rate; e.g., an algorithm can use very little energy,
but at the expense of low job completion rate. More
specifically, we formulate the total cost, x
 as follows:

x 0 ����g� (yz (7)
where ����g� is total energy cost, z is the number of lost jobs
(i.e., failed to complete processing within their lifetimes), and
y is a scaling factor that expresses the relative importance of
energy ����g� vs. lost jobs z. For simplicity, we assume that {
is equal for all jobs; however, if the jobs have different level of
importance, equation (7) could be adjusted to express the
relative importance of a lost job vs. the cost of energy.

We simulated and compared the performance of the
proposed two heuristics (offline and online), as well as a “non-
scheduling algorithm”. The non-scheduling algorithm is an
online algorithm with the strategy that every job is processed
as soon as it arrives at the data center. In this algorithm, we
assume that the service discipline is first come first serve
(FCFS) and that the waiting queue is infinite (the job loss is
entirely due to missing their deadlines). Thus, any job whose
execution is not completed before its deadline is removed from
the system. The arrival jobs are simulated by Poisson random
variables with the average arriving rate of |. The workload and
lifetime of each jobs are simulated in the same way, with the
average workload �} and the average lifetime �~.
A. Comparison with the optimal offline algorithm

The problem of finding the optimal assignment is, of
course, NP-complete. However, comparison of our heuristics
with the optimal solution, even for a small-size cases, can
provide a good indication on the well our heuristics perform.

For comparison purposes, we designed a “brute-force”
scheme based on binary integer programming to calculate the
optimal offline assignment according to formula (1)-(6) and
implemented it in MATLAB for cases of up to 20 time-slots.
The results of the comparison are shown in Fig.7. The results
in the figure demonstrate that:
(1) Our offline algorithm performs close to our online

algorithm
(2) Both our heuristics perform close to the optimal solution
(3) Both our algorithms reduce the total cost by more than

50%, compared to the non-scheduled cases.

Furthermore, Table 1 shows the difference in total cost

(referred to as “relative error”) of the two heuristics as
compared with the optimal algorithm, demonstrating that the
relative error (in %) decreases with larger simulation cases.
These results suggest that the error of our heuristics continues
to be small for large, real-life cases.

B. Comparison of the online with the offline heuristics
We compared the performance between the online heuristic

Fig. 7. Total cost vs. simulating time with different algorithms. (����* = 1,
��� = 1.5, N=30, | 0 1, { 0 �, �} 0 E, �~ 0 �.)

 �� =9 �� =10 �� =11 �� =12 �� =13 �� =14

��������% 5.26 4.16 4.13 3.98 4.53 4.07

�������% 7.9 7.9 8.48 8.05 8.12 8.05
 �� =15 �� =16 �� =17 �� =18 �� =19

��ww�v��% 3.67 4.2 3.85 3.79 3.57

����v��% 7.41 6.95 7.37 7.82 7.12

TABLE 1. ERROR OF THE HEURISTICS

(1) (2)

(3) (4)

Figure 8: (1) Total cost vs. | ({ 0 ��. (2) Error between online and offline
heuristics. (3) Total cost vs. | ({ 0 	:�. (4) Error between online and offline
heuristics. (����* = 1, ��� = 1.5, N=30, �� 0 1:, �} 0 E, �~ 0 �.)

408

and offline heuristic against |�, with the results shown in Fig.8.
The difference between the heuristics decreases with an
increase in |
 as shown in Fig.8(2). Comparing Fig.8(1) with
Fig.8(3), we can observe the effect of increasing { from { 0 �
to { 0 	:. The results demonstrate that dropping jobs has a
significant impact on the total cost. Furthermore, we observe
that larger | decreases the difference between the two
heuristics, suggesting that the online algorithm performs better
in heavy-loaded systems.

The impact of the ratio ���J����� is shown in Fig.9(1).
���J����� is an indication of how much more expensive it is to
switch a server off and then on, rather than leaving the server
on and idle. Both the online and the offline algorithms involve
switching off/on servers to save energy, so the total cost
increases with (���J������. However, when ���J����� becomes
large enough, the advantage of right-sizing becomes less
pronounced, because ��� is so large that we do not bother
switching servers off.

As shown in Fig.9(2), there is no significant impact caused
by changing the prediction window for the online algorithm.

Fig.9(3) shows the total cost vs. setup time ���. Both the
online and offline heuristic results increase with ���, since the
larger ��� is, the more jobs would be dropped when there is a
temporary increase in load. Moreover, when the system load is
smaller than the expected load for short time durations, the

algorithms tend to keep servers on in case the load increases
within the ��� time-slots. However, the online algorithm is
more affected by ��� than the offline algorithm due to the fact
that the online algorithm relies on predicting the future load,
and that inaccuracy of such predictions become more
significant when the ����increases.

C. Comparison with another scheduling scheme
In order to test the performance of our algorithms, we also

compare our heuristics with the algorithm proposed in
reference [12], denoted as “Lin’s algorithm” below.
Lin’s algorithm

In Lin’s paper, there are two types of optimization in terms
of QoS requirement, the one that considers service with hard
QoS constraints is similar to our job’s lifetime assumption.
That optimization is formulated as:

minimize $ X��
�+, ��� k�qhqr (� $ �X� @ X�9,� �

�+,

subject to X� . �� and s��qhq� ; z�
 The duration of time-slot of Lin’s model � � �:
	
 � 3�

matches the timescale at which the data center can adjust its
capacity, which is similar to ��� in our model. �� is the
electricity price at time-slot t. X� is the number of active servers
at time-slot t. � is the cost to turn on a server. �� is the mean
arrival rate at time-slot t. The power cost function is ���� 0
�� (�,�. The average delay is s��� 0 	 �� @ ��� . Since the
service rate of a server � is normalized to 1, � 0 ��JX� ; 	.

Since we don’t consider the electricity price impact and
load dependent energy consumption, we set �, 0 :� in our
simulations, thus making the energy consumption load-
independent. Also, we set �� 0 	, so that the electricity price
does not affect the optimization. Then the optimization model
of Lin’s paper reduces to:

minimize $ X��
�+, �� (� $ �X� @ X�9,� �

�+,
subject to X� . �� and s��qhq� ; z�

 The total cost of Lin’s optimization consists of the energy
consumed by active servers and switching servers. The
minimum number of active servers at time t is constrained by
the condition X� . �� and s��qhq� ; z� . In order to find out the
right timing to turn on/off servers to minimize the total energy,
they introduce the lazy capacity provisioning algorithm. This
algorithm is motivated by the structure of the optimal offline
solution.
The main difference between our algorithm and Lin’s
algorithm

The optimization object of Lin’s algorithm is the same as
ours − to save the energy cost by adjusting the number of
active servers. One of the main differences between Lin’s
algorithms and our heuristics is that the number of active
servers in Lin’s algorithms is determined by the mean arrival
rate while taking the mean delay into account. The mean delay
is calculated by the theoretical queuing model. To achieve a
desired average delay, the number of servers must be large
enough, so that the arrival rate for each server guarantees the
average delay, z� : s���� 0 	 �	 @ �q

hq
�� ; z� � X� .

�� �	 @ ,
�q

� �. For our algorithm, we treat each job individually,
we assign the processing time to each job based on its
workload and lifetime, while considering the overall workload.
Jobs in our model can be suspended and transferred to different
servers to resume. While in Lin’s model jobs allocated to a
server form a queue, jobs cannot change server, and when a job
is being processed the service cannot be turned off.

In Lin’s algorithm, the decision of the number of servers is
made every 10-min time-slot, with the assumption that the job
interarrival time and the response time are much shorter than
the time-slot. In order to compare our algorithm with Lin’s
algorithm, we divide each 10-min time-slot into many shorter
time-slots (we refer to those as “short time-slots”) that match
the workload of jobs. We let the average workload be 2 short
time-slots long, the average lifetime be 6 short time-slots long.
We set � 0 �
 �� 0 	 for Lin’s algorithm, while ��� 0
�
 ����� 0 	 for our algorithm.
Comparison of the offline algorithms

We run simulations comparing our and Lin’s offline
algorithms. In the following graphs, the red curve represents
the number of servers over time as calculated by Lin’s
algorithm (the model of services with hard QoS constraints),

(1) (2)

(3)

Fig.9 (1) Total cost vs. ���J����*. (����* = 1, N=30, ���=1, �� 0 1:, | 0
�
 { 0 �.) (2) Total cost C vs. prediction window ��. (����* = 1, ��� = 1.5,
���=1, N=30,�| 0 � { 0 �.) (3) Total cost C vs. setup time ���. (����* = 1,
��� = 1.5, �� 0 1:, N=30,�| 0 �
 { 0 �, �} 0 E, �~ 0 �)

409

and the blue curve represents the overall workload using our
algorithm. As can be seen, the number of servers using our
algorithm is much less than the number of servers of Lin’s
algorithm. Furthermore, no jobs are dropped using our
algorithm, while a job is going to spend more time than the
lifetime (average delay) with a probability of 0.37 in Lin’s
model.

(a) (b)

Fig.10 (a) The number of servers over time using Lin’s algorithm (red curve)
and overall workload (blue curve) using our algorithm with a simple workload
trace [5 6]. (b) The number of servers over time using Lin’s algorithm (red
curve) and overall workload (blue curve) using our algorithm with a simple
workload trace [6 5 6 8].

Since, given the arriving rate at each time-slot, the cost
difference between our and Lin’s offline algorithms is
independent between time-slots, we simulated the comparison
only for a limited number of time-slots. (The workload trace [5
6] used in the simulation Fig.10(a) means the arrival rate of the
first time-slot is 5 jobs per short time-slot, the arrival rate of the
second time-slot is 6 jobs per short time-slot, each time-slot is
divided into 200 short time-slots. The workload trace [6 5 6 8]
is of the same meaning.)
Comparison of the online algorithms

In order to tradeoff the switching cost and the lost job cost,
we modified our online decision algorithm as: switch on more
servers only when the duration of heavy load is longer than a
threshold.

The online decision algorithm for `ab . `cdae
 1: �\gh =]SN�%iLjjG k lmnlopmq

r & ���
 ��� (-
 2: s\gh =]SN%/���-
 � 0 �R
 �
 R (�\gh @ 	
 3: s��� =]SN%/���-
 � 0 �R
 �
 R (���
 4: if L�R� . s\gh then
 5: ����R� 0 s\gh
 6: � �R� 0 :
 7: end
 8: if L�R� < s��� ; L�R� (� �R�
 9: � �R� 0 s��� @ L�R�
 10: end
 11: if s��� > L�R� (� �R�
 12: for n = 1: �VRZ��# @ L�R� @ � �R� , s��� @ L�R� @
� �R�}

 13: if R%L�R� (' �t�+n]�. threshold
 14: � �R� ((
 15: end if
 16: end for
 17: end if

The following graph shows the comparison result of online
algorithms with a simple workload trace. ([1 2 2 4], the arrival
rate of the first time-slot is 1 jobs per short time-slot, the arrival
rate of the second time-slot is 2 jobs per short time-slot, the
arrival rate of the third time-slot is 2 jobs per short time-slot,
the arrival rate of the fourth time-slot is 4 jobs per short time-
slot.) Lin’s online algorithm Lazy Capacity Provisioning
(LCP(w)) assumes that at time �, LCP(w) knows the arrival
rate for � ; � (�, w is the prediction window. Also there is an

assumption in Lin’s online algorithm that the switching time is
one time-slot. So the number of active servers at the time-slot �
using LCP(w), N������� , should be decided at the beginning of
the time-slot � @ 	 . Then the algorithm implies that at the
beginning of the slot � @ 	, the arriving rates |,
 |A
…�|� are
known for w = 0.

In our simulation we set the prediction window used in
Lin’s algorithm w = 0, and we assume that at any time the
arrival rates of the following two time-slots are known, these
arrival rates are used in our algorithm to calculate the estimated
future workload too.

In this simulation, the total energy using Lin’s algorithm
LCP(0) is 8100, the total energy using our online heuristic
algorithm is 4690. The number of lost jobs using Lin’s
algorithm is 331, the number of lost jobs using our online
heuristic is 132. The energy using our algorithm saves 42.1%
energy compared to Lin’s algorithm, and it also decrease the
number of lost jobs by 60.1% compared with Lin’s algorithm.

Fig.11 The number of servers over time for algorithms with a simple workload
trace [1 2 2 4].

We test the impact of the short time-slot’s duration as well.
The small time-slot’s duration determines the decision
frequency of the servers for our online algorithm. Below are
the graphs showing the number of servers over time for the two
algorithms with different durations of short time-slots for our
algorithm. The performance of our algorithm almost remains

Time
50 100 150 200 250 300 350 400

T
he

 N
um

be
r

of
 S

er
ve

rs

0

10

20

30

40
offline-ours
offline-Lins

Time
100 200 300 400 500 600 700 800

T
he

 N
um

be
r

of
 S

er
ve

rs

0

10

20

30

40
offline-ours
offline-Lins

Time
50 100 150 200 250 300 350 400

T
he

 N
um

be
r

of
 s

er
ve

rs

0

5

10

15

20
online-ours
online-Lins

Fig.12 The number of servers over time with different short slot’s lengths for our
algorithm. (Upper left graph is 100 small slots per time-slot, upper right graph is
200 small slots per time-slot, the lower graph is 300 small slots per time-slot.).

Decision
frequency
of our
algorithm

Energy
(our
algorithm)

the
Number
of Lost
Jobs (our
algorithm)

Energy
(Lin’s
algorithm)

the
Number
of Lost
Jobs
(Lin’s
algorithm)

100 slots 14277 390 23100 1037
200 slots 14029 369 23100 1037
300 slots 14159 342 23100 1037

TABLE II. RESULTS WITH DIFFERENT SMALL TIME-SLOT’S LENGTH

Time
200 400 600 800 1000

T
he

 N
um

be
r

of
 s

er
ve

rs

0

5

10

15

20
online-ours
online-Lins

Time
500 1000 1500 2000

T
he

 N
um

be
r

of
 s

er
ve

rs

0

5

10

15

20

online-ours
online-Lins

Time
500 1000 1500 2000 2500 3000

T
he

 N
um

be
r

of
 s

er
ve

rs

0

5

10

15

20
online-ours
online-Lins

410

the same with different slot durations. (Simulated with the
workload trace [1 2 2 4 3 5 4 6 2 3 4].)

The comparison results demonstrate significant
improvement of our scheme, even for very random workload.
The main reason for the result is our model makes use of job’s
lifetime to arrange the servers to get smooth and relatively low
workload, and also our algorithm allows jobs transfer between
different servers.

VI. RELATED WORK
The topic of energy saving problem in data centers has been

studied by a number of researchers. Some researchers develop
algorithms based on Lyapunov Optimization technique ([1],
[3], [8]), while considering different optimization modeling.
Reference [1] focuses on reducing power cost along with queue
stability and considers cost vs. delay trade-off; thus the
approach taken by this work is suited for delay tolerant
workloads, such as massively parallel and data intensive
MapReduce jobs. Other researchers focus on virtualized data
centers (e.g., [3], [10], [11]). For example, the reference [3]
designed an algorithm that makes use of the queueing
information available in the system to implicitly learn and
adapt to unpredictable changes in the workload of virtualized
data centers.

A different approach taken by [7] explored dynamic energy
pricing and designed algorithm for achieving optimal
geographical load balancing: routing to a data center further
from the request source uses cheaper energy. The reference
[10] considers collaborative filtering techniques, which are
frequently used in recommendation systems; instead of
learning each new workload in detail, the system leverages
information it already has about applications it has seen to
express the new workload as a combination of known
applications. The Reference [5] suggests a simple last-empty-
server-first job-dispatching strategy and each server
independently solving a classic ski-rental problem.

We observed that in previous works the most common
metric used in the optimization problem is job delay (e.g., [1],
[8]), while the other aspects of QoS and the demand difference
between different jobs haven’t been fully studied. This is one
of several aspects where our work differs – our algorithms
incorporate latency tolerance measures (a lifetime) for each
arriving job.

VII. SUMMARY AND CONCLUSIONS
In this paper, we have presented two novel heuristic

algorithms for solving the right-sizing problem of data centers.
As the problem of finding the optimal assignment is NP-
complete, heuristics are necessary to provide practical solution.
One particular aspect of our work that sets it apart from other
works is that our algorithms incorporate latency tolerance
measures (a lifetime) for each arriving job.

We first developed an offline heuristic, which is based on
the observation that reducing the number of times that the
servers are off and on has a benefit effect on the total energy
consumption. We used this fact to “smooth” the servers’
demand curve through leveraging the fact that jobs have some
leeway when they are executed within their lifetime in the
system. Based on the offline heuristic, we developed an online
algorithm by predicting the future arrivals of jobs and their
corresponding parameters.

We compared the performance of the two heuristics, the
non-scheduling execution of the jobs, and the optimal
algorithm. Our comparison results demonstrate that: (1) Our
offline algorithm performs close to our online algorithm, (2)
Both our heuristics perform close to the optimal solution, and
(3) Both our algorithm reduce the total cost by more than 50%,
compared to the non-scheduled case.

We also compared the performance of our heuristics with
another scheme proposed in [12], which is referred to as the
“Lin’s algorithm”. The results showed significant performance
improvement of our algorithms.

Due to its low complexity and ability to handle large real-
life scenarios, our algorithm presents a practical solution to
data-centers right-sizing problem.

VIII. ACKNOWLEDGEMENT
The work has been supported in part by the NSF grant

numbers: CNS-1040689, ECCS-1308208 and CNS-1352880.

REFERENCES
[1] Yao, Y., Huang, L., Sharma, A., Golubchik, L., & Neely, M. (2012,

March). Data centers power reduction: A two time scale approach for
delay tolerant workloads. In INFOCOM, 2012 Proceedings IEEE (pp.
1431-1439). IEEE.

[2] Lin, M., Wierman, A., Andrew, L. L., & Thereska, E. (2013). Dynamic
right-sizing for power-proportional data centers. IEEE/ACM
Transactions on Networking (TON), 21(5), 1378-1391.

[3] Urgaonkar, R., Kozat, U. C., Igarashi, K., & Neely, M. J. (2010, April).
Dynamic resource allocation and power management in virtualized data
centers. In Network Operations and Management Symposium (NOMS),
2010 IEEE (pp. 479-486). IEEE.

[4] Krioukov, A., Mohan, P., Alspaugh, S., Keys, L., Culler, D., & Katz, R.
(2011). Napsac: Design and implementation of a power-proportional
web cluster. ACM SIGCOMM computer communication review, 41(1),
102-108.

[5] Lu, T., Chen, M., & Andrew, L. L. (2013). Simple and effective
dynamic provisioning for power-proportional data centers. Parallel and
Distributed Systems, IEEE Transactions on, 24(6), 1161-1171.

[6] Guenter, B., Jain, N., & Williams, C. (2011, April). Managing cost,
performance, and reliability tradeoffs for energy-aware server
provisioning. In INFOCOM, 2011 Proceedings IEEE (pp. 1332-1340).
IEEE.

[7] Liu, Z., Lin, M., Wierman, A., Low, S. H., & Andrew, L. L. (2011,
June). Greening geographical load balancing. In Proceedings of the
ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems (pp. 233-244). ACM.

[8] Ren, S., He, Y., & Xu, F. (2012, June). Provably-efficient job scheduling
for energy and fairness in geographically distributed data centers. In
Distributed Computing Systems (ICDCS), 2012 IEEE 32nd International
Conference on (pp. 22-31). IEEE.

[9] Delimitrou, C., & Kozyrakis, C. (2013). Paragon: QoS-aware scheduling
for heterogeneous datacenters. ACM SIGARCH Computer Architecture
News, 41(1), 77-88.

[10] Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. (2011). A
taxonomy and survey of energy-efficient data centers and cloud
computing systems. Advances in computers, 82(2), 47-111.

[11] Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., & Jiang, G.
(2009). Power and performance management of virtualized computing
environments via lookahead control. Cluster computing, 12(1), 1-15.

[12] Lin, M., Wierman, A., Andrew, L. L., & Thereska, E. (2013). Dynamic
right-sizing for power-proportional data centers. IEEE/ACM
Transactions on Networking (TON), 21(5), 1378-1391.

[13] Adnan, M. A., Sugihara, R., Ma, Y., & Gupta, R. K. (2013, June).
Energy-optimized dynamic deferral of workload for capacity
provisioning in data centers. In Green Computing Conference (IGCC),
2013 International (pp. 1-10). IEEE.

411

