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ABSTRACT 
This paper describes a novel approach for collaboration in WSN 
that substantially reduces energy expenditure in the network by 
exploiting spatial correlation among nodes. The idea behind the 
scheme is that the whole range of measurements is partitioned into 
individual intervals, with each interval assigned to a unique subset 
of nodes. Each node needs only to determine whether its 
measured value falls within its assigned interval and transmit a 
binary decision to the sink. The base station, after gathering the 
responses of sufficiently large number of nodes, calculates the 
actual measurement value. This division of responsibilities across 
the network nodes enables our scheme to utilize collaborative 
transmissions by spatially clustered and highly correlated nodes. 
While maintaining a similar distortion level, the proposed scheme 
achieves in the worst case close to a factor of 2 in energy savings, 
compared to the standard approach of transmission of the 
measurement by a single node. The results are derived 
analytically, evaluated numerically, and confirmed by simulations.  

Categories and Subject Descriptors 

C.2.1 [Computer Communication Networks]: Network 
Architecture and Design - Network communication, 
Wireless communication, Sensor Networks;  

Keywords 

wireless sensor networks; collaboration; division of 
responsibilities; energy efficiency; reporting; 

1. INTRODUCTION 
Along with listening to the wireless channel, one of the 
main causes of nodes’ energy depletion in Wireless Sensor 
Networks (WSN) is radio transmission. Correspondingly, 
numerous schemes operating at various network layers have 
been proposed to reduce the amount of required 
transmissions and thus achieve more energy-efficient 
network ([1], [7], [8], [9] and references therein). Among 
the main strategies to this end is the elimination of 
redundant transmissions by nodes that measure correlated 
values of the same phenomenon. This approach drastically 
reduces the amount of energy consumed by radio signaling, 
especially in dense sensor-nodes deployment with high 

spatial correlation of observations [1]. Indeed, observed 
phenomena (e.g., temperature, magnetic waves, bridge 
vibration, etc.)  are often location dependent; i.e., sensor-
nodes in close spatial proximity of one another measure 
similar and highly correlated values. 

Typically, measurements of the phenomenon by only a 
fraction of the network nodes would suffice for a reliable 
(low level of distortion) measurement. In the context of a 
network communication scheme, the problem of how to 
remove as many of the spatially correlated nodes as 
possible, while still maintain a reliable measurement within 
some constraint of quality of service has been tackled in 
[1], which formally casts the problem as:  

                   { }* arg min ( ) QoS
M

M D M D= ≤ ,     (1) 

where M is the number of reporting nodes, ( )D M  is a 

distortion metric, and QoSD is the maximum distortion 

satisfying the quality of service requirements.  
In a sense, the reduction in the number of transmitting 

(i.e., reporting) nodes is the sources of energy savings, and, 
therefore, minimizing M is viewed as minimization of the 
energy spent on transmissions (e.g., [1], [10]). However, 
reducing the number of reporting nodes does not always 
lead to minimization of energy requirements, as we 
demonstrate in this paper. 

We consider here a practical scheme that attempts to 
minimize the energy spent via reducing the number of bits, 
b, sent from the M sensor nodes to a base station (BaS), 
while exploiting spatial correlation of observations, while 
maintaining an acceptable level of distortion of. More 
formally our goal is to determine 

{ }* arg min ( , )
QoS

b

b D b M D=    ≤ .      (2) 

The main original contributions of this paper towards 

this goal can be summarized as follows: 

• we develop a novel reporting scheme for WSN, 

dubbed C, exploiting collaborative signaling (rather than  

silencing) of spatially correlated nodes;  

•  we show analytically, numerically, and via 

simulation that the scheme C achieves at least close to a 

factor of 2 energy savings along with similar level of 

measurement distortion compared to the usual approach, 

dubbed U, of silencing spatially-correlated nodes. 

1.1 The Intuition behind the Solution 
Suppose time is split into time-intervals, referred here to as 

rounds, and let G be a Cluster of Highly Correlated Nodes 
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(CHCN), all measuring the value of the same phenomenon, 

for instance temperature, at any given round. To minimize 

the energy spent on signaling, we’d like to send as few bits 

as possible from the CHCN to the BaS. According to the 

usual approach to redundancy elimination (scheme U ) only 

one of the nodes in the CHCN transmits the measurement;  

i.e., M*=1 in (1). In our collaborative scheme, C, each node 

in G is responsible to determine only if the measurement 

falls within its assigned region (typically a range) of 

temperatures. Given that the temperature To is measured by 

the nodes in G in round J, exclusively all the nodes whose 

“region of responsibility” includes To send a signal, “1”, to 

the BaS, as shown in Fig. 1. The BaS identifies the set of 

transmitting nodes by the received signals. Note that the set 

of nodes responsible for each distinct T
o is unique (see 

discussion in Section 3). Hence, identifying the set of nodes 

“responsible” for To allows recovery of the value of To.  

Suppose in the example in Fig.1, the measured 

temperature can take the following values: 0o, 1o, …, 19o. 

Assume a report of the temperature needs to be sent in each 

round.1 According to our scheme C, the 20 different 

temperatures are associated with 6

320 C = subsets of three 

nodes chosen from the 6 nodes in G. At each round only 3 

bits are sent by the appropriate three nodes. In comparison 

scheme U would require a single node from G to send 

log 20 5=   bits, so that To is received at the BaS.  

In essence, the intuition behind scheme C is based on 

the “combinatorial explosion” formula characterizing the 

number of subsets of a set, allowing large number of values 

(e.g., of temperatures) to be mapped uniquely to subsets of 

nodes in G. In the C scheme, bits are not sent to represent a 

measurement itself, but rather to indicate a node 

membership in a subset of G; i.e., a bit is sent to the BaS by 

each member of the subset. The subset consists of the nodes 

“responsible” for the particular measurement, and we show 

that even in the worst case the number of bits sent by such 

responsible nodes amounts to significant energy savings in 

comparison with the scheme U.  

1.2 Related Work 
Accounting for spatial correlation to eliminate the 

transmissions of redundant nodes, as per the scheme U 

discussed above, has been considered in [1] and in [10]. 

Pattem et al. ([11]) suggest that cluster-based topologies 

could be rather efficient, again, in eliminating redundant 

transmissions in the context of spatial correlation aware 

routing. In contrast, our scheme C utilizes transmission 

across the spatially correlated nodes.  

In [12], [15], and [16] the authors exploit spatial 

correlation to decrease nodes’ energy consumption, and 

correspondingly introducing predictive probabilistic 

                                                           
1 That is, the reporting schemes do not utilize compression of 

measurements from multiple rounds. Of course, both schemes C 
and U can easily be extended to further benefit from aggregation 
of multiple measurements and low-duty cycling.  

phenomenon modeling, adaptive data sampling and varying 

precision of phenomenon estimates based on node distance 

to the BaS. However, none of these techniques utilize the 

principle of “responsibility division” inherent in the scheme 

C and allowing the scheme to benefit from collaborative 

reporting among the correlated nodes. 

Distributed source coding, joint-routing and 

compression frameworks for WSN have been proposed in 

the literature attempting to solve a problem reminiscent in 

spirit to (2). For instance, source compression based on 

Slepian-Wolf coding has been studied in [13] and [14], 

motivated by the goal of reducing energy consumption in 

WSN by reducing the number of bits sent. However, in 

contrast, as shown below, the scheme C utilizes a simple 

trade off between the number of nodes in a CHCN and the 

amount of bits sent utilizing the division of responsibility 

across the nodes. 

2. THE SYSTEM MODEL 
Here we concentrate on the model and assumptions for a 

single Cluster of Highly Correlated Nodes (CHCN). This 

model is extended later in section 5 to account for multiple 

CHCNs.  

Let G be a set of sensor-nodes in a single CHCN. We 

assume that nodes are coarse-grained synchronized at a 

level of a round. Suppose all nodes in G have IDs: 0, 1, …, 

|G|-1, and sense a single modality of the same observed 

phenomenon. Furthermore, all nodes in G are deployed in 

close spatial proximity with one another, thus sensing the 

same state of the phenomenon during each round; a dense 
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Figure 1: Responsibility division. All nodes in G sense the same 

temperature T.  Only nodes 2, 1, and 0 are responsible for 0o and 

signal in round 1; nodes 4, 3, and 1 signal for 9o in round 2, etc. 

At each round the BS identifies each transmitting node by its 

received signal and reconstructs the set of responsible nodes in 

this round. Each temperature value is mapped to a unique set of 

responsible nodes and the BS recovers the measurement. 



WSN deployment is assumed. In this paper, we consider a 

single hop communication with a BaS where all nodes have 

transmission radius r. 

Typically, the maximum and the minimum measurable 

values of the observed phenomenon are known prior to 

network deployment; these values may be dictated by the 

limitations of sensors on board of the nodes or simply by 

the nature of the observed phenomenon. Thus, we assume 

that the phenomenon takes on values from the interval 

[ ]min max,ψ ψΨ =  . The precision of a sensor-node’s 

measurement (e.g., 1o) is denoted by ε . Then, Ψ could be 

described as a sequence T of intervals given by 

([ minψ , minψ + ε ),[ minψ + ε , minψ +2 ε ), …,[ minψ +n ε , maxψ ]), 

where T is indexed by the sequence of natural numbers 

L={0, …, n-1}. 

3. DIVISION OF RESPONSIBILITY 
As noted above we’d like each node in G to signal the BaS 

only if it measures one of the values in its associated 

responsibility domain (RD). We denote the RD of node i by 

RDi. Here RDi is simply a subset of the sequence T above 

(e.g., values of temperature). Furthermore, as noted, the 

RDi’s need to be associated with nodes under the constraint 

that each element, ι , in T is mapped only to one unique 

subset, Aι , of nodes in G. If that constraint is satisfied the 

BaS can infer the measurement that triggered the 

transmission of the particular set of nodes’; i.e., the 

responsibility association is a one-to-one and onto function. 

The following definition formalizes this statement. 

DEFINITION 1: A valid responsibility association (VRA) is a 

set function ( ) : 2GA Tιϖ → such that for any , ' Tι ι ∈ : 

'A Aι ι =  ⇔  '( ) ' ( )A Aι ιϖ ι ι ϖ =  =  = . 

Notice that RDi’s are easily obtained given the definition 

of a VRA. If node i is within a subset of G that is associated 

with element ι according to the VRA, then i is responsible 

for ι and ι ∈ RDi, or, RDi ={ : ( ) }T i A Aι ιι ϖ ι∈ ∈ ∧  = . 

3.1 The Combinatorial VRA 
In the example of Fig. 1, we have hinted that an intuitive 

responsibility division across nodes in G could result from 

mapping T to all distinct m-subsets chosen out of K nodes 

in G. That would allow the BaS to infer a measurement with 

only m signals sent from G. Next, we show such a mapping 

is a VRA and describe how to obtain it efficiently. We 

utilize the following lemma stating that there exists an 

inherent 1-to-1 relationship between every natural number 

and a unique m-subset chosen out of the K elements. 

LEMMA 1: For every number k∈� , ∃ a unique set  

{
m

n , 1m
n − , …, 1n }, 

i
n ∈� and 

m
n > 1m

n − > … > 1n ≥ 0, 

such that for any m ∈� , where 
m

m n≤  

1 1

1 1 1
...m m i

mn n nn

m m ii
k C C C C−

− =
=  + +  +  = ∑  (3) 

PROOF: See p. 6 in [3].□ 

Now, let Λ  be a collection of all distinct sets 

1 1such that , , ..., }
m m

A G A n n n−⊂     = {    , where ni’s are the 

node IDs and 
m

n > 1m
n − > … > 1n ≥ 0.  

Consider the function ( )Aϖ =
1

i
m n

ii
C

=∑ =k, 

where k L∈ .Note that the latter sum has the same properties 

(and is in fact the same) as the sum given in (3) of Lemma 

1. Also, assume |G|=K ≥ nm. (This is true since max(nj) ≤ K.) 

THEOREM 1: ( )Aϖ as defined above is a VRA. 

PROOF: The proof is trivial and follows from uniqueness 

in Lemma 1. Details are omitted due to space limitations. □ 

That is, defined as above, ( )Aϖ  maps uniquely all m-

subsets, Aι , of nodes in G to a value k L∈  and hence to a 

value ι  (e.g., temperature) in T. ( )Aϖ  is dubbed 

Combinatorial Responsibility Association (CRA).   

The communication scheme defined by the CRA is very 

similar to that described in Fig. 1. Suppose in round J all 

nodes in G measure a value ι  (and k∈ L indexes the 

interval to which ι  belongs). How would a sensor-node j in 

G know whether ι ∈ RDj? The simple Greedy Algorithm 1 

could be run by j upon sensing ι . The algorithm is fairly 

efficient and terminates in time O(m2). Given input k and m 

(the number of responsible nodes) the algorithm outputs the 

set 1 1{ , , ..., }
m m

A n n nι −=     containing the IDs of all m nodes 

responsible for the measured value ι , where 
m

n > 1m
n − > … 

> 1n ≥ 0. If node j is an element of the output Aι , then 

ι ∈ RDj and j needs to signal to the BaS by transmitting “1”. 

Each of such m nodes transmits “1”,2 and after receiving the 

m “1” bits and determining the identities (IDs) of the nodes 

responsible for the measurementι , the BaS recovers ι  by 

computing/approximating numerically the sum 
1

i
m n

ii
C

=∑ . 

3.1.1 An example of a CRA run 
Consider a single-round run of the collaborative scheme 

C utilizing CRA. For instance, at round J, ι = 5o, k = 5, and 

                                                           
2 If some readings ι  are more likely than others, Algorithm 1 can 

be easily extended to allow a round-robin assignment of nodes 
to ι in order to improve the energy balance of the CHCN. 

 Algorithm 1 Map k L∈  to m-element subset A of G 
 

Input: k, m 

Output: A = {
m

n , 1m
n − ,… , 1n } 

Algorithm: 

1:   A ← {∅} 

2:   while m > 1 do 

3:      nm ← maximum integer such that mn

m
C k≤       

4:      k ← k   – mn

m
C   

5:      m ←  m – 1 

6:      A ←  A ∪ nm  



m=3. The IDs of the nodes that are responsible for ι  are 

found using Algorithm 1, whose output is n3=4, n2=2, and 

n1=0. The nodes 4, 2, and 0 signal the bit “1”. The base 

station receives (141210) and determines Aι ={4,2,0}. Then 

the BaS computes the correct measurement 
3 4 2 0

3 2 11

in

ii
C C C C

=
= + +∑ =5. 

3.1.2 Minimum Density of Nodes in G 
For the CRA to work, every ι  has to be mapped to a 

distinct set of responsible nodes, namely 

| | | |TΛ  ≥      (4) 

The minimum number, K*
, of nodes in G needed to satisfy 

this condition is discussed next. 

Let K = |G| and observe that | |Λ = K

m
C . Suppose for 

any fixed K one would like to maximize K

m
C by varying m, 

to check if (4) could be satisfied given this K.  K

m
C attains 

its maximum at K = 2m. Hence, we are interested in the 

values of K (respectively m) for which K

m
C = 2m

m
C | |T≥ .  

Using Sterling’s approximation one obtains that 

log( ) / 4 log( ) / 2 1/ 2m m I≥ + + . Noting that for practical 

values of m (up to 16 nodes3), log( ) / 4m <1 

log(| |) / 2 1.5m T ≥ +         (5) 

Hence, K* = ( )2 * log(| |) / 2 1.5T +   . Note that higher values 

of K allows lower values of m, while still keeping (4) 

satisfied. |G|=K* represents the worst case in CRA operation 

if the goal is to minimize, m, the number of bits sent by 

responsible nodes in each round. 

4. ENERGY EFFICIENCY OF CRA 
In each round J, the scheme C employing CRA requires the 

transmission of m bits. The energy consumed per bit 

transmission, Eb, depends on the modulation scheme 

employed. Also, each node that sends a bit needs to be 

identified by the BaS. Standard Direct Sequence Spread 

Spectrum (DSSS) modulation can be employed. (A variant 

of DSSS is part of the 802.15.4 standard; a practical DSSS 

architecture for low-powered WSNs has also been 

discussed in [17].) With DSSS, node j transmits on a multi-

access channel a signal (bit) { 1,1}
j

b ∈ −  multiplied by 

unique pseudo-noise (PN) sequence of length n chips [4]. 

The energy Eb is spread over the n chips. Via a bank of |G| 

matched filters, the BaS determines the identity of node j 

and the identities of the rest of the responsible nodes based 

on their associated PN sequences during the PN sequence 

acquisition stage of DSSS [see 4, Ch. 3].  

Suppose given T and |G|=K
*, C operates in its worst 

case scenario in terms of the number of signals m. Here, m 

= K
*
/2 = log(| |) / 2 1.5T +    from (5). In contrast, the 

conventional scheme U, which utilizes single-user DSSS 

                                                           

3 For m = 16, 
K

m
C = 

2m

m
C ≈  6*108 distinctι ’s can be mapped. 

techniques to modulate its signals antipodally, would 

require log(| |)b T=     transmissions with consumed energy 

per bit of Eb. 

Assume U and C are operating under the same total 

energy budget of E. In every round J the schemes need to 

transmit a measurement to the BaS. The available budget E 

will last /( )
U b

E E bτ =  rounds under U and /
C b

E E mτ =  

rounds under C: /
C U

τ τ ⇔ log(| |)]
C U

Tτ τ = 2 /[1+ 3/ . Thus, 

scheme C is close to 2 times as efficient as U for practical 

values of | T | in the worst scenario of its operation: |G|=K
*.  

5. MULTIPLE CLUSTERS 
Until now, we have only considered collaboration across 

nodes within single cluster. However, the scheme C can 

also be readily be applied to multiple CHCNs in a WSN 

deployed throughout a larger area. In such a case, the 

observed phenomenon is now location-dependent, which 

needs to be accounted for in our system. 

5.1 Phenomenon Model 
In the model introduced next, the WSN consists of N 

nodes placed in an event area A according to some spatial 

distribution Γ . Here, temporal correlation in the observed 

phenomenon’s nature id not considered. Thus, the 

phenomenon can be modeled as a discrete memoryless 

point source: S �  {S[l]}l  , where {S[l]}l is assumed to be a 

sequence of i.i.d. Gaussian random variables and l∈� . 

According to a spatial correlation model, the source 

gives rise to a space-time random field s(l, x, y) defined in 

the l-th round as {Sj[l] = s(l, xj, yj): (xj, yj)∈A}. The 

instances Sj[l] are modeled as joint Gaussian random 

variables (JGRV). Considering a single discrete-time 

interval sample, without loss of generality, the time index l 

can be dropped and the JGRV characterized as follows: 

[ ] 0
j

E S  = , 2[ ]
j S

Var S σ = , 2

, [ ] /
i j i j S

E S Sρ σ= , 

where ,i j
ρ is the correlation coefficient of the JGRV.  

Often physical phenomena’s values at different points in 

space are related via some function of the distance between 

them. Formally, this function is represented by a 

parameterized spatial covariance model which reflects the 

nature of the specific phenomenon and determines the 

correlation coefficient. Here, the model is assumed to be the 

Power Exponential4 since different phenomena monitored 

by sensor networks could be approximated that way ([1]): 

( )
2

1( / )

,i jK e
θθ

θ ρ
−  − 

 − = =
i j

i j .            (6) 

At any round, a sensor node j with coordinates  

(xj, yj) obtains a distorted measurement, Xj, of Sj due to 

inherent sensing noise/imprecision Wj , where Wj ~ N(0, 
2

W
σ ). Thus a node’s measurement is given by Xj = Sj + Wj.  

The Wj’s are assumed to be i.i.d.  

                                                           
4 The following discussion is independent of the specific 

correlation function of choice. 
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Figure 2a, b and c: 

distortion obtained by U 

and C  for 
W

σ =0.25, 0.125, 

0.05 respectively; 
Sσ = 5  

throughout. x-axis: number 

of representative nodes, M;   

y-axis: distortion. 
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W
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x
D M b

M M

σ
σ ρ ρ

σ= = =

   
 = − − + +   
     

∑ ∑∑
 

5.2 Constructing Multiple CHCNs 
The network is partitioned into M disjoint groups, with 

K nodes in each group, utilizing the algorithm underlying 

the CC-MAC protocol presented in [1]. Given Γ  and the 

spatial correlation model (e.g., Kθ ) as input, the algorithm 

selects M representative transmission nodes out of the 

available N nodes. The selected M nodes are chosen so that 

the spatial correlation between their measurements is 

reduced to minimum, while the distortion 

( ) ( )
QoS

D M D N D≈ ≤ ( † ). All nodes within distance rcorr<r 

(where rcorr is an output of the node selection algorithm) of 

each representative node have highly spatially-correlated 

observations of the phenomenon S. 

Consider a disk,
i

Θ , with radius rcorr, centered at a 

representative node i. A group of K nodes, Gi, situated in 

disk 
i

Θ  is called a Representative Group5. Each 

Representative Group forms a CHCN.  

5.3 Estimation Distortion  
The estimate of the source S at the BaS, produced utilizing 

either scheme C or U in each CHCN, would be distorted 

due to channel noise,  assumed to be AWGN, Zj ~ N(0, 2

Z
σ ) 

added to the inherent sensor imprecisions in Xj. For both 

schemes the distortion is given by the standard Minimum 

Square Error (MSE) distortion metric: 

( )D M = � 2[( ) ]E S− S . For the scheme U , the measurement 

Xj is transmitted most efficiently using uncoded 

transmission [2] subject to power constraint P per node and 

per measurement. The received signal at the BaS is 

2 2/( )( )
j S W j j j

Y P S W Zσ σ = + +  + and the optimal decoder 

at the BaS, is given by the standard MMSE estimator ([2], 

[1]).: � 2( [ ] / [ ])
j j j j j

S Y E S Y E Y = and � �
1

M

jj
S S

=
 = (1/Μ)∑ . 

The resulting distortion is 

2 4 2 2 2 1) , ) [( )(1 / )]
U S S S W Z

D M D M P Pσ σ σ σ σ −( = ( =  − + + ×  

 
2 2

,

, 2 2
1 1 1,

(1 1/ )1
2 1

M M M
i jS Z

S i

i i j j i S W

M

M PM

ρσ σ
ρ

σ σ2
= = =  ≠

 − 
− − −  

+  
∑ ∑ ∑ . 

For the scheme C, measurements are transmitted by m nodes. 

Assuming, that for all representative groups Gi the system 

operates at DSSS acquisition capacity, the probability of 

misidentifying a node approaches to 0 [5]. Also, the values 

that can be sensed for a given physical phenomenon are 

captured as described before, by the interval T 

where
W

xε σ = 2 , x > 0. x is set so that all nodes in Gi read the 

same ι  despite the measurement imprecision Wj.  Hence, per 

each group Gi, the estimation of measurement at the BaS is 

� 2
i i W

S S xσ= + . The overall distortion of scheme  

C then can be found to be: 

                                                           
5 It is assumed that i can estimate the distances to its neighboring 

nodes, as in [1]. 

As shown in Fig. 2, due to spatial correlation, the 

distortion saturates for some M (around 18 representative 

nodes). As 
W

σ  decreases, the distortion obtained by the 

scheme C converges to that of the scheme U.6 Analytically 

this is true as the ratio 2( / )
W S

σ σ  vanishes. In this 

case, ( ) ( , )
U C

D M D M b≈  and both distortions are less 

than
QoS

D , per ( † ) in section 5.2. If, K is large enough, 

depending on |T|, m could be set to 1 as long as (4) holds, 

while ( , )
C QoS

D M b D≤ . That is, asymptotically as 

2( / ) 0
W S

σ σ → , CRA satisfies (2). 

6. PERFORMANCE EVALUATION 
The schemes C and U are simulated and compared in 

terms of two metrics: energy consumption and estimate 

uncertainty at the sink. Energy consumption is given by the 

average energy consumption, E, per node in the network 

forτ reporting rounds. Estimate uncertainty is given by the 

average imprecision,V , of the source estimate at the BaS 

overτ rounds. That is, 
1

1/ ) ii
V V

τ
τ

=
= ( ∑ , where at round i, 

�100 | | / | |
i i i

V s s T= − , 
i

s  is the true value of S at  

(xj, yj), and �
i

s is the estimated measurement at the BaS 

given measurements of group Gi. 

6.1 System Setup 
The simulation code is written in JAVA and utilizes the 

Bayesian Logic (BLOG) Inference Engine ([6]). In each 

simulation run, N nodes are placed uniformly at random 

within a square area of 100[m] × 100[m].  

The phenomenon event source is simulated per the 

model in section 5.1 with covariance model Kθ . Here, the 

covariance model parameters are 1θ =10000 and 2θ =2. 

                                                           
6 In practice, with non-zero probability, some nodes in Gi might 

read differentι , even if x is large, possibly leading to additional 

distortion. Scheme C’s simulations in section 6 account for that.     
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Figure 3: Energy consumption of the two transmission 

schemes; x-axis: density of the network [nodes/m2]; y-axis 

average energy, E, per node in the network [mJ], consumed 

for 150 rounds and different correlation radii [m]. 

Figure 4: Estimate uncertainty of the two schemes;  x-axis: 

density of the network [nodes/m2]; y-axis: average estimate 

uncertainty in the network [%] for a given round and 

different correlation radii [m] 

  The BLOG Inference Engine is used to generate the Sj’s. 

      For all simulations runs, ε =1, 
S

σ =625, |T|=5000, and 

T={[-4
S

σ ,-4
S

σ + ε ),…,[4
S

σ +4999 ε ,4
S

σ ]}. The transmit 

power per bit, Eb, is standard and the same for both 

schemes U and C: Eb= 14[dBm]=25[mW]. Finally, on the 

physical layer both schemes utilize DSSS with processing 

gain F = 512 and with transmission radius r =  100[m]. 

6.2 Energy and Estimates Uncertainty 
The average energy consumption per network node, E, 

for the Scheme C tends to be substantially less than that of 
the Scheme U as shown on Fig. 3, for the studied range of 
radii and network densities. As more nodes are added to the 
network (in effect increasing its density), as expected E 
decreases for both schemes. However, in the case of the 
Scheme C, larger network density allows for larger values 
of K leading to a low number of actively transmitting nodes 
m required to convey a measurement. This trend confirms 
the analytical results, implying that higher density networks 
could be more advantageous to scheme C.  

Figs. 4 demonstrate that the achieved estimates 
uncertainty is similar for both schemes C and U: 
approximately 1% to 2%. This is expected, since as shown 
in Fig. 3 the distortion of the two schemes numerically 
converges as 2( / )

W S
σ σ  becomes smaller. 

7. CONCLUSION 
In this paper, we investigated a novel WSN reporting 

scheme, scheme C, based on division of responsibility and 
collaboration across spatially-correlated nodes, as to reduce 
energy consumption in the network. It is shown analytically 
and confirmed through simulations that the scheme C based 
on CRA conserves more energy (in the worst case, close to 
200%) compared to the standard approach in recent 
literature. The scheme C provides a novel avenue of 
research towards graceful degradation of WSN’s distortion 
of measurement as nodes failures increase over time. Due to 
the division of responsibility, the failure of one node does 
not necessarily obliterate the entire measurement.  
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