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Abstmct- Multicasting is an emcient means of one to many 
communication and is typically implemented by creating a mul- 
ticasting tree. Because of the severe battery power and trans- 
mission bandwidth limitations in ad hoc networks, multicast 
routing can significantly improve the performance of this type 
of networks. However, due to the frequent and hard-to-predict 
topological changes of ad hoc networks, maintenance of a mul- 
ticasting tree to  ensure its availability, could be a difficult task. 
We borrow from the concept of Alternate Path routing, which 
has been studied for providing QOS routing, effective conges- 
tion control, security, and route failure protection, to propose a 
scheme in which a set of multicasting trees is continuously main- 
tained. In our scheme, a tree is used until it fails at which time 
it  is replaced by an alternative tree in the set, so that the time 
between failure of a tree and resumption of multicast routing is 
minimal. In this paper, we introduce the scheme and present a 
number of heuristics to  compute a set of alternate trees. The 
heuristics are then compared in terms of transmission cost, im- 
provement in the average time between multicast failures and 
the probability of usefulness. Simulations show significant gains 
over a wide range of network operational conditions. In par- 
ticular, we show that using alternate trees has the potential of 
improving mean time between interruption by 100-600% in a 
50 node network (for most multicast group sizes) with small 
increase in the tree cost and the route discovery overhead. 

I. INTRODUCTION 
An ad hoc network consists of a collection of mobile routers 

which are interconnected via wireless links and are free to move 
about arbitrarily. Multicasting is an efficient communication 
tool for use in multi point applications which cover a very 
wide spectrum including replicated database update and au- 
diolvideo conferencing. 

Multicasting in ad hoc networks is more challenging than 
in the Internet, because of the need to optimize the use of 
several resources simultaneously. Nodes in an ad hoc network 
are battery and bandwidth limited, move very fast causing 
links to fail rapidly and do not have a central control point. 

Work on multicast routing in ad hoc networks gained mo- 
mentum in the mid 90s. Some early approaches to provide 
multicast support in ad hoc networks consisted of adapting 
the existing Internet multicasting protocols (e.g. Shared Tree 
Wireless network Multicast [l]). Others like ODMRP [2], AM- 
RIS [3], CAMP [4] and [5] have been designed specifically for 
ad hoc networks. 
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9980521. 

One common characteristic of most of these approaches is 
that they react to  a link failure; i.e they act after a link has 
already failed, causing a significant delay in route recovery. 
In our work, we have explored the possibility of using a set 
of precalculated alternate trees using the information (about 
network topology) acquired to  calculate the first tree. When 
a link breaks, another tree, which does not include that link, 
can be immediately utilized. This leads to minimum possible 
delay, whenever a viable backup tree is available at the time of 
failure of the current tree. In particular, it allows communica- 
tion of real-time traffic. This approach is inspired by alternate 
path routing, which has been used in the Internet to  alleviate 
congestion and to  improve &OS. Recently, performance gain 
that can be obtained from use of APR in ad hoc networks for 
unicast routing has been investigated [6]. 

11. GOALS AND BASIC IDEAS 

The goal of this work is to  improve multicasting performance 
in ad hoc networks by efficient use of the available knowledge 
of the network. The basic idea is that  if we are able to  com- 
pute multiple backup multicast trees with minimal overlap, 
we could use them one after another to reduce the number of 
service interruptions. This would also improve the mean time 
between route discovery cycles for a given interruption rate 
and hence reduce the control overhead and the rate of data 
loss. At the same time, we want to  keep the cost of transmis- 
sion low. The mobility of ad hoc networks requires that we use 
very little time for tree computation and hence it is important 
that the algorithms be of low complexity. 

This method of using one tree after another will be effective 
if the trees to be used as backup last for a significant amount of 
time after the previous trees fail. This means that the failure 
times of the trees should be independent of one another. If we 
assume that nodes move independently of one another, having 
no common nodes (and hence no common edges) would make 
the trees fail independently of one another. The dependence 
of a pair of trees is defined as the correlation of the failure 
times of the two trees. Dependence of a pair of trees is a com- 
plicated function of the mobility pattern of the nodes. Hence 
a practical way to  compute independent enough trees would 
be to discourage common edges and nodes among the trees. 
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111. SCHEMES FOR COMPUTING MAXIMALLY INDEPENDENT 

Two ways of the using a backup tree set upon link fail- 
ure are : 1) replace the whole tree being used currently by 
a backup tree, if available or 2) replace or augment paths to 
only those nodes which cannot be reached because of this link 
failure. This section details several algorithms to compute 
backup trees depending on how they are going to be used. 
The network connections are represented by a graph G and 
the trees to be found are referred to as T1, T2 and so on. T1 
is intended to be used at the start and the others are to be 
used as backup. The set of all edges in the graph along with 
a quantity called cost of each edge is called the Cost Function 
of the graph 

A .  Computing Backup Trees 

A.l Matroid Intersection Heuristic 

The Matroid Intersection algorithm (found in books on com- 
binatorial optimization [9]) can be used to find two maximally 
independent spanning trees on any given graph (i.e, spanning 
trees with minimum possible number of common edges) such 
that total cost of the two spanning trees is minimized. The two 
spanning trees obtained are called J1 and 52. Given a sender 
(call it the source node) and a set of receivers, two multicasting 
trees T1 and T2 are obtained on graphs J1 and 52 respectively 
using Dijkstra algorithm. When it is not possible to have 2 
completely edge-disjoint spanning trees, the above algorithm 
will give 2 trees edge disjoint trees with maximal cardinality 
(These might not be spanning trees as adding any more edges 
might require overlap between the 2 trees). Hence now to 
complete each tree, we arrange the links in the other tree in 
ascending order of their costs and keep adding links to the first 
tree (unless they form circuits) until the first tree is complete 
and vice versa. Multicast trees generated in this way may not 
have minimum possible number of common edges, though the 
spanning trees do have this property. Also, this scheme can 
be used only to  obtain one backup tree, because the problem 
of finding intersection of 3 Matroids is NP-Hard. 

TREES 

A.2 Shortest Path Heuristic 

In this scheme, the first tree, T1, is the shortest path tree 
from the source to the set of receivers. The Cost function 
of the graph is modified after computing the first tree in the 
following manner - cost associated with edges used in T1 is in- 
creased by the parameter Link Weight and the cost associated 
with edges which share a common node with T1 is increased by 
the parameter Node Weight. T2 is computed using the origi- 
nal incidence matrix of the graph and this new cost function. 
Since Dijkstra algorithm tries to use edges of the lowest cost, 
this way of modifying the Cost function discourages use of the 
edges and nodes already used in T1 (the extent of the discour- 
agement depends on the values of the parameters Link Weight 
and Node Weight). Computation of subsequent backup trees 
is carried out by discouraging the use of links and nodes al- 
ready used in previous trees by further modification of Cost 
Function. 

Shortest Path Heuristic Algorithm 

T 1 =Dij kstraAlgorithm (G, Cost ,Source,Receivers) 
Initialize Costl to equal Cost for all edges in G 
For each edge i in T1 

For each node in T1 
{ Costli = Costi + Linkweight } 

For each link in G incident on this node in T1 
{ 

1 
{ Costli = Costi + Nodeweight } 

T2=Dij kstraAlgorithm( G,Cost 1 ,Source,Receivers) 

A.3 Low Cost Heuristic 
Low Cost Heuristic algorithm is designed to reduce the the 

total number of transmissions in the multicast trees. In this 
method each of the trees are constructed path by path. Com- 
putation of a tree given an initial Cost function is done in 
the following way - path to a node is computed, cost function 
is modified and then path to  next node is computed and added 
to the partial tree already constructed and so on. The modi- 
fication of Cost Function in between computing paths to each 
receiver is done in such a way as to  encourage use of minimum 
number of additional transmissions; i.e. if a link already car- 
ries the multicast data , its transmission cost is decreased to a 
very small value. The cost function taken at the beginning of 
computation of second tree is a modified version of the orig- 
inal cost function of the tree done in order to discourage use 
of links and nodes already used in prior trees (for details of 
modification look at description in Shortest Path Heuristic). 
Computation of subsequent backup trees is carried out by dis- 
couraging use of links and nodes already used in previous trees 
by modification of Cost Function. 

Low Cost Heuristic Algorithm 
Initialize Cost’ to Cost 
For each receiver j 

{ 
Pj =DijkstraAlgorithm(G,Cost’,Sourcej) 
For each edge in P1@ . . . @ Pj 

For each node in P1@ . . . @ Pj 
{ cost: = 0 } 

{ 
For each link in G incident on this node 
in P1@ . . @ Pj 

{ cost; = € } 
1 

} 
T1 = PI @ Pz @ . . . @ PN 
Initialize Costl to  Cost 
For each edge i in T1 

For each node in T1 
{ Costli = Costi + Linkweight } 

{ 
For each link in G which is incident on this 
node in T1 

{ Costli = Costi + Nodeweight } 
1 

{ 

Initialize Cost’ to Costl 
For each receiver j 
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P;= DijkstraAlgorithm(G,Cost’,Source,j) 
For each edge in PI1 @ - . . @ Pi 

For each node in P I 1  @ . . . @ Pj’ 
{ Costla = 0 } 

For each link in G which is incident on 
this node in P’1@ . . + @ Pj’ 

{ COStli = E } 

B. Computing Backup Paths 
Independent Path Algorithm computes trees such that paths 

to each receiver in these trees are disjoint while allowing paths 
to different receivers to  overlap across trees. The disadvantage 
of using trees as backup is that even if just one link in the tree 
fails, we need to replace the whole tree by another, when most 
of the first tree may be intact. Instead, in Independent Path 
Algorithm, we start off with a tree and then for each receiver, 
have a set of backup paths which are maximally disjoint from 
one another and from the path to the receiver in the first 
tree. The first tree can be computed using either Dijkstra 
Algorithm or using the Low Cost Heuristic. For each receiver, 
a path independent of the original path to the node in the first 
tree is computed by modifying the Cost Function (as in the 
Shortest Path Heuristic) in order to discourage use of already 
used nodes and edges. 

Independent Path Algorithm 
Tl=Dijkst,raAlgorithm(G,Cost,Source,Receivers) 
Initialize Cost1 to equal Cost 
For receiver node k 

{ 
For link i in path (in T1)  node k 

{ Costli = Costi + Linkweight } 
For each node in path (in T1) node k 

{ 

1 

For each link in G incident on this node in T1  
{ Costli = Cost, + Nodeweight } 

Backup Path to k=Dijkstra(G,Costl,Source,k) 
1 

This method differs from the backup tree methods not only 
in that it replaces only the damaged part of the tree (local 
repair) but also in that the backup path to any given receiver 
can overlap with the rest of the first tree (apart from what 
is being used to transmit data to that receiver). It is more 
likely to find paths independent from a given path rather than 
one independent from a given tree. As in the previous two 
methods, computation of subsequent backup trees is carried 
out (similar to the second tree) by discouraging use of links 
and nodes already used in previous trees by modification of 
Cost Function. 

IV. CRITERIA USED FOR PERFORMANCE COMPARISON 

A .  Cost 
A number, cost ci, is associated with each link i in the graph. 

As in traditional networks, it could be chosen to be inversely 

proportional to the link capacity, proportional to the current 
load, etc. The cost of a tree is defined as the sum of costs of 
all the links in the tree. The cost of a set of trees is defined as 
the sum of costs of all the trees in the set. For a given multi- 
cast group size, the Average Cost of a scheme is the weighted 
average of the cost of all the trees being computed, weighted 
by the average amount of time each of the trees is being used; 
i.e., it is 

A~~~~~~ cost = Ctreei* Ttreei 

E:==, Ttre.; 

B. Dcost 
The idea behind defining Dcost is that in a single chan- 

nel wireless network, the MAC layer is naturally of broadcast 
type. In other words, when a node transmits, all its neighbors 
are able to listen to it. Hence the cost of transmission of infor- 
mation to all neighbors from one node is the same as the cost 
of transmission to the most “expensive” neighbor. The Dcost 
of a tree is the total number of transmissions required for the 
data to reach all receivers. The Average Dcost of a scheme is 
the weighted average of the Dcost of all the trees being com- 
puted, weighted by the average amount of time each of the 
trees is being used; i.e., it is 

A~~~~~~ ~~~~t = E?=‘=, DCOSttreci* Ttrcci 

E:=.=, Ttv-eei 

C. Time of Failure or Mean Tame Between Interruptions 
Time of failure of a tree is the minimum time by which at 

least one of the links of the tree fails and the time of failure 
of the system is the minimum time at which all paths, (in the 
first and the backup trees) to at least one of the multicast 
receivers fail. We use the terms - system time and the mean 
time between interruption, interchangeably since an interrup- 
tion occurs whenever there is a failure of all the trees triggering 
re-computation of trees. 

D. Probability of usefulness 
The probability that the backup set computed by any of 

the above schemes will be used is defined as the probability of 
usefulness. It is that fraction of the total number of trials for 
which failure time of the system is greater than failure time of 
the first tree. 

v. SIMULATION RESULTS AND DISCUSSION 
A .  The Simulation Environment 

50 Nodes are uniformly distributed over a square area of 
size 700 meters by 700 meters. Each node can exchange infor- 
mation with any other node within 140 meters of themselves. 
At time 0, with probability 0.5 they pick a destination point 
(which is also uniformly distributed in the area) and start mov- 
ing in that direction with velocity 40 [m/s] and with Proba- 
bility 0.5 they wait in their positions for a random amount of 
time (uniformly distributed over 0-5 seconds) before choosing 
a destination. After reaching their destination point, they stop 
with Probability 0.5 in their positions for a random amount of 
time (uniformly distributed over 0-5 seconds) and choose an- 
other destination point and start moving in the new direction 
with probability 0.5. The nodes were allowed to move accord- 
ing to the above mobility model until the multicast tree and 
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Fig. 4. Probability of usefulness (One backup Tree) 

all backups had failed and the failure times of various schemes 
were recorded. The data presented here are averaged over 500 
different trees (each under 25 realizations of the mobility pat- 
tern) for each multicast group size. In all the graphs in this 
Section, SPTH refers to Shortest Path Tree Heuristic, LCH 
refers to Low Cost Heuristic, IPA refers to Independent Path 
Algorithm and MIA refers to Matroid Intersection Algorithm. 

B. Results for one backup tree 

Figure 1 shows that the average Cost of trees used is not 
very different for the various schemes. However, from Figure 
2 we see that the average number of transmissions required 
per packet (the Dcost) is significantly higher for Matroid in- 
tersection algorithm while the Dcost curves for other three 
schemes are relatively bunched together. This is because of 
the fact that the Matroid Intersection Algorithm, in the pro- 
cess of making the two spanning trees edge disjoint, causes 
links incident on any given node to be distributed among the 
two spanning trees. Hence, there are less number of links 
incident on any given node in each of these spanning trees 
when compared to the whole network. Because of this, each 
multicast tree (which is computed on these spanning trees as 
described in section 4.1.1) has less number of outgoing links 
to choose from at each node and hence has greater number of 
transmissions. 

If we were using just one tree, we would expect that the 
Mean Time Between Interruptions be reduced with an increase 
in multicast group size. This is so since increase in multicast 
group size increases the size of the tree and hence increases 
the probability that at  least one of the links fails by any given 
time. However, while using backups, the total time for which 
the system lasts may increase with increase in multicast group 
size due to increase in probability of usefulness. This is be- 
cause even though the first tree fails faster, the backup trees 
are available more often, hence increasing the total time (on an 
average) for which the the set of trees lasts. The effect of these 
two factors can be seen in Figure 3. From this figure, we see 
that in terms of the mean time between interruptions we can 
rank the schemes in the following order IPA, MIA, LCH and 
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INCREASE IN MEAN TIME BETWEEN INTERRUPTIONS DUE TO n t h  BACKUP 

TREE 

backup trees 

TABLE I1 
INCREASE IN PROBABILITY OF USEFULNESS DUE TO nth BACKUP TREE 

SPTH with the IPA performing best. The two trees in LCH 
are expected to have greater independence than the SPTH, 
because by encouraging several links from one node to be in- 
cluded in the first tree, we make the tree occupy a smaller 
“area”, hence leaving greater space for the other tree to be 
formed without having to overlap with the first one. MIA en- 
sures that the trees are almost edge disjoint, by computing the 
two trees simultaneously while the SPTH and LCH compute 
the first tree before the second one hence losing out on the pos- 
sibility of combined optimization. IPA lasts much longer than 
other schemes, especially for larger multicast groups because 
of the fact that it includes local repair. 

Probability of usefulness decreases with increase in depen- 
dence between the two trees. For the tree based algorithms, 
dependence between the two trees increases with increase in 
multicast group size because each tree occupies more “area”. 
On the other hand, as size of a tree increases, its failure time 
decreases. For this reason, given that first tree fails, it is very 
likely that the rest of the network is intact and hence the 
second tree is intact with higher probability. These opposing 
factors can be seen at play in Figure 4 especially for SPTH 
curve. On the other hand, the LCH curve does not change 
much, because the two factors balance each other out. In the 
case of MIA (IPA) the two trees (paths) are almost edge dis- 
joint, irrespective of the size of the group and hence only the 
second factor dominates. 

Results for Two and Three Backup Trees follow the 
same trends for various parameters as the one backup case 
with greater improvements in terms of probability and mean 
time between interruptions and probability of usefulness and 
higher cost and Dcost of trees. 

C. Improvements as a function of number of backups 

This section presents performance of the algorithms as a 
function of number of backup trees computed. Table I con- 
tains the increase in mean time between interruptions (aver- 

aged over multicast group sizes) as a function of number of 
backups for various schemes. We see that the IPA results in 
greater increase in mean time between interruptions than the 
other two schemes. Surprisingly, we also observe that, for IPA, 
the improvement in time due to third backup tree is greater 
than the improvement due to second backup tree. This is also 
true for LCH and SPTH for low multicast group sizes where 
dependence between two trees is still low. From Table I1 we 
see that increase in probability of usefulness decreases with 
increase in number of backup trees. This is an expected result 
because with increase in n, the probability that at least one 
first n-1 backup trees is available along with the nth backup 
tree at the time of failure of first tree increases. 

VI. CONCLUSIONS 
Several heuristic schemes for constructing multiple “inde- 

pendent” trees were developed, simulated and their perfor- 
mance was compared in various contexts. We found that the 
Independent Path Algorithm gives much better performance 
than the others with very small increase in transmission cost 
of the multicast trees. We have shown through simulations 
that in a typical ad hoc network it is possible to have work- 
ing backup infrastructure with high probability without much 
extra expense in terms of cost of the trees or computation 
or data collection. The probability of backup being useful is 
0.9 for just 2 backup trees computed with no extra control 
overhead and mean time between interruptions is increased 
by 100%-600% (for most multicast group sizes) by use of 3 
backup trees in a 50 Node network. The simulation results 
also indicate that, contrary to intuition, the improvement ob- 
tained due to additional trees does not always decrease with 
increase in number of backup trees. 
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