
Independent-Tree Ad hoc MulticAst Routing
(ITAMAR)

S. Sajama Zygmunt J. Haas
School of Electrical Engineering School of Electrical Engineering

Cornel1 University Cornel1 University
Ithaca, NY 14853 Ithaca, NY 14853

E-mail: sajama@ece.cornell.edu E-mail: haas@ece.cornell.edu
ht tp: //www . ece.cornel1. edu/Nsaj ama htt p: //www .ee .cornell. edu/- haas/wnl. html

Abstmct- Multicasting is an emcient means of one to many
communication and is typically implemented by creating a mul-
ticasting tree. Because of the severe battery power and trans-
mission bandwidth limitations in ad hoc networks, multicast
routing can significantly improve the performance of this type
of networks. However, due to the frequent and hard-to-predict
topological changes of ad hoc networks, maintenance of a mul-
ticasting tree to ensure its availability, could be a difficult task.
We borrow from the concept of Alternate Path routing, which
has been studied for providing QOS routing, effective conges-
tion control, security, and route failure protection, to propose a
scheme in which a set of multicasting trees is continuously main-
tained. In our scheme, a tree is used until it fails at which time
it is replaced by an alternative tree in the set, so that the time
between failure of a tree and resumption of multicast routing is
minimal. In this paper, we introduce the scheme and present a
number of heuristics to compute a set of alternate trees. The
heuristics are then compared in terms of transmission cost, im-
provement in the average time between multicast failures and
the probability of usefulness. Simulations show significant gains
over a wide range of network operational conditions. In par-
ticular, we show that using alternate trees has the potential of
improving mean time between interruption by 100-600% in a
50 node network (for most multicast group sizes) with small
increase in the tree cost and the route discovery overhead.

I. INTRODUCTION
An ad hoc network consists of a collection of mobile routers

which are interconnected via wireless links and are free to move
about arbitrarily. Multicasting is an efficient communication
tool for use in multi point applications which cover a very
wide spectrum including replicated database update and au-
diolvideo conferencing.

Multicasting in ad hoc networks is more challenging than
in the Internet, because of the need to optimize the use of
several resources simultaneously. Nodes in an ad hoc network
are battery and bandwidth limited, move very fast causing
links to fail rapidly and do not have a central control point.

Work on multicast routing in ad hoc networks gained mo-
mentum in the mid 90s. Some early approaches to provide
multicast support in ad hoc networks consisted of adapting
the existing Internet multicasting protocols (e.g. Shared Tree
Wireless network Multicast [l]). Others like ODMRP [2], AM-
RIS [3], CAMP [4] and [5] have been designed specifically for
ad hoc networks.

This work has been sponsored in part by ONR contract no. N00014-00-
1-0564, AFRL contract no. F360602-97-C-0133, and NSF grant no. ANI-
9980521.

One common characteristic of most of these approaches is
that they react to a link failure; i.e they act after a link has
already failed, causing a significant delay in route recovery.
In our work, we have explored the possibility of using a set
of precalculated alternate trees using the information (about
network topology) acquired to calculate the first tree. When
a link breaks, another tree, which does not include that link,
can be immediately utilized. This leads to minimum possible
delay, whenever a viable backup tree is available at the time of
failure of the current tree. In particular, it allows communica-
tion of real-time traffic. This approach is inspired by alternate
path routing, which has been used in the Internet to alleviate
congestion and to improve &OS. Recently, performance gain
that can be obtained from use of APR in ad hoc networks for
unicast routing has been investigated [6].

11. GOALS AND BASIC IDEAS

The goal of this work is to improve multicasting performance
in ad hoc networks by efficient use of the available knowledge
of the network. The basic idea is that if we are able to com-
pute multiple backup multicast trees with minimal overlap,
we could use them one after another to reduce the number of
service interruptions. This would also improve the mean time
between route discovery cycles for a given interruption rate
and hence reduce the control overhead and the rate of data
loss. At the same time, we want to keep the cost of transmis-
sion low. The mobility of ad hoc networks requires that we use
very little time for tree computation and hence it is important
that the algorithms be of low complexity.

This method of using one tree after another will be effective
if the trees to be used as backup last for a significant amount of
time after the previous trees fail. This means that the failure
times of the trees should be independent of one another. If we
assume that nodes move independently of one another, having
no common nodes (and hence no common edges) would make
the trees fail independently of one another. The dependence
of a pair of trees is defined as the correlation of the failure
times of the two trees. Dependence of a pair of trees is a com-
plicated function of the mobility pattern of the nodes. Hence
a practical way to compute independent enough trees would
be to discourage common edges and nodes among the trees.

0-7803-7005-8/011$10.00 0 2001 IEEE 600

mailto:sajama@ece.cornell.edu
mailto:haas@ece.cornell.edu

111. SCHEMES FOR COMPUTING MAXIMALLY INDEPENDENT

Two ways of the using a backup tree set upon link fail-
ure are : 1) replace the whole tree being used currently by
a backup tree, if available or 2) replace or augment paths to
only those nodes which cannot be reached because of this link
failure. This section details several algorithms to compute
backup trees depending on how they are going to be used.
The network connections are represented by a graph G and
the trees to be found are referred to as T1, T2 and so on. T1
is intended to be used at the start and the others are to be
used as backup. The set of all edges in the graph along with
a quantity called cost of each edge is called the Cost Function
of the graph

A . Computing Backup Trees

A.l Matroid Intersection Heuristic

The Matroid Intersection algorithm (found in books on com-
binatorial optimization [9]) can be used to find two maximally
independent spanning trees on any given graph (i.e, spanning
trees with minimum possible number of common edges) such
that total cost of the two spanning trees is minimized. The two
spanning trees obtained are called J1 and 52. Given a sender
(call it the source node) and a set of receivers, two multicasting
trees T1 and T2 are obtained on graphs J1 and 52 respectively
using Dijkstra algorithm. When it is not possible to have 2
completely edge-disjoint spanning trees, the above algorithm
will give 2 trees edge disjoint trees with maximal cardinality
(These might not be spanning trees as adding any more edges
might require overlap between the 2 trees). Hence now to
complete each tree, we arrange the links in the other tree in
ascending order of their costs and keep adding links to the first
tree (unless they form circuits) until the first tree is complete
and vice versa. Multicast trees generated in this way may not
have minimum possible number of common edges, though the
spanning trees do have this property. Also, this scheme can
be used only to obtain one backup tree, because the problem
of finding intersection of 3 Matroids is NP-Hard.

TREES

A.2 Shortest Path Heuristic

In this scheme, the first tree, T1, is the shortest path tree
from the source to the set of receivers. The Cost function
of the graph is modified after computing the first tree in the
following manner - cost associated with edges used in T1 is in-
creased by the parameter Link Weight and the cost associated
with edges which share a common node with T1 is increased by
the parameter Node Weight. T2 is computed using the origi-
nal incidence matrix of the graph and this new cost function.
Since Dijkstra algorithm tries to use edges of the lowest cost,
this way of modifying the Cost function discourages use of the
edges and nodes already used in T1 (the extent of the discour-
agement depends on the values of the parameters Link Weight
and Node Weight). Computation of subsequent backup trees
is carried out by discouraging the use of links and nodes al-
ready used in previous trees by further modification of Cost
Function.

Shortest Path Heuristic Algorithm

T 1 =Dij kstraAlgorithm (G, Cost ,Source,Receivers)
Initialize Costl to equal Cost for all edges in G
For each edge i in T1

For each node in T1
{ Costli = Costi + Linkweight }

For each link in G incident on this node in T1
{

1
{ Costli = Costi + Nodeweight }

T2=Dij kstraAlgorithm(G,Cost 1 ,Source,Receivers)

A.3 Low Cost Heuristic
Low Cost Heuristic algorithm is designed to reduce the the

total number of transmissions in the multicast trees. In this
method each of the trees are constructed path by path. Com-
putation of a tree given an initial Cost function is done in
the following way - path to a node is computed, cost function
is modified and then path to next node is computed and added
to the partial tree already constructed and so on. The modi-
fication of Cost Function in between computing paths to each
receiver is done in such a way as to encourage use of minimum
number of additional transmissions; i.e. if a link already car-
ries the multicast data , its transmission cost is decreased to a
very small value. The cost function taken at the beginning of
computation of second tree is a modified version of the orig-
inal cost function of the tree done in order to discourage use
of links and nodes already used in prior trees (for details of
modification look at description in Shortest Path Heuristic).
Computation of subsequent backup trees is carried out by dis-
couraging use of links and nodes already used in previous trees
by modification of Cost Function.

Low Cost Heuristic Algorithm
Initialize Cost’ to Cost
For each receiver j

{
Pj =DijkstraAlgorithm(G,Cost’,Sourcej)
For each edge in P1@ . . . @ Pj

For each node in P1@ . . . @ Pj
{ cost: = 0 }

{
For each link in G incident on this node
in P1@ . . @ Pj

{ cost; = € }
1

}
T1 = PI @ Pz @ . . . @ PN
Initialize Costl to Cost
For each edge i in T1

For each node in T1
{ Costli = Costi + Linkweight }

{
For each link in G which is incident on this
node in T1

{ Costli = Costi + Nodeweight }
1

{

Initialize Cost’ to Costl
For each receiver j

60 1

P;= DijkstraAlgorithm(G,Cost’,Source,j)
For each edge in PI1 @ - . . @ Pi

For each node in P I 1 @ . . . @ Pj’
{ Costla = 0 }

For each link in G which is incident on
this node in P’1@ . . + @ Pj’

{ COStli = E }

B. Computing Backup Paths
Independent Path Algorithm computes trees such that paths

to each receiver in these trees are disjoint while allowing paths
to different receivers to overlap across trees. The disadvantage
of using trees as backup is that even if just one link in the tree
fails, we need to replace the whole tree by another, when most
of the first tree may be intact. Instead, in Independent Path
Algorithm, we start off with a tree and then for each receiver,
have a set of backup paths which are maximally disjoint from
one another and from the path to the receiver in the first
tree. The first tree can be computed using either Dijkstra
Algorithm or using the Low Cost Heuristic. For each receiver,
a path independent of the original path to the node in the first
tree is computed by modifying the Cost Function (as in the
Shortest Path Heuristic) in order to discourage use of already
used nodes and edges.

Independent Path Algorithm
Tl=Dijkst,raAlgorithm(G,Cost,Source,Receivers)
Initialize Cost1 to equal Cost
For receiver node k

{
For link i in path (in T1) node k

{ Costli = Costi + Linkweight }
For each node in path (in T1) node k

{

1

For each link in G incident on this node in T1
{ Costli = Cost, + Nodeweight }

Backup Path to k=Dijkstra(G,Costl,Source,k)
1

This method differs from the backup tree methods not only
in that it replaces only the damaged part of the tree (local
repair) but also in that the backup path to any given receiver
can overlap with the rest of the first tree (apart from what
is being used to transmit data to that receiver). It is more
likely to find paths independent from a given path rather than
one independent from a given tree. As in the previous two
methods, computation of subsequent backup trees is carried
out (similar to the second tree) by discouraging use of links
and nodes already used in previous trees by modification of
Cost Function.

IV. CRITERIA USED FOR PERFORMANCE COMPARISON

A . Cost
A number, cost ci, is associated with each link i in the graph.

As in traditional networks, it could be chosen to be inversely

proportional to the link capacity, proportional to the current
load, etc. The cost of a tree is defined as the sum of costs of
all the links in the tree. The cost of a set of trees is defined as
the sum of costs of all the trees in the set. For a given multi-
cast group size, the Average Cost of a scheme is the weighted
average of the cost of all the trees being computed, weighted
by the average amount of time each of the trees is being used;
i.e., it is

A~~~~~~ cost = Ctreei* Ttreei

E:==, Ttre.;

B. Dcost
The idea behind defining Dcost is that in a single chan-

nel wireless network, the MAC layer is naturally of broadcast
type. In other words, when a node transmits, all its neighbors
are able to listen to it. Hence the cost of transmission of infor-
mation to all neighbors from one node is the same as the cost
of transmission to the most “expensive” neighbor. The Dcost
of a tree is the total number of transmissions required for the
data to reach all receivers. The Average Dcost of a scheme is
the weighted average of the Dcost of all the trees being com-
puted, weighted by the average amount of time each of the
trees is being used; i.e., it is

A~~~~~~ ~~~~t = E?=‘=, DCOSttreci* Ttrcci

E:=.=, Ttv-eei

C. Time of Failure or Mean Tame Between Interruptions
Time of failure of a tree is the minimum time by which at

least one of the links of the tree fails and the time of failure
of the system is the minimum time at which all paths, (in the
first and the backup trees) to at least one of the multicast
receivers fail. We use the terms - system time and the mean
time between interruption, interchangeably since an interrup-
tion occurs whenever there is a failure of all the trees triggering
re-computation of trees.

D. Probability of usefulness
The probability that the backup set computed by any of

the above schemes will be used is defined as the probability of
usefulness. It is that fraction of the total number of trials for
which failure time of the system is greater than failure time of
the first tree.

v. SIMULATION RESULTS AND DISCUSSION
A . The Simulation Environment

50 Nodes are uniformly distributed over a square area of
size 700 meters by 700 meters. Each node can exchange infor-
mation with any other node within 140 meters of themselves.
At time 0, with probability 0.5 they pick a destination point
(which is also uniformly distributed in the area) and start mov-
ing in that direction with velocity 40 [m/s] and with Proba-
bility 0.5 they wait in their positions for a random amount of
time (uniformly distributed over 0-5 seconds) before choosing
a destination. After reaching their destination point, they stop
with Probability 0.5 in their positions for a random amount of
time (uniformly distributed over 0-5 seconds) and choose an-
other destination point and start moving in the new direction
with probability 0.5. The nodes were allowed to move accord-
ing to the above mobility model until the multicast tree and

602

12 V
V

12 .v
, . x

;v
i o -

8 -

0 5 10 15 20 25 30 35 40 45
Multicast group sua

I

Fig. 1. Average Cost (One backup Tree)

5 5
0 0

......
5 t 1

4.5 D
U J

5.5
...... 0

5 -
u . '

.D ..' 4.5 -

4 -

e
0 -p 3.5 - .. v

1 . 5 - . 2

1 - ...
i

0 5 10 15 20 25 30 35 40 45 50
0.5

Munkasl group size

Fig. 2. Average Dcost (One backup Tree)

~,
0
0 5 10 15 20 25 30 35 40 45

Multicast group she

Fig. 3. Time of Failure of the System (One backup Tree)

.....
'.X

.*..., 0.9

.* *.'
..'

".. . L)... . ..n D 0
" - ,, '8.:.U"

. D . . .
.. ;

...... O' . ' , , ...

0 7 1 0 X -1

i 0.3 V

v v v

........ 4
V

"
0 5 10 15 20 25 30 35 40 45 M

MuIl~m1 group sue

0 1

Fig. 4. Probability of usefulness (One backup Tree)

all backups had failed and the failure times of various schemes
were recorded. The data presented here are averaged over 500
different trees (each under 25 realizations of the mobility pat-
tern) for each multicast group size. In all the graphs in this
Section, SPTH refers to Shortest Path Tree Heuristic, LCH
refers to Low Cost Heuristic, IPA refers to Independent Path
Algorithm and MIA refers to Matroid Intersection Algorithm.

B. Results for one backup tree

Figure 1 shows that the average Cost of trees used is not
very different for the various schemes. However, from Figure
2 we see that the average number of transmissions required
per packet (the Dcost) is significantly higher for Matroid in-
tersection algorithm while the Dcost curves for other three
schemes are relatively bunched together. This is because of
the fact that the Matroid Intersection Algorithm, in the pro-
cess of making the two spanning trees edge disjoint, causes
links incident on any given node to be distributed among the
two spanning trees. Hence, there are less number of links
incident on any given node in each of these spanning trees
when compared to the whole network. Because of this, each
multicast tree (which is computed on these spanning trees as
described in section 4.1.1) has less number of outgoing links
to choose from at each node and hence has greater number of
transmissions.

If we were using just one tree, we would expect that the
Mean Time Between Interruptions be reduced with an increase
in multicast group size. This is so since increase in multicast
group size increases the size of the tree and hence increases
the probability that at least one of the links fails by any given
time. However, while using backups, the total time for which
the system lasts may increase with increase in multicast group
size due to increase in probability of usefulness. This is be-
cause even though the first tree fails faster, the backup trees
are available more often, hence increasing the total time (on an
average) for which the the set of trees lasts. The effect of these
two factors can be seen in Figure 3. From this figure, we see
that in terms of the mean time between interruptions we can
rank the schemes in the following order IPA, MIA, LCH and

603

bac,kup trees

I I I 13 I 0.056s 1 0.079s I 0.132s I
TABLE I

INCREASE IN MEAN TIME BETWEEN INTERRUPTIONS DUE TO n t h BACKUP

TREE

backup trees

TABLE I1
INCREASE IN PROBABILITY OF USEFULNESS DUE TO nth BACKUP TREE

SPTH with the IPA performing best. The two trees in LCH
are expected to have greater independence than the SPTH,
because by encouraging several links from one node to be in-
cluded in the first tree, we make the tree occupy a smaller
“area”, hence leaving greater space for the other tree to be
formed without having to overlap with the first one. MIA en-
sures that the trees are almost edge disjoint, by computing the
two trees simultaneously while the SPTH and LCH compute
the first tree before the second one hence losing out on the pos-
sibility of combined optimization. IPA lasts much longer than
other schemes, especially for larger multicast groups because
of the fact that it includes local repair.

Probability of usefulness decreases with increase in depen-
dence between the two trees. For the tree based algorithms,
dependence between the two trees increases with increase in
multicast group size because each tree occupies more “area”.
On the other hand, as size of a tree increases, its failure time
decreases. For this reason, given that first tree fails, it is very
likely that the rest of the network is intact and hence the
second tree is intact with higher probability. These opposing
factors can be seen at play in Figure 4 especially for SPTH
curve. On the other hand, the LCH curve does not change
much, because the two factors balance each other out. In the
case of MIA (IPA) the two trees (paths) are almost edge dis-
joint, irrespective of the size of the group and hence only the
second factor dominates.

Results for Two and Three Backup Trees follow the
same trends for various parameters as the one backup case
with greater improvements in terms of probability and mean
time between interruptions and probability of usefulness and
higher cost and Dcost of trees.

C. Improvements as a function of number of backups

This section presents performance of the algorithms as a
function of number of backup trees computed. Table I con-
tains the increase in mean time between interruptions (aver-

aged over multicast group sizes) as a function of number of
backups for various schemes. We see that the IPA results in
greater increase in mean time between interruptions than the
other two schemes. Surprisingly, we also observe that, for IPA,
the improvement in time due to third backup tree is greater
than the improvement due to second backup tree. This is also
true for LCH and SPTH for low multicast group sizes where
dependence between two trees is still low. From Table I1 we
see that increase in probability of usefulness decreases with
increase in number of backup trees. This is an expected result
because with increase in n, the probability that at least one
first n-1 backup trees is available along with the nth backup
tree at the time of failure of first tree increases.

VI. CONCLUSIONS
Several heuristic schemes for constructing multiple “inde-

pendent” trees were developed, simulated and their perfor-
mance was compared in various contexts. We found that the
Independent Path Algorithm gives much better performance
than the others with very small increase in transmission cost
of the multicast trees. We have shown through simulations
that in a typical ad hoc network it is possible to have work-
ing backup infrastructure with high probability without much
extra expense in terms of cost of the trees or computation
or data collection. The probability of backup being useful is
0.9 for just 2 backup trees computed with no extra control
overhead and mean time between interruptions is increased
by 100%-600% (for most multicast group sizes) by use of 3
backup trees in a 50 Node network. The simulation results
also indicate that, contrary to intuition, the improvement ob-
tained due to additional trees does not always decrease with
increase in number of backup trees.

REFERENCES
C. Chiang, M. Gerla, and L. Zhang, “Shared tree wireless network
multicast”, IEEE International Conference on Computer Commu-
nications and Networks (ICCCN’97), September 1997.
S.-J. Lee, M. Gerla and C.-C. Chiang, “On-Demand Multicast Rout-
ing Protocol”, Proc. IEEE WCNC’99, New Orleans, LA, Sept 1999,
pp. 1298-1304.
C. W. Wu and Y . C. Tay, ”AMRIS: A Multicast Protocol for Ad hoc
Wireless Networks,” Proceedings of IEEE MILCOM ’99, Atlantic
City, NJ, Nov. 1999.
J.J. Garcia-Luna-Aceves, and E.L.Madruga, “The Core-assisted
mesh protocol,” IEEE Journal on Selected Areas in Communica-
tions, Special Issue on Ad-Hoc Networks, Vol. 17, No. 8, Aug. 1998.
J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, ”Algo-
rithms for Energy-Efficient Multicasting in Ad Hoc Wireless Net-
works”, Proceedings of the IEEE Military Communications Confer-
ence (MILCOM), 1999, pp. 1414-1418.
M. Pearlman and Z. Haas, On the impact of Alternate Path Routing
for Load Balancing in Mobile Ad Hoc Networks, MobiHOC’2000,
Boston, MA, Sept. 1999, pp 3-10.
Katia Obraczka, Gene Tsudik, ”Multicast Routing Issues in Ad Hoc
Networks,” IEEE International Conference on Universal Personal
Communication (ICUPC’98), Oct. 1998.
M. Pearlman and Z. Haas, Improving the Performance of Query-
Based Routing Protocols Through ’Diversity Injection’, WCNC’99,
New Orleans, LA, Sept. 1999.
W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver,
Combinatorial Optimization, John Wiley and Sons, 1998.

604

