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Abstract—In this paper, we consider MIMO beamforming in
the presence of Rayleigh product channels. Based on a derived
largest eigenvalue distribution, the key performance metrics of
the beamforming system are obtained, assuming perfect channel
knowledge at the transmitter and receiver. Using the closed-
form expressions, we gain insights into the behavior of MIMO
beamforming systems in scenarios of practical interest.

I. INTRODUCTION

Transmit beamforming in MIMO communications exploits
the channel knowledge at both transmitter and receiver. With
Maximum Ratio Combining (MRC) at the receiver, the re-
ceived Signal to Noise Ratio (SNR) is maximized by trans-
mitting in the direction of eigenvector corresponding to the
largest eigenvalue of the channel ([1]). Prior work on this topic
has focused on the Rayleigh fading channels ([1]–[3]), where
a rich scattering environment exists. However, in certain com-
munication scenarios, the signal propagation may be subject
to insufficient scattering ([4]) or keyhole effect ([5]), which
exhibits rank deficiency. A MIMO model that captures these
effects is the Rayleigh product channel, which is characterized
by a matrix product of two statistically independent Rayleigh
MIMO channels1.

There exists a number of studies on the performance of
MIMO beamforming over Rayleigh product channels. In [6],
[7], the authors obtained the outage probability of MIMO
beamforming. Therein, the ergodic capacity and average Sym-
bol Error Rate (SER) are given as integrals over the largest
eigenvalue distribution of the channel matrix. Assuming single
transmit/receive antenna or a single keyhole MIMO channel,
the explicit expressions of these performance metrics are
derived. In the high SNR regime, an approximate average SER
was given in [8] for arbitrary channel dimensions. When spatial
correlations exist at the transmitter and the receiver, a low SNR
capacity approximation was considered in [9] using statistical

1A more general MIMO channel, i.e., the double-scattering channel, is
considered in [4]. This channel model is characterized by a matrix product
involving three deterministic matrices, i.e., transmit, receive, and scatterer
correlation matrices, and two independent complex Gaussian matrices. As a
special case, Rayleigh product model corresponds to the scenario where the
antenna elements, as well as the scattering objects, are sufficiently separated
such that the effective spatial correlations can be ignored.

Channel State Information (CSI). The optimality condition to
achieve ergodic capacity using MIMO beamforming was given
in [10]. The authors in [11] studied the outage probability of
a similar multi-keyhole MIMO channel with different keyhole
amplitudes. The obtained results are only valid in the high/low
SNR regime ([6], [8], [9]) or restricted to certain channel
configurations ([6], [7]).

Using a similar technique as in [2], we propose a simple yet
accurate approximation to the largest eigenvalue distribution of
Rayleigh product channels, which is the perturbed version of
the original distribution function. Based on this result, closed-
form expressions of ergodic MI and average SER are calcu-
lated, assuming perfect CSI at the transmitter and the receiver.
The proposed analytical framework is useful to investigate the
performance of MIMO beamforming over Rayleigh product
channels with practical channel configurations.

II. SYSTEM MODEL

Consider a discrete time, baseband MIMO system with n0
transmit and n2 receive antennas. The transmitted symbols are
assumed to experience a Rayleigh product channel with n1
scattering objects. The end-to-end equivalent MIMO channel
H is given by

H =
1
√
n1

H2H1, (1)

where H1 ∈ Cn1×n0 denotes the channels between the scatter-
ing objects and the transmit array, and H2 ∈ Cn2×n1 denotes
the channels between the scattering objects and the receive
array. The entries of H1 and H2 are independent complex
Gaussian distributed with zero-mean and unit variance. In line
with [4], [6], [8]–[10], the channel H is normalized by the
constant

√
n1, so that the total energy of the channel is equal

to an AWGN channel with an array gain E[Tr(H†H)] = n0n2.
We will hereafter parameterize the Rayleigh product channel
(1) by the three-tuple (n0, n1, n2).

The channel output y, at a given time instance, equals

y = Hx + n, (2)

where the additive noise n is modeled as an i.i.d. complex
Gaussian vector with zero mean and variance σ2

n, i.e., n ∼



CN (0, σ2
nI). For a MIMO beamforming system, the transmit

signal vector x = wBF x, where x is the information symbol
with transmission power E[|x|2] = P . Denoting the matrix
P = H2H1, the beamforming vector wBF is chosen as
the eigenvector corresponding to the largest eigenvalue2 of
P†P, which is also known as the power of the dominant
eigenchannel of H. At the receive array, the received signal y
are linearly combined according to the MRC principle using
the vector w†BFH

† such that

z = w†BFH
†y = w†BFH

†HwBFx+ w†BFH
†n. (3)

The SNR after the MIMO beamforming (3) is given by

SNR = w†BFP
†PwBF

P

n1σ2
n

= γ
λ1
n1
, (4)

where the λ1 is the largest eigenvalue of P†P and γ = P/σ2
n

denotes the average SNR. Therefore, the performance of the
MIMO beamforming system relies on the statistics of the
largest eigenvalue λ1. Note that in some asymptotic regime, the
asymptotic distribution of λ1 has been derived in [12] recently.
Therein, the result can be considered a generalization of the
Tracy-Widom law of the largest eigenvalue of the conventional
Rayleigh MIMO channels. However, the asymptotic distribu-
tion function of λ1 in [12] involves a second order differential
equation, which may not be convenient for calculating the
performance metrics of the MIMO beamforming system, such
as the ergodic MI or average SER. In the next section, we
obtain a simple approximation to the CDF of λ1 for the
finite dimensional channel matrices, which is amendable for
performance analysis.

III. LARGEST EIGENVALUE DISTRIBUTION OF RAYLEIGH
PRODUCT CHANNELS

A. Weak Commutation for Product of Random Matrices

It is convenient to define the three-tuple (r, s, t) as the
permuted version of (n0, n1, n2), such that s ≥ t ≥ r.
Since the maximal rank of the matrix P is r, the Hermitian
matrix P†P has r non-zero eigenvalues such that 0 ≤ λr ≤
· · · ≤ λ1 < ∞. Denoting λ = {λ1, . . . , λr}, it was shown
in [13, Eq. (43)] that the joint eigenvalue density function
f (λ; (n0, n1, n2)), parameterized by the matrix dimensions
(n0, n1, n2), is invariant under any permutation of n0, n1,
and n2. This property is referred to as a weak commutation
relation for product of matrices in [13]. In particular, the non-
zero eigenvalue density function of matrix P†P is identical
to an equivalent matrix specified by the three-tuple (r, s, t),
i.e., f (λ; (n0, n1, n2)) = f (λ; (r, s, t)). In the following,
we will work with the eigenvalue density function for the
equivalent matrix (r, s, t), denoted as f(λ), without specifying
the dependence on the matrix dimensions.

According to [14, Eq. (18)], f(λ) can be rewritten as3

f(λ) =
1

c
∆(λ) det

(
G 2,0

0,2

(
−

ν2, ν1 + j − 1

∣∣∣∣λi)) , (5)

where ν1 = s − r, ν2 = t − r, and c is a normalization
constant. Here, we denote the Vandermonde determinant as

2(·)† denotes the conjugate transpose operation.
3In this paper, the dimensions of matrices in the determinants are r × r,

i.e., i, j = 1, . . . , r, unless otherwise stated.

∆(λ) =
∏

1≤i<j≤r(λj − λi) = det
(
λj−1i

)
. The Meijer’s G-

function is defined in (6) on top of the next page, where the
contour L is chosen in such a way that the poles of Γ(bj + z),
j = 1, . . . ,m are separated from the poles of Γ(1 − aj − z),
j = 1, . . . , n. Note that in the special case n0 = n1 = n2, the
corresponding joint density f(λ) has been derived in [15].

B. Perturbed Joint Eigenvalue Density

Distribution of the largest eigenvalue λ1 can be readily
calculated using the Andréief integral in [16] over the joint
density function (5). However, the obtained distribution func-
tion, similar to the one in [6, Eq. (6)], is given in term
of a determinant with matrix entries being special functions.
Based on such formulation, it is difficult to obtain explicit
expressions for some key performance metrics of MIMO
beamforming. In the following, we derive an approximation
to the joint density (5) by introducing a perturbation to the
matrix dimension. The approximate density function involves
only elementary functions that leads to a largest eigenvalue
distribution amendable for further analysis.

Consider a perturbation α to ν2 in (5) and apply the change
of variables λi = y2i /4, i = 1, . . . , r. The deformed joint
density of y = {y1, . . . , yr} reads

f(y) =
1

cα
∆

(
y2

4

)( r∏
i=1

yi
2

)

× det

(
G 2,0

0,2

(
−

ν2 − α, ν1 + j − 1

∣∣∣∣ y2i4
))

. (7)

The normalizing constant cα is given by cα =
∏n
i=1 Γ(ν2−α+

i)Γ(ν1 + i)Γ(i), such that
∫
0≤yr≤···≤y1<∞ f(y)dy1 · · · dyr =

1, which is a direct application of the Andréief integral in [16]
and the determinant identity [17, Eq. (A.18.7)]. Using the
definition of Meijer’s G-function (6), we have

G 2,0
0,2

(
−

ν2 − α, ν1 + j − 1

∣∣∣∣ y24
)

(8)

=
1

2πı

∫ c+ı∞

c−ı∞
Γ(ν2 − α+ z)Γ(ν1 + j − 1 + z)

(
y2

4

)−z
dz.

The integrand in the RHS of (8) has simple poles at z =
−ν1 − j + 1 − k and z = −ν2 + α − k, for k = 0, 1, 2, . . .,
and the integration path can be selected as a vertical line in the
complex plane with c > max(−ν1−j+1,−ν2+α). Since the
residue of Gamma function equals Resz=−k Γ(z) = (−1)k/k!
at z = −k, by the residue theorem, (8) becomes

1

yθj

(y
2

)ψj ( ∞∑
k=0

(−1)k

k!
(α− k)θjΓ(α− k)

y2k−2α+1

22k−θj

+

∞∑
k=0

(−1)k+θj

k!

Γ(−k − α)

(α+ k + 1)θj

y2k+1+2θj

22k+1+θj

)
, (9)

where (a)n = Γ(a+n)/Γ(a) denotes the Pochhammer symbol,
θj = ν1 − ν2 + j − 1, and ψj = ν1 + ν2 + j − 2.

By setting the perturbation α = 1/2 and using the identity



Gm,n
p,q

(
a1, . . . , an, an+1, . . . , ap
b1, . . . , bm, bm+1, . . . , bq

∣∣∣∣x) =
1

2πi

∫
L

∏m
j=1 Γ(bj + z)

∏n
j=1 Γ (1− aj − z)∏p

j=n+1 Γ(aj + z)
∏q
j=m+1 Γ (1− bj − z)

x−z dz. (6)

Γ(1/2− k) = (−2)k
√
π/
∏k
i=1(2i− 1), (9) can be written as

√
π

yθj

(y
2

)ψj  ∑
i is even

yi

i!
2θj
(

1− i
2

)
θj

−
∑

i is odd

yi+2θj

(i+ 2θj)!

(
−1

2

)θj (i+ 2θj)!

i!(1 + i/2)θj

 . (10)

According to the definition of Pochhammer symbol, the coef-
ficients for the even power of y in the series (10) equal

2θj
(

1− i
2

)
θj

=

θj∏
k=1

(2k − 1− i) = A(i). (11)

Due to [18, Eq. (4.2.7.14)], A(i) can be expressed in the form
of a finite series as

A(i) =

θj∑
k=0

(−1)k
i!(2θj − k)!2k−θj

(i− k)!(θj − k)!k!
. (12)

Similarly, the coefficients for the odd power of y in (10) can
be calculated as

(−1)θj (i+ 2θj)!

2θj i!(1 + i/2)θj
=

θj∏
k=1

(1− 2k − i) = A(i+ 2θj), (13)

where the second equality is obtained by rearranging the order
of product such that k = θj − l+ 1. Moreover, it is clear from
(13) that A(i) = 0 when i = 1, 3, . . . , 2θj − 1. Therefore, by
substituting (11)–(13) into (10), the Meijer’s G-function (8) is
simplified to (15) on the top of the next page, where Pj(y)
denotes a θj-th degree polynomial

Pj(y) =

θj∑
k=0

(2θj − k)!2k−θj

(θj − k)!k!
yk. (16)

In (14), the summation over k is truncated at min(θj , i), since
the factorial is infinity at negative integer numbers. We obtain
(15) by changing the order of summation with l = i−k in (14).
Substituting (15) into (7), the deformed joint density function
f(y) with α = 1/2 is given by

f(y) =
1

c′α
∆(y2)

(
r∏
i=1

y2ν2i e−yi

)
det (Pj(yi)) , (17)

where the normalization factor c′α is

c′α =
23/2r

2+(ν1+ν2−3/2)r

πr/2
cα. (18)

C. Largest Eigenvalue Distribution

The marginal distribution of y1 = max1≤i≤r(yi) is
obtained via the joint density (17), such that FY1

(y) =

∫
D f(y)dy, where D denotes the support {0 ≤ yn ≤ . . . ≤
y1 ≤ y}. Using Andréief integral in [16], we have

FY1
(y) =

1

c′α
det

 θj∑
k=0

(2θj − k)!2k−θj

(θj − k)!k!
γ(ai,k, y)

 , (19)

where ai,k = 2ν2 + 2i + k − 1 and γ(ai,k, y) denotes the
lower incomplete Gamma function. Since ai,k is a positive
integer, γ(ai,k, y) can be explicitly written according to [19,
Eq. (8.352.1)] as

γ(ai,k, y) = Γ(ai,k)

1− e−y
ai,k−1∑
m=0

ym

m!

 . (20)

By careful examination of the entries of determinants in (19),
it can be shown that the distribution function FY1

(y) admit the
following form

FY1(y) = 1 +

r∑
p=1

e−p y
qm∑
q=0

cp,q y
q, (21)

where
qm =

(
r + s+ t− 1

2

)
p− 5

2
p2, (22)

and cp,q denotes unknown coefficient depending on the matrix
dimensions (r, s, t). Note that the expression (21) is similar
to the largest eigenvalue distribution of the Wishart matrix
derived as [2, Eq. (22)], where the unknown coefficients can
be computed numerically according to [3]. Using a similar
algorithm, one can tabulate the coefficient cp,q for arbitrary
matrix dimensions (r, s, t) and the resulting expression (21)
enables further algebraic manipulations.

We hereafter use the notations FY1
(y, t), ci,j(t), and qm(t)

to specify the dependence of FY1
(y), ci,j , and qm on the matrix

dimension t. With a change of variable y = 2
√
x in (21), we

observed in the numerical simulations that FY1
(2
√
x, t) and

FY1
(2
√
x, t + 1) are approximately vertical-shifted versions

of the largest eigenvalue distribution Fλ1
(x). By a simple

interpolation between FY1(2
√
x, t) and FY1(2

√
x, t + 1), an

approximation to Fλ1(x) can be constructed as

Fλ1(x) ≈ 1

2

(
FY1(2

√
x, t) + FY1(2

√
x, t+ 1)

)
= 1 +

r∑
i=1

e−2i
√
x

qm(t+1)∑
j=0

Ci,j xj/2, (23)

where Ci,j = 2j−1 (ci,j(t) + ci,j(t+ 1)) and we define
ci,j(t) = 0 when j > qm(t).

IV. PERFORMANCE ANALYSIS

A. Ergodic Mutual Information

The ergodic MI of the MIMO beamforming system over
Rayleigh product channels is given by

C(γ) =

∫ ∞
0

log

(
1 + γ

x

n1

)
dFλ1

(x). (24)



G 2,0
0,2

(
−

ν2 − α, ν1 + j − 1

∣∣∣∣ y24
)

=

√
π

yθj

(y
2

)ψj ∞∑
i=0

(−y)i

i!
A(i) =

√
π

yθj

(y
2

)ψj ∞∑
i=0

min(θj ,i)∑
k=0

(−1)i+kyi(2θj − k)!2k−θj

(i− k)!(θj − k)!k!
(14)

=

√
π

yθj

(y
2

)ψj ( ∞∑
l=0

(−y)l

l!

)
θj∑
k=0

(2θj − k)!2k−θj

(θj − k)!k!
yk =

√
π

yθj

(y
2

)ψj
e−yPj(y) (15)
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Fig. 1. Ergodic mutual information of MIMO beamforming over Rayleigh
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keeping n1 = 4 and n2 = 1; dashed line with ‘∗’: increase scattering objects
while keeping n0 = 4 and n2 = 1; markers: simulations.

Using integration by parts and inserting the approximation (23)
into (24), we obtain

C(γ) =

∫ ∞
0

(
1− Fλ1(x)

) ρ

1 + ρx
dx

≈ − 1√
π

r∑
i=1

qm(t+1)∑
j=0

Ci,j
ρj/2

G 3,1
1,3

(
−j/2

−j/2, 0, 1/2

∣∣∣∣ i2ρ
)
,

(25)

where ρ = γ/n1 and (25) is obtained by using the identi-
ties [19, Eqs. (3.389.6) and (9.34.6)].

Figs. 1 and 2 show the ergodic MI of MIMO beamforming
over various Rayleigh product channels assuming the SNR
γ = −10, 0, and 10 dB, respectively. In Fig. 1, we plot the
proposed approximation (25) as a function of the number
of transmit antennas n0, while fixing the scattering objects
n1 = 4 and the receive antennas n2 = 1, i.e., (n0, 4, 1).
As a comparison, the ergodic MI of the channels (4, n1, 1) is
plotted while increasing the number of scatterings n1. At the
considered SNRs, it is clear that the performance improvement
is more significant by using more transmit antennas. When
the receiver is equipped with multiple antennas, Fig. 2 shows
that the performance of MIMO beamforming degrades as
the transceivers see more scatterings. This is due to the fact
that power of the MIMO channel disperses over multiple
eigenchannels. At a fixed array gain n0n2, the power of the
dominant eigenchannel, corresponding to λ1, decreases as the
rank of matrix increases.

n

1 2 3 4 5 6 7 8 9 10
E

rg
o

d
ic

 m
u

tu
al

 i
n

fo
rm

at
io

n
 (

n
at

s/
s/

H
z)

0

1

2

3

4

5

6

7

8

9

10

11

Approx. (25) with channel (n, 4, 4)

Approx. (25) with channel (4, n, 4)

γ = −10 dB

γ = 0 dB

γ = 10 dB

Markers: Simulations

Fig. 2. Ergodic mutual information of MIMO beamforming over Rayleigh
product channels. Solid line with ‘�’: increase transmit antennas while
keeping n1 = n2 = 4; dashed line with ‘∗’: increase scattering objects
while keeping n0 = n2 = 4; markers: simulations.

B. Average Symbol Error Rate

For a wide variety of modulation schemes, the average SER
of MIMO beamforming systems can be obtained by integrating
over the instantaneous SNR (4) as

SER(γ) = aE
[
Q
(√

2bρ λ1

)]
, (26)

where the expectation is over λ1 and Q(x) =
1/
√

2π
∫∞
x
e−u

2/2du is the Gaussian Q-function. The
parameters a and b are modulation specific constants ([20]).
For instance, a = 2(M − 1)/M and b = 3/(M2 − 1) for
the M -ary Pulse Amplitude Modulation (PAM), a = 2 and
b = sin2(π/M) for the M -ary Phase-Shift Keying (PSK),
and a = 4 and b = 3/(2M − 2) for the M -ary Quadrature
Amplitude Modulation (QAM). Note that the expression (26)
is an approximation in cases of PSK and QAM modulations.
By substituting (23) into (26) and applying integration by
parts, we have

SER(γ) =
a

2

√
bρ

π

∫ ∞
0

Fλ1
(x)

e−bρx√
x

dx

≈ a

2
+
a

2

√
bρ

π

r∑
i=1

qm(t+1)∑
j=0

Ci,jLi,j(bρ), (27)

where

Li,j(bρ) =

∫ ∞
0

e−bρx−2i
√
xx(j−1)/2dx. (28)
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Applying [19, Eq. (3.462.1)], we obtain

Li,j(bρ) = 2(2bρ)−
j+1
2 Γ(j + 1)e

i2

2bρD−j−1

(√
2

bρ
i

)
, (29)

where Dν(·) denotes the parabolic cylinder function defined
as [19, Eq. (9.240)].

In Fig. 3, the average SER of MIMO beamforming is
plotted as a function of the received SNR γ. We compare the
approximation (27) with simulated curves, where each curve
is obtained by averaging over 106 channel realizations. The
number of antennas at both transmitter and receiver is set to
be 4, 8, and 12 while fixing the number of scatterings to be 6.
Fig. 3 shows that the proposed approximation achieves a good
agreement with the simulation, especially when the number of
antennas is large.

V. CONCLUSIONS

We studied the performance of MIMO beamforming over
the Rayleigh product MIMO channels. By introducing a pertur-
bation to the joint eigenvalue density of the product Gaussian
matrices, we obtained a simple yet accurate approximation to
the largest eigenvalue distribution. Based on this result, the
ergodic mutual information and average SER are calculated
in closed-form for an arbitrary SNR and any channel con-
figuration. Numerical results show that it is more effective
to improve the performance of MIMO beamforming by us-
ing more transmit antennas than by enriching the scattering
environment. When multiple antennas are equipped at the
receiver, the performance of MIMO beamforming degrades as
the transceivers see more scatterings.
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