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ABSTRACT 
Although most wireless terrestrial networks are based on two-
dimensional (2D) design, in reality, such networks operate in three-
dimensions (3D). Since most often the size (i.e., the length and the 
width) of such terrestrial networks is significantly larger than the 
differences in the third dimension (i.e., the height) of the nodes, the 2D 
assumption is somewhat justified and usually it does not lead to major 
inaccuracies. However, in some environments, this is not the case; the 
underwater, atmospheric, or space communications being such 
apparent examples. In fact, recent interest in underwater acoustic ad 
hoc and sensor networks hints at the need to understand how to design 
networks in 3D. Unfortunately, the design of 3D networks is 
surprisingly more difficult than the design of 2D networks. For 
example, proofs of Kelvin's conjecture and Kepler's conjecture 
required centuries of research to achieve breakthroughs, whereas their 
2D counterparts are trivial to solve. In this paper, we consider the 
coverage and connectivity issues of 3D networks, where the goal is to 
find a node placement strategy with 100% sensing coverage of a 3D 
space, while minimizing the number of nodes required for 
surveillance. Our results indicate that the use of the Voronoi 
tessellation of 3D space to create truncated octahedral cells results in 
the best strategy. In this truncated octahedron placement strategy, the 
transmission range must be at least 1.7889 times the sensing range in 
order to maintain connectivity among nodes. If the transmission range 
is between 1.4142 and 1.7889 times the sensing range, then a 
hexagonal prism placement strategy or a rhombic dodecahedron 
placement strategy should be used. Although the required number of 
nodes in the hexagonal prism and the rhombic dodecahedron 
placement strategies is the same, this number is 43.25% higher than 
the number of nodes required by the truncated octahedron placement 
strategy. We verify by simulation that our placement strategies indeed 
guarantee ubiquitous coverage. We believe that our approach and our 
results presented in this paper could be used for extending the 
processes of 2D network design to 3D networks. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – network topology, wireless 
communication. 

General Terms: Algorithms, Design. 

Keywords: Three-dimensional Networks, 3D Networks, 

Polyhedron, Truncated Octahedron, Rhombic Dodecahedron, 
Hexagonal Prism, Kelvin’s Conjecture, Coverage, Connectivity, 
Wireless Networks, Underwater Networks. 
 
1. INTRODUCTION 
Design of terrestrial networks is generally two-dimensional 
where it is assumed that all nodes of a network reside on a 
plane. This assumption may no longer be valid if a network is 
deployed in space, atmosphere, or ocean, where nodes of a 
network are distributed over a 3D space. Although such a 
scenario may not be common at present, applications are being 
developed that will make three-dimensional networks 
increasingly common in the near future. For example, recently 
underwater acoustic ad hoc and sensor networks have 
generated a lot of interest among the researchers [1], [12], [15], 
[27]. Ocean column monitoring requires the nodes to be placed 
at different depths of the water, thus creating a three-
dimensional network [1]. Weather forecasting and climate 
monitoring can also benefit if three-dimensional networks can 
be deployed in the atmosphere.  

In this paper, we focus on the coverage and connectivity issues 
of three-dimensional networks, where all the node have the 
same sensing range and the same transmission range. In 
particular, we want to answer the following questions:  

• What is the best way to place the nodes in three-dimension 
such that the number of nodes required for surveillance of a 
3D space is minimized, while guaranteeing 100% coverage? 

• What should be the minimum ratio of the transmission range 
and the sensing range of such a placement strategy? 

The answers to these questions have both civilian and military 
applications. For example, one can envision a scenario where 
the Air Force uses unmanned aerial vehicles with limited 
sensing range to form a 3D network for surveillance of an 
airspace. Similarly, the Navy can use a 3D network of 
underwater autonomous vehicles for surveillance of ocean. In 
either case, it is always desirable to find the optimal placement 
of vehicles in three-dimensions, such that the number of 
vehicles required is minimized, while 100% coverage in 3D is 
guaranteed. Similarly, civilian applications include 
environment and climate monitoring in ocean and atmosphere 
using ad hoc and sensor networks. 

Proving optimality in many 3D problems is surprisingly 
difficult, even though similar problems in 2D can be proved 
easily. For example, Kepler’s sphere packing problem has been 
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around since 1611 and a proof of Kepler’s conjecture has only 
been found in 1998. Similarly, no optimality proof for Kelvin’s 
1887 conjecture is known yet. In this paper, we show similarity 
between our problem and Kelvin’s problem. We use Kelvin’s 
conjecture to justify that the placement of nodes in the middle 
of truncated octahedrons cells, which are, created by Voronoi 
tessellation of a 3D space, is the answer to the first question. 
Like the proof of Kepler’s conjecture and Kelvin’s conjecture, 
it is expected that any rigorous proof of our conjecture will be 
very difficult.  However, we provide detailed comparison of 
this solution with other possible solutions, and we show that 
this solution is indeed superior to other plausible solutions. Our 
contributions, results, and conclusions of this paper can be 
summarized as follows: 

• Using Kelvin’s conjecture, we conjecture that the answer to 
our first question is the placement strategy that places nodes 
in the middle of truncated octahedral cells, created by the 
Voronoi tessellation of a 3D space.. 

• We define a metric called volumetric quotient, which is the 
ratio of the volume of a polyhedron to the volume of its 
circumsphere. If Voronoi tessellation of a 3D space gives 
identical space-filling polyhedron of a fixed radius, then the 
higher the volumetric quotient of that polyhedron, the 
smaller the number of nodes required for full 3D coverage. 

• We show that the volumetric quotient of truncated 
octahedron is 0.68329, much higher than other possible 
space-filling polyhedron. For example, the volumetric 
quotient of rhombic dodecahedron is 0.477; hexagonal prism 
has volumetric quotient of 0.477, and cube has just 0.36755. 
These results imply that a placement strategy whose Voronoi 
tessellation creates truncated octahedral cells requires 
43.25% fewer nodes than the placement strategy whose 
Voronoi tessellation have rhombic dodecahedron or 
hexagonal prism as the shape of its cells. 

• We show how to place nodes using any of these placement 
strategies. For each placement strategy, we define a new 
u,v,w-coordinate system, where a node should be placed on 
each integer coordinate of this new system. Relation of this 
new u,v,w-coordinate system with the original given x,y,z-
coordinate system has been provided in equations (1), (2), 
(3) and (4)  in terms of the sensing range R and the location 
of an arbitrary node in the original x,y,z-coordinate system 
(cx,cy,cz). Our strategies require only a constant number of 
arithmetic operations to compute the location of each node 
and hence is computationally very efficient.  

• We find that truncated octahedron placement strategy 
requires that the ratio of transmission range to the sensing 
range must be at least 1.7889 in order to maintain 
connectivity among nodes. For cube, hexagonal prism, and 
rhombic dodecahedron placement strategies, the ratio is 
1.1547, 1.4142, and 1.4142, respectively. 

The rest of the paper is organized as follows. Section 2 presents 
some relevant background information on space-filling 
polyhedron, Voronoi tessellation, and the famous conjectures 

of Kelvin and Kepler. The section also presents the related 
work in the technical literature. Section 3 formally introduces 
the problem and the assumptions used.  In section 4 we analyze 
the problem and derive the results. Section 5 provides 
simulation results, which demonstrate that our placement 
strategies indeed guarantee full coverage. Section 6 discusses 
the results and proposes future directions of this work. Finally, 
section 7 concludes the paper. 

2. PRELIMINARIES 
In this section, we define some relevant terms and provide 
some background information necessary to explain the problem 
and our approach. The last subsection describes related works 
in technical literature. 

2.1 Space-Filling Polyhedron 
A polyhedron is a three-dimensional shape consisting of finite 
number of polygonal faces. The faces meet in straight line 
segments called edges, and the edges meet at points called 
vertices of the polyhedron. A polyhedron surrounds a bounded 
volume in three-dimensions. Example of polyhedrons includes 
cube, prisms, and pyramids. Polygon is a two-dimensional 
analog of polyhedrons. The general term for any dimension is 
polytope.  

A space-filling polyhedron is a polyhedron that can be used to 
fill a volume without any overlap or gap (a.k.a. tessellation or 
tiling). Since the sensing region of a node is spherical and 
spheres do not tessellate in 3D, we want to find a space-filling 
polyhedron that best approximates the sphere. In other word, 
we want to find a space-filling polyhedron such that if each cell 
is modeled by that polyhedron, then the number of cells 
required to cover a volume is minimized, where the distance 
from the center of a cell to its farthest corner (i.e. radius of a 
cell) is not greater than the sensing range R. 

At first, we provide a short overview on space-filling 
polyhedron. It is not easy to show that a polyhedron has space-
filling property. For example, although Aristotle claimed that 
the tetrahedron fills space [2], his claim was incorrect [11], and 
the mistake remained unnoticed until the 16th century [17].  

Some of the important results on space-filling polyhedron are 
as follows:  There are exactly five regular polyhedrons (a.k.a. 
platonic solids or regular solids) [23]: cube, dodecahedron, 
icosahedron, octahedron, and tetrahedron, as was proved by 
Euclid in the last proposition of the Elements.  Cube is the only 
space-filling regular polyhedron [9].  There are only five 
convex polyhedrons with regular faces having space-filling 
property: triangular prism, hexagonal prism, cube, truncated 
octahedron [23] [29], and gyrobifastigium [13]. The rhombic 
dodecahedron, elongated dodecahedron, and squashed 
dodecahedron are also space-fillers. A combination of 
tetrahedrons and octahedrons fills space. In addition, 
octahedrons, truncated octahedrons, and cubes, combined in the 
ratio 1:1:3, can also fill space.  
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However, we impose the restriction that the shape of the 
Voronoi cells should be identical, i.e., only one type of 
polyhedron is used to fill the space. We have two reasons for 
this requirement: 

• algorithms, especially distributed algorithms, to find the 
location of nodes are far simpler when one type of 
polyhedron is used, and 

• since the radius of the polyhedron is fixed, it is unlikely 
that any significant improvement can be achieved by using 
two or more type of polyhedrons to fill the space. 

2.2 Kelvin’s Conjecture 
Now we describe the century old Kelvin’s conjecture that we 
will use in section 4 to justify why truncated octahedron is the 
most likely building block for the optimal solution. 

In 1887, Lord Kelvin asked the following question [25]: "What 
is the optimal way to fill a three dimensional space with cells of 
equal volume, so that the surface area (interface area) is 
minimized?" This is essentially the problem of finding a space-
filling structure having the highest isoperimetric quotient. If the 
volume and surface area of a structure are V and S, 
respectively, then in three-dimensions its isoperimetric quotient 
can be defined as 36πV2/S3. Sphere has the highest 
isoperimetric quotient and it is 1.  Kelvin's answer to his 
question was 14-sided truncated octahedron having a very 
slight curvature of the hexagonal faces and its isoperimetric 
quotient is 0.757. But Kelvin couldn’t prove that the structure 
is optimal. The uncurved truncated octahedron has 
isoperimetric quotient of 0.753367. For more than a century, 
Kelvin’s solution was generally accepted as correct [30] and 
has been widely known as Kelvin’s conjecture. But in 1994, 
two physicists Denis Weaire and Robert Phelan came up with 
another space-filling structure. It consists of six 14-sided 
polyhedrons and two 12-sided polyhedrons with irregular faces 
of equal volume that has 0.3% less surface area than truncated 
octahedron [31], [28].  The isoperimetric quotient of this 
structure is 0.764. But any proof that the structure of Weiare 
and Phelan is optimal or that Kelvin’s solution is optimal for 
the identical cells case is yet to be found. 

2.3 Voronoi Tessellation 
In three-dimension, for any (topologically) discrete set S of 
points in Euclidean space, the set of all points closer to a point 
c of S than to any other point of S is the interior of a convex 
polyhedron called the Voronoi cell of c. The set of such 
polyhedrons tessellate the whole space, and is called the 
Voronoi tessellation corresponding to the set S.  Voronoi 
tessellation of any solution to our problem of the optimal 
location of the nodes, gives the optimal shape of each cell.  

2.4 Kepler’s Conjecture 
Another closely related problem is Kepler’s sphere packing 
problem.  The problem is to find the most efficient way to pack 
equal-sized spheres. In 1611, Kepler made a guess that the 

face-centered cubic (FCC) lattice was the most efficient of all 
arrangements, but was unable to prove it. After four hundred 
years of failed efforts, Kepler’s conjecture was finally proved 
to be correct by Thomas Hales in 1998 [10]. The proof 
extensively uses methods from the theory of global 
optimization, linear programming, and interval arithmetic. The 
computer code and data files used for the proof required more 
than 3 gigabytes of space for storage. The Voronoi tessellation 
of the FCC lattice is rhombic dodecahedron. Although FCC 
lattice is the optimal solution for sphere packing, in this paper 
we will show that truncated octahedron, which is the Voronoi 
tessellation of body-centred cubic (BCC) lattice, actually 
require 43.25% fewer nodes for our problem. This significant 
difference is not very intuitive. Note that the FCC lattice has 
packing density of 74.048% (optimal solution for sphere 
packing), while BCC lattice has packing density of about 68%. 

2.5 Related Works in Technical Literature 
The problem of finding appropriate locations of base stations in 
two-dimensional plane, such that the number of base stations 
required is minimized while 100% coverage is guaranteed, has 
been solved for cellular networks [22]. In two-dimensional 
cellular systems the cells are modeled as regular hexagons, 
such that the radius of each hexagon is equal to the maximum 
range of a base station. 

In sensor network, the problem of providing sensing coverage 
has received significant attention in the context of two-
dimensional networks. Maximizing the sensing coverage is a 
fundamental requirement for many critical applications of 
sensor networks e.g., detection [26], monitoring, and tracking 
and classification [19]. Every point of a selected geographic 
region must be within the sensing range of at least one sensor 
in a fully covered network. Several algorithms [7], [5], [21], 
[36] have been proposed to achieve full sensing coverage in 
two-dimensional network when a sensor network is deployed 
using random network topology. In an attempt to maximize the 
lifetime of a sensor network, energy conservation protocols 
[24], [32], [34], [35] dynamically maintain sensing coverage by 
keeping active only a subset of nodes at any particular time. 
Impact of sensing coverage on the performance of greedy 
geographic routing has been studied in [33] for 2D wireless 
sensor networks. 

There exist only few references on three-dimensional networks 
in the literature; the works presented in [6] and [8]  studied 3D 
cellular networks. In [6] each cell is represented as rhombic 
dodecahedron and in [8] each cell is represented as hexagonal 
prism. However, in this paper, we show that if truncated 
octahedron is used to model the shape of a cell, then the 
required number of nodes to monitor a 3D space is 43.25% 
fewer than the case where the cell is represented as hexagonal 
prism or rhombic dodecahedron. 
 
3. PROBLEM STATEMENT 
The main assumptions and the goals of our work are defined as 
follows: 
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3.1 Assumptions of the work 
• All nodes have identical sensing range R. Sensing is 

omnidirectional and the sensing region of each node can 
be represented by a sphere of radius R, having the 
sensor node at its center. 

• The sensing range R is much smaller than the length, 
the width, or the height of the 3D space to be covered, 
so that the boundary effect is negligible and hence can 
be ignored. 

• Any point in the 3D space to be covered must be within 
the sensing range R from at least one node. 

• If the locations of the nodes are fixed, their location is 
arbitraty. If the nodes are mobile, the nodes are initially 
randomly deployed, and their movement is unrestricted. 
Thus, we ignore the physical constraints of placing the 
nodes, and we assume that the placement strategy is 
free to place a node at any location in the network. 

3.2 Goals of the work 
• Given any R, find the number of nodes and their 

locations, such that the number of nodes required to 
cover any specified volume is minimized. 

• For placement strategies that achieve the above goal, 
find the minimum transmission range in terms of 
sensing range R, such that the all nodes are connected to 
their neighbors. 

 

4. ANALYSIS 
In this section, we analyze our problem from the point of view 
of the shape of Voronoi cells corresponding to the placement of 
nodes in the network. If each Voronoi cell is identical and the 
boundary effect neglected, then total number of nodes required 
for 3D coverage is simply the ratio of the volume of the 3D 
space to be covered to the volume of one Voronoi cell. So 
minimizing the number of nodes can be achieved if the 
Voronoi cells have the highest volume for the given sensing 
radius R.  Clearly, the radius of the circumsphere of a Voronoi 
cell must be less than or equal to the sensing range R. Since 
achieving the highest volume is the goal, the radius of 
circumsphere must always be equal to the sensing range R. And 
since R is fixed, the volumes of the circumspheres of all 
Voronoi cells are the same and equal to  4πR3/3. Finally, the 
shape of any Voronoi cell in 3D is always a polyhedron. The 
restriction of identical Voronoi cell implies that the polyhedron 
must also have the space-filling property. So our problem 
reduces to the problem of finding the space-filling polyhedron 
which has the highest ratio of its volume to the volume of its 
circumsphere. We call this ratio the volumetric quotient of the 
space-filling polyhedron.  More formal definition is as follows: 

Definition: For any polyhedron, if the maximum distance from 
its center to any vertex is R and the volume of that polyhedron 
is V, then the volumetric quotient of that polyhedron is 

⋅
3

3
4 R

V

π

 

Since the volume of the circumsphere is the upper bound on the 
volume of any polyhedron, the value of volumetric quotient is 
always between 0 and 1. Clearly, for a given sensing range R, 
the number of nodes required to cover a 3D space is inversely 
proportional to the volumetric quotient of the space-filling 
polyhedron used as a Voronoi cell.  So our problem reduces to 
the problem of finding the space-filling polyhedron that has the 
highest volumetric quotient.  

Finding the optimal polyhedron and proving its optimality 
seems to be very hard; indeed, some problems in 3D that have 
optimality criterion associated with them took centuries to 
prove (Kelvin’s problem is still open after more than one 
century, while Kepler’s conjecture was proven only recently 
after almost five centuries of efforts).  Since providing any 
rigorous proof is likely to be an intractable problem, we 
proceed in the following way. At first we provide some 
intuition why truncated octahedron is the most likely solution 
by drawing similarity between our problem and Kelvin’s 
conjecture. Then we choose three other different space-filling 
polyhedrons that have been used by other researchers in similar 
problems and which are reasonable contenders to the truncated 
octahedron. We provide detailed comparison among these four 
space-filling polyhedrons and we show that truncated 
octahedron has much higher volumetric quotient than others. 
Thus truncated octahedron requires much fewer nodes than the 
other shapes for coverage in a 3D network.  We also provide 
the placement strategies that create Voronoi cells having shape 
of our chosen polyhedron. Finally, the connectivity issue has 
been addressed by determining the minimum transmission 
radius needed to maintain connectivity among neighboring 
nodes in various placement strategies. 

4.1 Similarity with Kelvin’s Conjecture 
Kelvin’s problem is essentially finding a space-filling 
polyhedron that has minimum ratio of surface-area to volume. 
We claim that the space-filling polyhedron with the minimum 
ratio of surface-area to volume best approximates the sphere. It 
is well known that among all structures, the following claims 
hold: 

1. For a given volume, sphere has the smallest surface area. 
2. For a given surface area, sphere has the largest volume. 

From the above two statements, we claim the following. 
Suppose that any two space-filling polyhedrons P1 and P2 have 
equal volume.  If surface-area of P1 is smaller than the surface 
area of P2, then P1 is a better approximation of a sphere than P2. 
Again if P1 is a better approximation of a sphere than P2, then 
P1 has higher volumetric quotient than P2. Recall that among 
all shapes, sphere has the highest volumetric quotient and it is 
1.   
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So the solution to Kelvin’s problem is essentially the solution 
to our problem. Since until now, truncated octahedron is the 
best solution for Kelvin’s problem for the case of a single cell 
shape, we conjecture that truncated octahedron is the most 
likely solution to our problem as well. Note that, we will 
consider the uncurved version of the truncated octahedron 
because it is mathematically more tractable than the curved 
version and the difference between the curved version and the 
uncurved version is negligible. Because the argument given 
above is not rigorous enough, to increase the confidence in our 
solution, we choose other likely contenders to the truncated 
octahedron, and we provide comparison of the truncated 
octahedron with those other space-filling polyhedrons. 

4.2 Choice of Other Polyhedrons 
One can try to solve our problem using Kepler’s problem in the 
following way. Find the maximal packing of spheres and then 
take the Voronoi tessellation corresponding to the centers of the 
spheres. Take the radius of spheres such that the maximum 
distance from a center to any vertex of the corresponding 
Voronoi cell is the sensing range R. Kepler’s conjecture for 
sphere packing problem has been proven recently after five 
centuries of efforts, with the FCC lattice being the solution to 
that problem. The Voronoi tessellation of the FCC lattice is 
rhombic dodecahedron. So we choose rhombic dodecahedron 
as one of the contender to the truncated octahedron.  

The solution to our problem in 2D is the hexagon. The 
polyhedron that has hexagon as its cross section in all the three 
directions (x, y, and z) does not have space-filling property. The 
polyhedrons that have space-filling property and hexagonal 
cross section are rhombic dodecahedron and hexagonal prism. 
So we include hexagonal prism in our comparison as well. 
Finally, most simplistic choice is the cube and it is the only 
regular polyhedron that tessellates in 3D space. So we compare 
the truncated octahedron with the rhombic dodecahedron, the 
hexagonal prism, and the cube, and we show that the truncated 
octahedron has better volumetric quotient that the other 
choices, hence requiring fewer nodes. A rigorous proof that 
considers all possible space-filling polyhedrons are intractable, 
as is evident from the fact that Kelvin’s problem for the case of 
a single cell shape is still open for more than a century.  

4.3 Volumetric Quotient and Number of Nodes 
Required by Different Polyhedrons 

Here we calculate the volumetric quotients of our chosen 
polyhedrons and also provide a comparison of the number of 
nodes required when each of the polyhedrons is used as 
Voronoi cells.  

4.3.1 Cube 
If the length of each side of a cube is a, then the radius of its 
circumsphere is 23a . So the volumetric quotient of a cube is:  

0.36755.
3
2

2
3

3
4

3

3 ==⎟⎟
⎠

⎞
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⎝

⎛

π
π aa  

4.3.2 Hexagonal Prism 
The volumetric quotient of a hexagonal prism depends on its 
height. So at first we need to find out the optimal height of a 
hexagonal prism which has the largest volumetric quotient 
among all the hexagonal prisms. Suppose that the length of 
each side of the hexagon is a and the height of the hexagonal 
prism is h. Then the radius of circumsphere of the hexagonal 
prism is 422 ha + , the volume of the hexagonal prism is 

233 2ha   and the volumetric quotient is 
3

2
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If we set the first derivative of the volumetric quotient to zero, 
then we obtain that 
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So, the optimum value of h is 2a  and the optimum 
volumetric quotient for hexagonal prism is 

.477.0
4
6
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4.3.3 Rhombic Dodecahedron 

a

Figure 1. A Hexagonal Prism 

h 
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A rhombic dodecahedron can be constructed from two identical 
cubes in the following way, shown in Figure 2. Take one cube 
and cut it into six equal pyramids such that the base of each 
pyramid consists of one face of the cube. Take another similar 
cube and place each pyramid on the cube, such that the base of 
the pyramid is on one side of the cube. This creates a rhombic 
dodecahedron. If each side of the two original cubes is a (i.e., 
length of each edge of the rhombic dodecahedron is 23a ), 
then total volume of the rhombic dodecahedron is 2a3. The 
center of the rhombic dodecahedron is the center of the second 
(intact) cube. Eight vertices of the intact cube form eight 
vertices of the rhombic dodecahedron and their distance from 
the center is the radius of the circumsphere of the cube, equal to 

23a . 

 
The other six vertices of the rhombic dodecahedron are formed 
by the six pieces of the first cube. Distance from the center of 
second cube to its surface is 2a  and the height of each of the 
six pyramids is 2a . So the distance from the center of 
rhombic dodecahedron to each of these six vertices is a, and 
this is also the radius of the circumsphere of the rhombic 
dodecahedron. So the volumetric quotient of rhombic 
dodecahedron is 477.046

3
42 33 == ππ aa , which is exactly 

the same as that of the hexagonal prism.  

4.3.4 Truncated Octahedron 
Truncated octahedron has 14 faces, of which 8 are hexagonal 
and 6 are square faces, and the length of the edges of hexagons 
and squares are the same. Suppose that the length of each edge 
is a.  The distance between two opposite hexagonal faces is 

a6  and the distance between two opposite square faces is 
a22 . The radius of the circumsphere of the truncated 

octahedron is 210a . The volume of the truncated octahedron 
is 328 a  and the volumetric quotient is 

.68329.0552410
2
1

3
428

3
3 ==⎟

⎠
⎞

⎜
⎝
⎛ ππ aa  

4.3.5 Comparison 
 Among all the polyhedrons considered, the truncated 
octahedron gives the best volumetric quotient. We can also 
compare the number of nodes required by each type of 
polyhedron. The number of nodes required by the cube is 
0.68329/0.36755=1.859 times that of the truncated octahedron. 
For the hexagonal prism this value is 0.68329/0.477=1.4325 
and for the rhombic dodecahedron it is 0.68329/0.477=1.4325. 
Table I summarizes the results. 

It is interesting to see how this result relates to the 2D 
networks. Hexagon has the optimal tiling in 2D. The ratio of 

Figure 3. Truncated Octahedron. 

Figure 2. Construction of a rhombic dodecahedron 
from two identical cubes 
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the area of a hexagon and the area of its circumcircle is 
.82699.0233 =π  It is not difficult to see why the quotient in 

3D is lower than that of 2D. In 1D tiling, we can achieve 
quotient of 1 by using straight line tiling (actually there is  only 
one possible tiling in 1D). One can observe that the 
proportional loss in the value of quotient remains roughly the 
same as we go to the higher dimensions. If we assume that the 
truncated octahedron is indeed the best shape for 3D tiling, then 
its quotient is 82.623% (0.68329/0.82699=0.82623) of the 
quotient achieved by hexagon in 2D, which is again 82.699% 
of the quotient of 1D tiling. 

 
Table I: Volumetric Quotient of Different Types of Space-filling 

Polyhedrons 
Polyhedron Volumetric 

quotient 
Number of nodes 

needed 
Compared to 

truncated octahedron 
Cube 0.36755 85.9% more 
Hexagonal Prism 0.477 43.25% more 
Rhombic 
Dodecahedron 

0.477 43.25% more 

Truncated 
Octahedron 

0.68329 same 

4.3.6 Explanation of Why Truncated Octahedron is 
Better 

Cross sections of the rhombic dodecahedron and the hexagonal 
prism are hexagons, but the vertices of this hexagon are not on 
the great circle of the circumsphere. As a result, the radius of 
the hexagon is smaller than the sensing range. In the case of 
truncated octahedron, the two dimensional tiling is by octagons 
that lies on the great circle. But 2D tiling by regular octagon 
has square gaps (See Fig. 4). These square gaps are filled in 3D 
by cells from one level above and one level below. As a result, 
for a given sensing radius, truncated octahedron requires fewer 
cells to cover a given 3D space. 

4.4 Placement Strategies 
In this subsection, we provide strategies (algorithms) to 
pinpoint the location where the nodes should be placed such 
that the Voronoi cells are our chosen space-filling polyhedrons. 
We take an arbitrary point (preferably the center of the space to 
be covered) as an input and place a node there. Then we find 

the locations of other nodes relative to this center node. So the 
input to our algorithm is sensing range R and the co-ordinates 
of the point, say (cx, cy, cz), which act as a seed for the growing 
lattice.  Distributed versions of the algorithms can use the 
location of the leader node as the seed. 

4.4.1 Cube 
In each direction parallel to the x, y, and z axes, the distance 
between any two neighboring nodes is .32R  If a node is 
placed on each integer coordinate of the following coordinate  
system then we obtain cube tessellation. Suppose that the 
coordinate system is defined by three axes: u, v, and w, which 
are parallel to the x, y, and z axes, respectively.  The center of 
the coordinate system is (cx, cy, cz) and unit distance in each 
axes is 3/2R . So a node at (u1, v1, w1) in the new co-ordinate 
system should be placed in the original x,y,z-co-ordinate system 
at  

⎟
⎠

⎞
⎜
⎝

⎛
×+×+×+

3
2,

3
2,

3
2

111
RwczRvcyRucx .        (1) 

In general, real distance cbd12 between any two points with 
coordinates ),,( 111 wvu  and ),,( 222 wvu  in the u,v,w- 
coordinate system is 

2
12

2
12

2
1212 )()()(

3
2 wwvvuuRdcb −+−+−= . 

In order to illustrate how above information can be used to 
place nodes efficiently, suppose that we want to cover a volume 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

RRR 2
3100

2
3100

2
3100  with a center at ),,( czcycx . 

Then the following pseudo-code segment could be used: 
For u=-50 to 50 do 
  For v=-50 to 50 do 
    For w= -50 to 50 do 

      put_node_at ⎟
⎠

⎞
⎜
⎝

⎛
×+×+×+

3
2,

3
2,

3
2 RwczRvcyRucx  

To save space, from now on, rather than providing formal 
pseudo-code for all polyhedrons, we only provide all necessary 
information about the node placement. 

4.4.2 Hexagonal Prism 
Suppose that the hexagons are parallel to the xy plane. Then the 
distance between neighboring nodes along the z-axis is .32R  
Note that the optimal height of the hexagonal prism is 

2 times the radius of the hexagon. If a node is placed at every 
integer coordinate of the following coordinate system then we 
have hexagonal prism tessellation. The axis v is parallel to the 
axis y. The angle between the u and the v axes is 060 in the 
positive half, and the unit distance along each axis is equal 
to 2R .  So the angle between the axis u and the axis x is 030 , 
and the angle between the axis u and the axis y is 060 . The w 

Figure 4. Octagon does not tile a plane. 
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axis is orthogonal to the uv plane and the unit distance along  
the w axis is 32 R . Thus the axis w is parallel to the axis z. 
Finally, the center of the u,v,w-coordinate system is at (cx, cy, 
cz) point of the x,y,z-coordinate system. 

 A node at (u1, v1, w1) in the new u,v,w-coordinate system 
should be placed in the original x,y,z-coordinate system  at 

⎟
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Real distance between two points with coordinates 
),,( 111 wvu and ),,( 222 wvu in the uvw-coordinate system is  
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4.4.3 Rhombic Dodecahedron 
If a node is placed at every integer coordinate of the following 
u,v,w coordinate system then we get rhombic dodecahedron 
tessellation. The axes u and v are parallel to the axes x and y, 
respectively. The angle between the u and the w axis is 060 in 
the positive half and the angle between the v and the w axes is 
also 060 in the positive half.  The unit distance along each axis 
is 2R .  The angle between the w axis and the z axis is 045 . 
Finally, the center of the u,v,w-coordinate system is at the (cx, 
cy, cz) point of the x,y,z-coordinate system.  

 A node at (u1, v1, w1) in the new u,v,w-coordinate system 
should be placed in the original x,y,z-coordinate system at 
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The real distance between two points with coordinates 
),,( 111 wvu and ),,( 222 wvu in the u,v,w-coordinate system is  
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Note that in the case of space-filling by identical rhombic 
dodecahedron, the distance between the centers of any two 
neighboring rhombic dodecahedrons is the same. However, this 
is not the case for the hexagonal prism or the truncated 
octahedron. 

4.4.4 Truncated Octahedron 
If a node is placed at every integer coordinate of the following 
u,v,w-coordinate system then we get truncated octahedron 
tessellation. The center of u,v,w-coordinate system is at the (cx, 
cy, cz) point of the x,y,z-coordinate system. The axes u and v 
are parallel to the axes x and y, respectively. The unit distance 
in both the u and v axes is 54R . The w axis is such that 

( ) 01 73.5431cos ==∠=∠ −vwuv  in the positive quadrant and 
the unit distance in w direction is 532 R . The axis w creates 
an angle of ( ) 01 73.5431cos =−  with the z axis. 
A node at (u1, v1, w1) in the new u,v,w-coordinate system 
should be placed in the original x,y,z-coordinate system at 
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After simplifying we obtain 
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The real distance between two points with coordinates 
),,( 111 wvu and ),,( 222 wvu in the u,v,w-coordinate system is 
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Location of any node can be found by using equations (1), (2), 
(3) and (4) for the cube, the hexagonal prism, the rhombic 
dodecahedron, and the truncated octahedron placement 
strategies, respectively. 

4.5 Transmission Range vs. Sensing Range 
The required minimum transmission range to maintain 
connectivity among neighboring nodes depends on the choice 
of the polyhedron. When the cube is chosen, the distance 
between two neighboring node is .3/2R Thus the 
transmission radius must be at least 1.1547R. If the hexagonal 
prism is used, then the transmission range must be at least 

RR 4142.12 =  to maintain connectivity with the neighbors 
along the axes u and v, and the transmission range must be at 
least RR 1547.13/2 =  for communication along the w-axis. In 
the case of the rhombic dodecahedron, the minimum 
transmission range required is RR 4142.12 =  for 
communication with any neighbor. Finally, if the truncated 
octahedron is used, then the transmission range must be at least 

RR 7889.15/4 =  along the axes u and v, and the minimum 
transmission range is RR 5492.15/32 =  along the axis w. 
The results are summarized in Table II. 
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Table II: Minimum Transmission Range for Different Polyhedrons 
Minimum Transmission Range Polyhedron 
u-axis v-axis w-axis 

Max of Min 
Transmission 
Range 

Cube 1.1547R 1.1547R 1.1547R 1.1547R 
Hexagonal Prism 1.4142R 1.4142R 1.1547R 1.4142R 

Rhombic 
Dodecahedron 

1.4142R 1.4142R 1.4142R 1.4142R 

Truncated 
Octahedron 

1.7889R 1.7889R 1.5492R 1.7889R 

5.  SIMULATION 
We wrote our simulation in C using OpenGL and  
implemented the strategies provided in subsection 4.4. The 
graphical output shows that placing nodes according to 
equations (1), (2), (3), and (4) indeed covers the whole space, 
while the Voronoi cells have corresponding shapes. Our 
simulation outputs are animation videos from different 
viewing perspective that gives the viewer a clear 
understanding of the placement strategies. Unfortunately it is 
difficult to get a good understanding from still images (i.e., 
snapshots taken from the animation) as provided in this paper. 
The program source codes and executable files are available 
at http://www.cs.cornell.edu/~smna/3DNet/ so that interested 
readers can download and execute the programs.  

Fig. 5 shows the placement of the nodes according to our 
proposed algorithm based on the truncated octahedron model 

in a volume where in each dimension the length is 20m and 
the sensing range is R=5m. Each black dot represents a node. 
A truncated octahedron having radius 5m is drawn around 
each node in order to show that our placement strategy indeed 
provides 100% coverage. Axes x, y, and z are represented by 
red, green and blue lines, respectively, in the figures to give 
the reader a perspective about the actual placement. Fig. 6  
offers a better view, because it has a smaller number of nodes. 
These figures show node placement assuming very large 
network as we ignored the boundary effect. Extra nodes 
required to fill in the gaps in the boundary may affect the 
choice of the polyhedron for networks where the sensing 
range is not very small as compared to the network size. 
However, for a reasonably large network the boundary effect 
is negligible.  
 
Fig. 7 (b) shows that the boundary of a network consisting of 
20x20x20 nodes is very much planar. Fig. 8 shows the 

placement of nodes according to the rhombic dodecahedron 
model.  Placement of nodes according to the cube and the 
hexagonal prism models are shown in Fig. 9 and Fig. 10, 
respectively 

Figure 6. Truncated Octahedron placement 
strategy. 3D space is 15mx15mx15m and 
R=10m. 

Figure 5. Truncated Octahedron placement 
strategy. 3D space is 20mx20mx20m and 
R=5m. 
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6. DISCUSSION AND FUTURE WORK 
This work is applicable to both fixed and mobile network. If 
the nodes are fixed, then the solution should be used during the 
initial node deployment. If the nodes are mobile, then the nodes 
should dynamically compute their desired locations in a 
distributed fashion and moved to the appropriate location to 
achieve the above stated goals.  

(b) 

Figure 7. Boundary of a network consisting of (a) 
8x8x8 nodes (b) 20x20x20 nodes when the placement 
strategy is truncated octahedron. Note that camera 
positions are different in (a) and (b). 

(a) 

Figure 9. Node placement based on cube model. 

Figure 10. Hexagonal prism placement strategy.  

Figure 8. Rhombic dodecahedron placement 
strategy. (a) 20mx20mx20m network and R=5m 
(b) 15mx15mx15m network and R=10m. 

(a) 

(b) 
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A distributed version of the placement strategies can be devised 
in the following way. At first, the nodes choose a leader by any 
standard leader election algorithm [20]. Then the structure can 
grow relative to the location of the leader. For example, the 
location of the leader, say (cx,cy,cz), can be used as the center 
of the u,v,w-coordinate system and then the same placement 
strategy described in this paper can be used by other nodes to 
determine their appropriate location and move accordingly. The 
placement of nodes can grow like a lattice, using the location of 
the leader as the seed. This approach works best if the nodes 
know their location precisely; e.g., using GPS-like system. 
However, local estimation of distances to neighbors could also 
be used if the nodes can reach a consensus on the frame of 
reference (x,y,z-axes). For networks in an ocean or in the 
atmosphere, a good frame of reference can be as follows: the 
xy-plane is parallel to earth surface and the y-axis is parallel to 
the axis going through earth’s north-south pole with north-pole 
in the positive direction. Compass-like instrumentation can be 
used to find this direction by using earth’s magnetic field. 
Finally, the z-axis can be taken as perpendicular to the xy-plane 
with the positive direction away from the earth surface pointing 
to the space. This approach works if the network is not very big 
in the x- and the y-directions, so that the earth surface can be 
approximated by a plane. A much simpler solutions for this 
frame of reference problem are likely to exist. 

The deterministic approach of finding node placement in this 
paper assumes that nodes can change location (e.g., 
surveillance by underwater autonomous vehicles in the ocean 
or unmanned aerial vehicles in the air). If a node fails to move, 
other nodes can adjust their locations to fill the gap created by 
the node failure.  However, in the case of 3D space monitoring 
by inexpensive sensor nodes that cannot adjust their location or 
don’t know their location precisely, many nodes can be 
randomly distributed in the 3D space.  If the network is 
constructed in the space, there will be no gravitational forces, 
and the nodes will stay in their initial location with minimum 
adjustment needed. In the ocean the nodes can be placed in 
different heights, tethered,to the ocean bottom and using floats 
to maintain their required depth [1]. In such a network, energy 
is a major issue and choosing a subset of nodes that remain 
active at any time while maintaining sensing coverage and 
connectivity is an important problem. Similar problem in 2D 
has been addressed in [36]. In 3D, the solution can be found 
using the truncated octahedron placement strategy provided in 
this paper as a basis and then by trying to tweak it to 
accommodate new constrains. 

In 2D, routing based on location information has been explored 
in [18], [3], [4], [16], and [14]. In a 3D network, if placement 
of the nodes follows any of our placement strategies, then the 
locations of all other nodes are instantly available from our 
u,v,w-coordinate system. If the u,v,w-coordinate of each node is 
used as its ID, then possible routes between two nodes can be 
easily determined. Location-based routing protocols can exploit 
this location-ID information.  
 

7. CONCLUSION 
In this paper, we investigated the coverage and the connectivity 
issues in three-dimensional networks, where nodes are placed 
in a 3D space, unlike most current works that assume the nodes 
are placed on a 2D plane. Transition from 2D to 3D is not 
always easy, since many problems in 3D are significantly 
harder than their 2D counterparts. Many problems that are 
trivial to solve in 2D turn out to be major research challenges in 
3D that remain unsolved even for centuries. In 2D cellular 
networks, hexagonal tiling is used to place base stations, such 
that the area covered is maximized with some number of base 
stations with a fixed radius. The solution of similar problems in 
3D is not important for cellular networks since the radius is 
usually on the order of kilometers. However, the problem is 
important for other scenarios where nodes with limited sensing 
range are to cover a vast 3D space. Using century old Kelvin’s 
conjecture, we showed that the truncated octahedral tessellation 
of 3D space is the most plausible solution for this problem. We 
defined a metric called volumetric quotient that is a measure of 
the quality of the competing space-filling polyhedrons in our 
problem. The truncated octahedron turns out to be the best 
choice with volumetric quotient of 0.68329, which is much 
better than the volumetric quotients of all the other possible 
choices (both optimized hexagonal prism and rhombic 
dodecahedron have volumetric quotient of 0.477, while cube 
has just 0.36755). The number of nodes required for coverage 
of a large 3D space depends on the shape of a cell created by 
the Voronoi tessellation of that space by those nodes. If the 
shape of each cell is a space-filling polyhedron with higher 
volumetric quotient, then the number of nodes is smaller. For 
example, the number of nodes for the rhombic dodecahedron or 
the hexagonal prism placement requires 43.25% more nodes 
than the truncated octahedron placement. After finding the 
optimal placement strategy, we examined the connectivity 
issues and we found that the best placement strategy (the 
truncated octahedron) requires the transmission range to be at 
least 1.7889 times the sensing range in order to maintain full 
connectivity. We believe that the basic 3D results provided in 
this paper will be useful in many ways for research and 
implementation of future three-dimensional networks. 
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