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Abstract— Because of connectivity richness in mobile ad hoc
networks, there often exist multiple paths between a source and
a destination. Since many applications require uninterrupted
connectivity of a session, the ability to find long-living paths can
be very useful. In this paper, we propose three path-selection
algorithms and evaluate their performance in a homogeneous
network based on two criteria: 1) the selected path is the most
likely to meet a target residual path lifetime requirement, and
2) the selected path has the longest residual path lifetime among
all the available paths. We also develop two performance metrics
(PMs) to compare the proposed algorithms among themselves
and with a baseline random-selection algorithm. Our study shows
that all three algorithms demonstrate comparable performance in
satisfying the first criterion, although the first algorithm performs
consistently better than the other two for both criteria. As the
path-set size increases, the proposed algorithms yield even greater
performance gain over the baseline algorithm. Furthermore, we
show that these algorithms perform better in a high-mobility
environment than in a low-mobility one.

I. I NTRODUCTION

Recent advances in Mobile Ad Hoc Network (MANET)
research have generated a growing interest in carrying
multimedia-intensive traffic in such a network. Multimedia
traffic is known to require more stringent performance of data
loss, packet delay, delay jitter, etc., in order to ensure an
acceptable quality of service (QoS).

The provisioning of QoS in a MANET presents both
challenges and opportunities. On the one hand, the dynamic
network topology leads to frequent link breakdowns as all
the nodes are mobile. This makes the path maintenance
operations such as failure notifications and path rediscovery
very costly. Furthermore, if an alternative path cannot be
established in a timely manner while a traffic session is on-
going, data loss occurs. On the other hand, because of the
relatively high density of mobile nodes in the MANET, and
thus connectivity richness, multiple paths often exist between a
source-destination pair. This has prompted researchers to study
multi-path routing as a promising technique for supporting
QoS in MANET (see, for example, [2], [6], [8], [9], [12], and
[13]).
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A typical path in the MANET consists of multiple hops, and
is therefore prone to frequent breakage. In many applications,
it may be desirable to judiciously select, from all available
paths, one that best serves the requirement to carry data
packets. For example, one may wish to choose a path that
consists of nodes with the largest average battery power. In
our research, we associate the desirability of a path with its
remaining (residual) lifetime. In designing the path-selection
algorithm, we take into consideration the impact of node
mobility (i.e., mobility-induced)1 on theresidual path lifetime
(RPL), which is defined as the duration from the time the path
is first discovered to the time when any one of its links breaks.

This paper is organized as follows. Section II provides
relevant background information for our study. Section III pro-
poses three path selection algorithms that base their selection
decisions on the mobility-induced residual path lifetime. We
then introduce two performance metrics in Section IV and
use those metrics for evaluation of these algorithms. Section
V discusses some future work we plan to undertake. Finally,
Section VI concludes the paper.

II. BACKGROUND

Many of the proposed MANET routing protocols in the
literature have limited provisioning for QoS and use paths
discovered without regard to path reliability or longevity.
Possessinga priori knowledge of the mobility-induced RPL in
a path-selection algorithm will reduce the overhead as a result
of fewer path failure notifications and of less need for path
re-discovery. This in turn will make better use of the scarce
bandwidth in the network.

The study of path selection based on mobility-induced RPL
is a largely unexplored research field. Because of the difficulty
in accurately modeling the multi-hop path, most published
work takes the approach of extending the results of individual
link lifetime to evaluate the overall path lifetimes. For ex-
ample, Gerharz et. al. [3] proposed two methods to identify
the “stable” links from several available links. Unfortunately,
due to the correlation between adjacent links on a path, this
approach often does not produce sufficiently good results.

One measure in assessing the stability of a link is the
length of thelink age, defined as the duration between the

1“mobility-induced” means that the residual lifetime of a path is affected
only by link breakage caused by nodes moving out of transmission range of
each other.



first moment a link is established until the observation time,
assuming that at that time the link is still up.2 There are
generally two approaches to selection of links based on their
age: one favoring the use of younger links and the other
advocating the choice of older ones. Gerharz et. al.[4] exam-
ined the relationship between the age of link and its residual
lifetime, based on which they proposed several methods to
discover a stable path. One of their proposed algorithms finds
a path whose age is below a certain threshold, although the
threshold in their paper appears to be an arbitrarily chosen
one. On the other hand, some routing protocols such as the
Associativity-Based Routing (ABR) [14] consider older links
to be more stable on the grounds that a link is likely to stay
alive for a longer time period if it has already existed beyond a
threshold time. However, we note that this assertion may only
be applicable to certain mobility models, such as the Gauss-
Markov mobility model [7]. In our study, we consider that the
choice of a link with an appropriate age, neither too young,
nor too old, is very important in assessing its stability.

In order for a path-selection algorithm to be applicable
to a wide range of mobility scenarios, its decision-making
operations should be independent of the mobility attributes.
For example, the random waypoint mobility model usespause
time for a node as a mobility attribute [1], which dictates
how long a node may pause before moving on to the next
destination. This attribute value has a significant impact on the
dynamics of the network topology [5]. It will not be prudent
for the algorithm to make path-selection decisions based on
the length of the pause time, since in practice, a mobile node
is usually not able to measure this pause time. Similarly,
choosing one value for the pause time will cause algorithm
to perform unsatisfactorily in a mobility environment with a
different pause time. As a guiding principle for our research,
a path-selection algorithm should base its path-selection deci-
sions only on information that can be empirically observed by
the mobile node. Furthermore, it should be able to do so with
rudimentary hardware/software support in each node.

III. PROPOSEDPATH SELECTION ALGORITHMS

We propose three path-selection algorithms that select the
best path from a set of available paths. In defining “best”, we
consider the following two criteria:

1) the chosen path is most likely to meet a target residual
path lifetime requirement, or

2) the chosen path has the longest residual path lifetime.
When invoking the algorithms, we assume the paths are
discovereda priori. At present, we consider only paths that
are node-disjoint, that is, paths do not shares common links
or intermediate nodes. Such paths have the property that the
failure of one path is independent of the others.3

Before we introduce the algorithms, we first present a
simple statistic-collecting mechanism that would be used in
two of the three algorithms.

2In our research, we consider that a link is established when two nodes
move into the transmission range of each other. The link remains up until the
time when the two nodes move out of each other’s transmission range.

3Of course, the source and the destination nodes are the same in all these
paths.

A. A Statistical FLL-Collecting Mechanism

Analytically computing thefull link lifetime (FLL) in a
mobility model is computationally intensive and requires so-
phisticated HW/SW support(see, e.g., [10] and [11]). Instead,
we employ a simple mechanism in each node that collects
empirical FLL statistics, based on which an algorithm makes
path-selection decisions. A nodeA periodically broadcasts a
beacon to identify itself. A neighbor nodeB which hears this
beacon assumes there is a link fromA to B. The FLL is
therefore the entire duration between the first and last time
Node B hears NodeA’s beacon. Each node continuously
collects FLL statistics in this fashion until a sufficient number
of FLLs has been collected. The generated FLL statistic is then
used to create a histogram. From this point on, path-selection
algorithms may be invoked using this histogram. A similar
scheme was also used by Gerharz et. al. [4] in their work.

In our simulations, all the nodes operate under the same
mobility model with the same set of mobility attribute values.
This makes the network homogeneous, where a similar FLL
histogram will be computed at each node. This mechanism is
used differently in two of our three proposed path-selection
algorithms.

B. Path Selection Algorithm I (PSA1)

During the initial phase of the network deployment, each
mobile node collects FLL statistics to construct an FLL
histogram. After a setΨ of disjoint paths is discovered at
the destination (using, e.g., Split Multi-path Routing [6]),
each upstream nodej along anLi-hop path i, where i ∈
{1, · · · , |Ψ|} and j ∈ {1, · · · , Li}, computes the probability
that the link with its downstream neighbork, denoted asli(j,k),
has a residual lifetime of at leastτ [sec] given its current age
tijk. The link age is easily obtained by counting the number
of times Nodej has heard the beacon from Nodek. Denote
T̃ i

jk as the random variable of the residual lifetime of Link
l(j,k) of Path i, andT i

jk the corresponding full link lifetime.
The following relation holds:T i

jk = T̃ i
jk + tijk. The required

probability can be computed as:

pi
jk(τ) = P{T̃ i

jk ≥ τ |tijk} = P{T i
jk ≥ τ + tijk|tijk}

=
P{T i

jk ≥ τ + tijk}
P{T i

jk ≥ tijk}
(1)

The numerator and denominator in the third equality of Eq.
1 can be numerically computed from the FLL histogram that
each node keeps. Nodej then reportspi

jk to the source node
via the means of RouteReply (RREP) packets. Upon receiving
the RREP, the source computes the probability of Pathi’s
residual lifetime being at leastτ , denotedpi(τ), as follows:

pi(τ) =
Li∏

i=1

{pi
jk(τ)}, i ∈ {1, · · · , |Ψ|} (2)

Here, we make a simplified assumption that the residual link
lifetimes along the path are treated as independent random
variables. In reality, this is not true as correlation exists
between two adjacent links that are incident on the same node.



Nevertheless, we make this assumption since it is very difficult
to incorporate the correlation factor in a multi-hop path.

The decision of selecting the path with the highest proba-
bility of meeting the target RPL ofτ [sec] is then given by:

i∗ = arg max
i
{pi(τ)} (3)

If more than one path has the samepi(τ), the shortest path
(in hops) is chosen asi∗.

C. Path Selection Algorithm II (PSA2)

As the destination discovers a setΨ of paths each with
lengthLi[hops], for each path it sends back to the source in
the reverse direction of a path an RREP packet. Each node that
receives the RREP packet includes in it the age of the link
between itself and its downstream neighbor. The node then
passes on the packet to its predecessor on the path. When
the source node receives the RREP, it now knows the age
information of the path’s constituent links. We define thepath
ageof a Pathi to be the age of the youngest link of the path:

ai = min{ai
j : j = 1, · · · , Li} (4)

The path-selection algorithm then chooses the path with the
minimum age:

i∗ = arg min
i
{ai : i = 1, · · · , |Ψ|} (5)

This simplistic path-selection algorithm, therefore, is based on
the assertion that a younger path should have a longer residual
path lifetime. When more than one path has the same path age,
the shortest one in chosen asi∗.

D. Path Selection Algorithm III (PSA3)

The third path-selection algorithm is based on the contention
that a good multi-hop path should be composed of links that
are neither too old nor too young. For each linkj on Path
i, we know its current age, denoted asai

j . The expected full
lifetime of Link j given ai

j is then given by:

tij =

∫∞
ai

j
tfT (t)dt

∫∞
ai

j
fT (t)dt

, (6)

wherefT (t) is the probability density function of the full link
lifetime as observed by Nodej, and it can be obtained from
the statistical FLL histogram.4 With tij , Link j is assigned a
link grade Gi

j . The link grades are assigned with respect to
the FLL group thattij falls into, which are defined as follows:

1) if tij ∈ (0, µ̃i
j − σ̃i

j/2), Gi
j = SOSO;

2) if tij ∈ (µ̃i
j − σ̃i

j/2, µ̃i
j + σ̃i

j/4), Gi
j = EXCELLENT;

3) if tij ∈ (µ̃i
j + σ̃i

j/4, µ̃i
j + σ̃i

j), Gi
j = GOOD;

4) if tij > µ̃i
j + σ̃i

j , Gi
j = POOR.

In descending order of the link grade, EXCELLENT> GOOD
> SOSO> POOR, and̃µi

j andσ̃i
j denote the sample mean and

standard deviation, respectively, that are computed by using
the FLL histogram. Note that the values that we have chosen

4Note that for this algorithm nodes on the path are numbered 1 through
L + 1, whereL is the path length in hops.

Parameters Values
Network Size[m2] 800 x 800

Num. of Nodes 100
TX Range[m] 150

Min. Speed [m/s] 42.5(5)
Max. Speed [m/s] 57.5 (20)

Path-set Size [paths/set] 2, 3, 4, 5
Node Velocity Update Interval [sec] 10

Target Residual Lifetime [sec] 1.25 (5)

TABLE I

SIMULATION PARAMETERS FOR PERFORMANCE EVALUATION.

to define the boundaries of the FLL groups are obtained by
observing the distribution of the FLL in simulation scenarios.
In practice, how to define the FLL groups is still an open
problem that deserves further investigation.

When the source receives the RREP and obtains its com-
puted link grade for the link with its downstream neighbor, it
finds the worst link grade (WLG) and best link grade (BLG)
and assigns the entire path a path gradeGi. We propose two
path-grade assignments. In the first, conservative path-grade
assignment, the worse of the two link grades is selected as
the path grade. In the second, liberal path-grade assignment,
the better of the two is selected as the path grade. Once every
path i in Ψ has been assigned itsGi, the source chooses the
one with the highest grade:

i∗ = arg max
i
{Gi}, ∀i ∈ Ψ (7)

If more than one path has the same path grade, the one with
the fewest hops is selected asi∗.

IV. PERFORMANCEEVALUATION

Table I shows the simulation parameters used to construct
the simulated network. All the nodes move with the random
mobility (RM) model. In this model, each node independently
and randomly chooses the speed and direction of the node,
then travels for a constant time duration. At the end of this
time period, the node, without pause, randomly chooses a new
speed and direction, and repeats the above procedures. The
node-disjoint path set is discovered by amulti-path Dijkstra’s
algorithm in our simulation. Treating the network from a
graph-theoretic point of view, each time a path is found
using Dijkstra’s algorithm, all the intermediate nodes and
links incident on them are removed from the graph, and the
Dijkstra’s algorithm is employed again to find the next path
in the residual graph.

We have shown previously through simulations that from
a set of available paths, the shortest path tends to have a
longer residual path lifetime than any longer path [5]. A path-
selection algorithm that simply chooses the shortest path from
all available paths can generally achieve good performance.
However, such an algorithm fails to handle situations in which
some of the discovered paths are of equal length. Therefore,
the performance evaluation below focuses on the special case
of equal-length path sets.



A. Performance Metrics

We develop two performance metrics to evaluate the ef-
fectiveness of the proposed algorithms. It is worth noting,
first of all, that evaluating their ability to find a path that
meets the target RPL requirement is not as straightforward
as it appears. The target RPL is a system parameter in our
simulation. If it is set too high, it is likely that none of the
paths would meet this requirement; likewise, if the target RPL
is set too low, all the paths would likely meet this requirement.
Therefore, some adaptive normalization must be built into the
performance metrics in order to compensate for the arbitrary
choice of the target RPL and make the evaluation meaningful.

In the first performance metric (PM1), we compare each
proposed algorithm with a baselinerandom-selectionalgo-
rithm to evaluate the former’s ability to find a path that
meets the target RPL requirementτ . The baseline algorithm
arbitrarily selects a path fromΨ only if at least one path in
Ψ meets the target RPL requirement. We devise two path-
selection reward schemes, one for the proposed algorithm, and
the other for the baseline algorithm. Denote the path selected
by the proposed algorithm asi∗. For the k-th experiment
during the simulation, the reward scheme for the proposed
algorithm making a path-selection decision is defined as:

Dk =
{

1 , Ti∗ ≥ τ
0 , o.w.

(8)

where Ti∗ denotes the actual residual lifetime ofi∗. The
reward scheme for the baseline algorithm is defined as:

Ek =
{

0 , Ti < τ ∀i ∈ Ψ
1
|Ψ| , o.w.

(9)

DenoteNΨ as the total number of path-selection decisions for
path-set sizeΨ made during the simulation. PM1, denoted as
γ1, is therefore defined as follows:

γ1 =

NΨ∑
k=1

Dk

NΨ∑
k=1

Ek

. (10)

The denominator of Eq. 10 is the average number of times the
baseline algorithm finds a path that meets the target RPLin the
long run, thereby making100(γ1−1)% the performance gain
of the proposed algorithm over the baseline algorithm. It can
be seen that the range of valuesγ1 takes on is0 ≤ γ1 ≤ |Ψ|.

The second performance metric (PM2) evaluates the ability
of the proposed algorithm to choose the path with the longest
residual lifetime. Since all the paths inΨ are node-disjoint,
the probability of randomly selecting a path fromΨ that has
the longest residual lifetime is1/|Ψ|. In the simulation, an
algorithm selects a pathi∗ from Ψ, and all the nodes continue
moving until the last path breaks. If it isi∗ that breaks the
last, the selection decision made by the algorithm is called a
success. DenoteNΨ,s as the number of successes for path-set
sizeΨ in the simulation. PM2, denoted byγ2, is defined as:

γ2 =
NΨ,s

NΨ
1
|Ψ|

=
|Ψ|NΨ,s

NΨ
. (11)

The range of PM2 is0 ≤ γ2 ≤ |Ψ|, with a larger value
indicating a greater gain of the proposed algorithm over the
baseline algorithm.

B. Simulation Results

We generate a number of simulation scenarios that apply the
PMs to each of the three proposed path-selection algorithms.
For each scenario,10, 000 statistics are collected to compute
the PMs. In order to maintain consistency of the results, all
the algorithms perform path-selection operations using the
same statistical data as input. Note that in evaluating PSA3,
the conservative approach, as explained in Section III-D, is
adopted to assign path grades.

Figs. 1, 2, and 3 plot the PM1 of PSA1, PSA2, and
PSA3, respectively, as a function of|Ψ|, for path lengths
2[hops], 3[hops], and 4[hops], with node speed uniformly
distributed between42.5[m/s] and 57.5[m/s] (i.e., a high-
mobility environment), and a target RPL of1.25[sec]. Given
a fixed path length, each proposed algorithm achieves more
substantial performance gain with increasing|Ψ| (e.g., PSA1
achieves a gain of100% for three-hop paths when|Ψ| = 4).
The increased gain is contributed by the inability of the
baseline algorithm to make better decisions as the path-set
size grows. On the other hand, as the path length increases, the
performance of the proposed algorithms degrades. For longer
paths, the performance of each of the proposed algorithm ap-
proaches that of the baseline algorithm. Of the three proposed
algorithms, PSA1 outperforms the other two to meet the target
RPL requirement as|Ψ| increases, and PSA2 slightly performs
better than PSA3 for paths three hops and longer.

Figs. 4, 5, and 6 demonstrate the behavior of PM2 in
the three PSAs with increasing path-set size. For PSA1 and
PSA2, there is a discernable trend that these two algorithms’
performance increases with increasingΨ. When |Ψ| = 5,
both algorithms have a performance gain of over50% and
40%, respectively, over the baseline algorithm. Again, PSA1
outperforms PSA2 and PSA3 in achieving the greatest gain
over the baseline algorithm. Furthermore, its performance
gain is least impacted by path length. PSA3 performs the
worst compared with the other two. This is because of the
non-optimized partitioning of the FLL groups used in the
simulation, which is a source of future research.

We also evaluate the performance of the proposed algo-
rithms by comparingγ1 and γ2 obtained in simulation with
their theoretical upper bounds (i.e.,|Ψ|). We define the ratio
of γi to |Ψ|, where i = 1, 2, to be themetric efficiency
of Performance Metrici. Using Fig. 1 as an illustration,
when the path length is fixed at2[hops], the efficiencies for
PM1 with |Ψ| = 2, 3, 4, 5, are 75.21%, 67.5%, 64.4%, and
63.4%, respectively. That is, although the proposed algorithm
performs better compared with the baseline algorithm with
increasing|Ψ|, at the same time the metric efficiency deviates
further from the upper bound of the performance. Similarly,
by fixing the path-set size, the metric efficiency decreases as
the path length increases.

The above evaluation method may also be applied to com-
pute the metric efficiency for PM2. Since the best that any
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Fig. 1. Performance Metric 1 for Path Selection Algorithm 1
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Fig. 2. Performance Metric 1 for Path Selection Algorithm 2
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Fig. 3. Performance Metric 1 for Path Selection Algorithm 3

algorithm can do is to achieve55% performance gain over
the baseline algorithm Fig. 4 with|Ψ| = 5 and path length
3[hops]), which is greatly below the theoretical upper bound,
it implies that it is much more difficult to select a path that
has the longest RPL than to select one most likely to meet the
target RPL requirement.

Fig. 7 demonstrates the difference in PM1 when PSA1
is used for two different mobility scenarios of the random
mobility model: in one, the average node speed is50[m/s]
(in solid lines in the figure), and in the other, the average
node speed is12.5[m/s]5 (in dash lines), and the target RPL
for the latter is5[sec] (a four-fold increase because the average
node speed is one-quarter that for the former). The algorithm’s

5The relevant simulation parameters for the12.5[m/s] average speed are
parenthesized in Table I.
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Fig. 4. Performance Metric 2 for Path Selection Algorithm 1
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Fig. 5. Performance Metric 2 for Path Selection Algorithm 2
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Fig. 6. Performance Metric 2 for Path Selection Algorithm 3

performance is consistently better at high average speed than
at low average speed. Similar results are observed for the
other two algorithms as well. This shows that these algorithms
perform better in a high-mobility environment than in a low-
mobility one.

Another interesting observation from the simulation results
above is that PSA2 has comparable performance to PSA3
in both the path-selection criteria. Although its performance
suffers a little compared with PSA1, PSA2 is a very simple
and straightforward algorithm that, unlike PSA1 and PSA3,
does not rely on the construction of a FLL histogram in each
node; all it requires is the beacon mechanism. This means
that PSA2 can be invoked as soon as the network is deployed,
without undergoing the initial FLL-collecting phase.
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V. FUTURE WORK

Selecting the best path from all the available paths based on
mobility-induced residual path lifetime is, to the best of our
knowledge, a largely unexplored area of study in MANET
research. One of the strengths of the proposed algorithms
is that it does not require any sophisticated HW/SW. This
simplicity, however, imposes some fundamental limitation on
their performance. Our preliminary investigation shows this
limitation may be related to the shape of the probability density
function of FLL, in which the density of a very large range
of FLLs may be approximately modeled by the memoryless
exponential distribution, which implies that any prediction for
FLL that falls in this range given current link age may not
be possible. The true cause of this fundamental limitation is
currently under further research.

For the PSA3, where we consider a path that consists of
links neither too old and too young, there are some open
issues to be studied. In particular, we wish to study how to
optimally define the boundaries of different FLL groups in
a mobile environment that would allow PSA3 to yield better
performance.

Furthermore, we are studying new approaches to collect
empirical link lifetime statistics that will aid the decision
making of path selection, and are working on a new algorithm
to investigate its performance potential. We are also developing
a testing mechanism that would allow us to evaluate the per-
formance of the class of age-based path-selection algorithms
expediently over a wide range of mobility scenarios.

VI. CONCLUSION

Selecting the best path from all the available paths based on
mobility-induced RPL is a relatively unexplored new area of
study. In this paper, we propose three simple, implementable
path-selection algorithms that are aimed at making intelligent
path-selection decisions to choose the best one from a path
set. By “best,” we mean either a path is most likely to meet a
requirement for desired residual path lifetime, or that it is most
likely to have the longest residual lifetime among all paths in
the path set.

We evaluate the performance of the proposed algorithms
with respect to two path-selection criteria which we have

introduced, by introducing two performance metrics for the
criteria. The algorithms are compared with each other and
with a baseline random-selection algorithm, which arbitrarily
chooses any one of the available paths. Our simulations show
that the proposed algorithms have comparable performance
among themselves, with PSA1 achieving the best performance
with respect to the two criteria. The performances of all
three algorithms over the baseline algorithm improve as the
size of the path set increases. Furthermore, we showed in
simulation that these algorithms perform better in a high-
mobility environment than in a low-mobility one.

For future work, we wish to improve the performance of
PSA3 presented in this paper. We also want to investigate
the cause of the fundamental limitation on the performance of
the proposed algorithms. Furthermore, we are designing a new
path-selection algorithm with a different technique of utilizing
link lifetime statistics collected empirically by each node.
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