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Abstract—Quality of Experience (QoE) measures a user's type of content could be perceived differently by different
satisfaction with a service delivery. However QoE is a very users. For example, in an audio delivery system, depending
subjective measure and is context dependent, making it diffult on the |anguage of the content, a user may prefer a lower
paper, we '|°°k ag hgw.ctjhﬁ p“ro"'d.er can ma.><||r|mzfe QOEU.bVIOpg' higher speech intelligibility. QoS requirements for a gpor
mizing wireless bandwidth allocation, especially for moble cloud = iqen siream (e.g., low delay) is different than that for a
applications. The multi-stimuli version of the “IQX” hypot hesis . . : o
is used to model the QOE of a user, and this model is used in MOVI€ (e.g., high bit rate). The. LTE stand_ard specifies .thatt
formulation of a nonlinear optimization problem, which is solved ~ €Sources should be allocated in decreasing order of céonec
using NSGA-Il. Simulations using realistic parameters basd  Priority - and if no resources remain, the connection wdits.
on 802.11n demonstrate a reduction in the required bandwidi ~ contrast, we adopt the approach of allocating resourcesdbas
by as much as 33% (i.e., more users can be accommodated on the user/application’s needs (and not based on priprity)
by the system), while maintaining the same level of QOE. Our such that QOE is optimized across all users. Therefore, the
evolutionary-algorithm-based approach is able to discowethe  highly subjective nature of multimedia content necessitat
optimal bandwidth allocation. The problem of equalizing u®r — new channel resource allocation scheme at the LHWN device

QOE is explored and a tradeoff between QOE and faimess is ¢ js aware of the QoS requirements of a cloud user.
studied, while being characterized using a Pareto front.

This paper straddles two researched areas: modeling the
|. INTRODUCTION QoE of a user using network QoS metrics, and optimal channel
resource allocation. We address two main research probifems

Widespread access to mobile wireless platforms has causggig paper. How can QoE of a user be modeled using network
a paradigm change in multimedia consumption. With the intro 545" metrics? How can channel resources be allocated, such

duction of high-capacity standards (e.g., LTE), an indréRs hat yser QoE is optimized? We propose a general model
amount of content is being streamed over last hop wirelesg,at ytilizes utility functions to model a user's QoE. By way
networks (LHWNS). However, the quality of these wirelessyf an example, our model is based on three network QoS
links are constantly changing, affecting the quality ov&®  meyrics: delay, packet loss ratio, and data rate. A fedsibil
(QoS), and consequently, the GoEow QOE could result in region comprises the set of network QoS metrics achieved at
the user’s dissatisfaction with the provided service. Assailt,  faasible physical layer operating points; this region gen

both content and network providers nowadays are looking 8hased on allocated bandwidth, and the modulation and coding
how QOE can be maximized for users. Unfortunately, QOE Okcheme that is used. It is over this region that optimization

a user is a very subjective measure due to the heterogeneity is performed and bandwidth is allocated to each user, such
user perception, the context in which the service is deler hat QoE is maximized. We consider multiple objectives:
as well as the type of content being delivered - making gnaximizing average QoE, maximizing the minimum QoE,
generic solution difficult to formulate. With the growth of ;.4 equalizing user QoE. An example that uses a realistic
cloud radio access networks (C-RANSs), the cloud provider hagns 11n feasibility region is provided. Two QoE-QoS models
the ability to control the user's LHWN device, and therefore g.e puilt using results from recent research: the QoE-QoS
the network QoS. Challenges to this approach include finitge|ationship can be treated as that of a response-stimulus,
spectral resources like bandwidth in the LHWN, as well asyng the QoE decreases exponentially with decrease in QoS.
rapidly phangmg channel conditions. It is in such a reseurc Tphe optimal QoS value can be achieved by configuring the
cor_lstrame_d (_en_vwonmentthat the cloud provider has toaiper ppy layer appropriately. The contributions of this papes ar
while maximizing user's QoE. as follows: 1) A spectral resource allocation scheme that is
A survey of recent research in scheduling and resourc@ware of users’ QoS needs; 2) A problem formulation that is
allocation for optimal content delivery shows that moreenft ~able to incorporate multiple single objectives, as well aald
than not, the network does not take into account the Qombjectives; and 3) An example scenario that proposes QoE-
requirements of each user. Indeed, for two scenarios with thQ0S models using results from recent research, that ogerate
same network conditions: 1) user QoE varies with the typdn & realistic 802.11n environment.
of content being served, and 2) human factors involved in Il. RELATED WORK

multimedia perception vary from user to user. Thus, the same |, yhis section we review some recent research in modeling

* This research was performed while at the University of Beaa Dallas. user Q_OE' a,S well as research that ad_dresses channel esourc
1n this paper, we refer to network-level parameters as Quoanpeters, and  allocation. Finally we place our work in the context of other
to application-level parameters as QoE parameters. research and motivate our approach. QoE is defined as “the




Cloud User  LHWN Access Point

overall acceptability of an application or service, as paed Cloud
subjectively by the end-user” (ITU-T Rec. P.10/G.100). In S @)(@D}) _ ou
addition to metrics like network QoS ([1]), QoE is influenced i) A Wired i ASD
by economic, environmental, and sociological aspects (2] Qo " amazon.
collectively referred to as the user’s context. The refaiop

between traditional network QoS parameters and QOE has

been studied extensively ([3]). A popular QoE measure is the
Mean Opinion Score (MOS) method (ITU-T Rec. P.10), which
requires users to rate their experience on a five-point scalgig. 1: An LHWN access point is connected to the cloud
However MOS is a subjective measure, is cost intensive, anghrough a high speed link. The Middleware runs on the cloud
difficult to perform in real time. Recently, user engagemeniyser’s device and builds the QoE-QoS model of the user as
([4]) has emerged as a QOE measure. Q0S..,,- The Scheduler allocates bandwidth to each user based
on QoS.pp, and computes the optimal PHY operating point for
FHY interfaces.

Optimal
Link
Config

Correlation-based approaches predict QOE metrics such
MOS, using objective, measurable metrics like the peakasign
to noise ratio (PSNR) ([5]), application level QoS metrics
(AQo0S) like the average video bit rate ([6]), network level IIl.  PROBLEM FORMULATION AND EXAMPLE

QoS metrics (NQoS) like jitter ([7]), or a combination ([8]) In this section we introduce the terminology and system

The end result in these approaches is a model ([9]), predicti model. Functions of the Middleware and Scheduler are defined

framework ([10]) or an analytical formula ([11]) that caicu well as the utilit ; ,
: / y functions used to model user’s QoE, and
lates QoE. Causality-based approaches considers QOS'Q{;;EE PHY feasibility region. The problem is formulated and

as a stimulus-response relationship in humans. Psychimshys 5 g41ution is proposed. A working example is provided for
research suggests that the nature of this relationshig&sith- clarity

mic ([12]) or power law ([13]). The authors of [14] derive an
exponential relationship between QoS and QoE. An intergsti We consider a scenario where a central device at the edge
observation ([15]) is that sometimes, both exponential an@f the cloud (“Scheduler” in Figure 1) is serving multiple
logarithmic relationships show strong correlation based o cloud users (“Middleware” in Figure 1) which are consuming
the choice of QoS metric. Correlation based approaches adifferent types of content. The user’s anticipated satitfa
sometimes specific to the data used to perform curve fittingvith each content is estimated using the mean opinion score
([16]). Methods which map PSNR to MOS have been showr(MOS) function, which is a number between 1 and 5. These
to be inaccurate in terms of judging perceived visual qualit scores are highly subjective and are content as well as user
([17]). Some papers ([18], [4]) have looked into how the dependent. The set of parameters which characterize tlee wir
correlation changes with context (live vs. recorded videme  less channel, like delayd), packet error ratep) and data
vs. paid). rate {), are collectively denoted aQoS,,,. A set of utility
. o . functionsU; model the MOS for each user in terms of all the

In [19], a multi-application cross layer rate allocation Q0S,h, metrics:MOS; = U;(d,p,r),i=1...N. For each user,
scheme is proposed, MOS models for different types of applifor each type of content (news, sports etc.), the coeffisient
cations are derived, and an optimization problem that atte e ytility functionU; are different. The Middleware profiles a
a transmission policy to each user is proposed. [20] digsUSS yser and calculates the coefficientslin denoted a%)0Spp
OFDM systems where bandwidth and power are allocated tprigyre 1). The PHY (Figure 1) is responsible for assessieg t
maximize a system utility function which represents useQ0 channel state and constructing a feasibility regibnwhich
However, the utility function is a funcyon of t_hroughputdan represents the combinations dfp,r that can be realized
queue length only; other objectives like minimum QoS andyiven current channel conditions. Once the Schedulervesei
equalizing QoS are not considered. In [21], an OFDM systeny; as well asQoS,,, from different users’ Middlewares, it
that delivers MPEG-4 streams is optimized through videasg|culates an optimal bandwidth allocation as well as PHY
packet management. [22] considers joint subcarrier and®pow modulation/coding scheme such tRa} A/ 0S; is maximized
allocation in multi-user OFDM systems, but the objective of this objective can be modified, as discussed below). Each
the formulated problem is to minimize power consumptionpHy s then configured to operate at this operating point.
while providing a minimum MOS to users. This process is repeated whenever required, to compute new

We model the user utility (QoE) as a function bbth allocations.

data rate and bandwidth, and not as a function of data rate In order to computé/;(d, p,) we adopt the multi-stimuli

only ([23]). Based on the modulation scheme chosen, the BERersion ([24]) of the IQX hypothesis ([14]) as the QOE-QoS

is calculated, which in turn affects the throughput and ylela model. The IQX hypothesis states that the change in QoE (in
As a consequence, sometimes a low rate/low BER policy cathis case, measured as the MOS), for a change in QoS, depends
translate to ahigher user utility than a high rate/high BER on the current level of QoE:

policy, based on the content. Power constraints are left as 0QoE
future work, as are channels with different fading prometi x —QoE = QoE = ae P°% 4 5 (1)
Our scheme is applicable to both cellular and WiFi networks. 9QoS

The work closest to our paper, in the sense of a cross-layérhe authors of [24] extend the 1QX hypothesis to include
resource allocation scheme is [19]. However, the goal i} [19multiple QoS parameters, and show its applicability to wide
is to maximize the average MOS or throughput (but not ensuréraffic, using multiple linear regression. Equation 1 can be
fairness) through rate allocation (not bandwidth allcmai linearized aslog(QoFE) = log(a) — 8QoS, becausey can



be omitted since it is a scaling factor. As shown in [24], for Note that these formulae are a reasonably good approximatio
multiple QoS variableslog(QoE) = ap + a1QoS1 + - -+ + of the actual BER. A list of modulation and coding schemes
a,Q0S,, S0 thatQoE = e @051+ +anloSn ' Ag in [15],  (MCS), along with the corresponding data rates, can be found
we adopt delay, packet error probability and data rate as Qofd the 802.11 standard. For example, MCS index 42 specifies
parameters. Since QOE is measured as the MO$S, =  that three spatial streams are to be used, with 64-QAM (6, bps)
e% e®1d+azptasT for each uset. The coefficients: ...a% are  16-QAM (4 bps) and QPSK (2 bps). The coding rate is 1/2,
part of QoS,,, and can be obtained through experimentatiorthus there ar@.5 (6 +4+2) = 6 data bits per symbol. There
by the Middleware, as discussed in the next section. We nowre 52 sub-carriers (20MHz); for an OFDM symbol rate of
relate theQoS,,, parameters to the spectral resource, namelytus, the data rate- is calculated a$ * 52/4us = 78 Mbps.

the bandwidti? measured in Hz. The feasibility regidncan ~ Overallp, is calculated as the average of BERs for 64-QAM
be constructed (i.ed, p,r can be determined) giveW and (Equation 5 withM = 64), 16-QAM (Equation 5 withM =
channel conditions. For a wireless channel of widftif z, the ~ 16) and BPSK/QPSK (Equation4). Onggis calculatedp and
(coded) link data rate depends on the modulation scheme,d can be found using system parametBrands respectively.

the number of spatial streams as well as the coding ratd.hus, the feasibility regio® can be constructed for each user.
Modulations schemes with higher data rates are, in general, i functions: The authors of [15] provide equations
more sensitive to channel conditions. The bit error prolfgbi " (o13te MOS tod, p.r, for a file download:MOS —

py, the packet error ratg in terms of the SNR-per-bit, and the , ¢q¢" cap(=0.15d), MOS = 5.5 - cap(—20p), MOS —

delay, for a modulation schem& 0D is: 1.2 - In(1 x 10~%r). Link data rate varied from 0-10Mbps;
B Ey\ SNR w however, 802.11n data rates range from 0-200Mbps. To over-
Ps = fuop No) faop ' come the mismatch we artificially increased the upper limit
p=1-(1—p)? andd = s/(r(1 — p)) @) of the data rate to 200Mbps by changing the coefficients:

o ] ’ MOS = 1.2 -In(5 x 10~%r). Data points were extrapolated
for sufficiently long packets, wher® is the number of bits ysing this set of equations and re-fit onto the multi-stirf@X

in a network packet andl is the size of the data requested by model using multiple linear regression. The resulting ¢igua
the application in a transaction (henceforth referred tte@®  with R2 = 0.9799 is:

layer maximum transmission unit (MTU)"). We approximate MOS — ¢—68643p—0.10799d+1.1x 105 ©6)

the lower BER of a coding scheme by using the coded - )

data rate in the calculation of/No. Thus, the feasibil- A second QOE-QoS model can be found in [19]. Packet loss
ity ¥ = R3(d,p,r) can be created by considering variousrates were varied for three audio codecs: G.723.1.B which
modulation and coding schemes. The typical use case fdtas a capacity requirement of 6.4kbit/s, iLBC (15.2kbjt/s)
our scheme involves multiple users connected, or attemptinSpeex (24.6kbit/s), and G.711 (64kbit/s). Again, thesedtés

to connect to, a central access point. The available channére much smaller than the 802.11n rates so we artificially
bandwidth¥ is fixed. The objective is to minimize the used increased the bit rates a thousandfold - this step can biégdst
bandwidth, while maximizing an MOS related objective. A by thinking of the “user” as a VoIP aggregating device to
fraction of the available bandwidti/, denoted adV; needs Wwhich thousands of users are connected. After extrapglatin
to be assigned to each user. Based on the SNR and choitlite data, the following equation was obtained using mltipl
of modulation, a data rate can be achieved. The QoE of usdinear regression witlk? = 0.94681 (note thatay = 1.3629):

i can then be calculated using thep, r values for that link. MOS — ¢1-3629,—1.5068p—0.10461d+3.5238x 10~ Or @)
Therefore, the problem can be cast as an optimization prable o . . .
compute the per-user bandwidth allocatidh and the per-user Opf[|m|zat|on:BandW|(_1th allocation becomes_ a_sulqcarrler allo-
modulation/coding scheme such that the average QoE acroS§&tion problem. The input vectds to the optimization solver

all users is maximized, and wheped, » can be determined as 'S Of length 2N. For each use, there are two elements
above: V(i) and V(i + 1) in V: the MCS index and the number

N of subcarriers to be allocated respectively. This lattdueva

max 1 Z 0 pai d+abptalr 3) is representative of the allocated bandwidlih - the standard
(d,p,r)€T defines 52 subcarriers for 20MHz bandwidth, and so 26 subcar-
riers would represent 10MHz of bandwidth. Suppose that the
number of subcarriers to be allocatedSg< 52 for 802.11n
20MHz). There are76 possible MCS indices for 802.11n
OMHz. When the objective is to maximize the average MOS
f the two users, the optimization problem (Equation 3) now
ecomes:

=1
N
s.t. dwi<w
=1 2
Example:- Two users are using a shared 802.11n wirelesg

link, each of whom is using a different application. In order
to construct the feasibility regiod, p, should be calculated.

—6. —0.10799d+1. “Er
For BPSK/QPSK and M-QAM ([25]) modulation schemes: max 0.5 x (¢804 =0 10T0EHL DD
(BPSK/QPSK)p;, = 0.5 - erfc(\/SNR-W/r)  (4) ¢~ 1:9068p—0.10461d+3.5238x 10" 0r) - (g)
st V) +V(E) < S ©)
vM -1 1 M E;
(M-QAM) p, = = erfc ( %ﬁ) 0<V(0),V(2) <75 (10)
Mlog, v M ( 0 whered, p, r are obtained as above. This problem is an integer
VM —2 3log, M E, nonlinear optimization problem, with linear constrainthe
+ AT on /T erfe(3 50 —1) No (5)  objective function is non-smooth, and thus, a global optani
082 0 tion technique is suitable. We choose evolutionary alporit
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the allocated bandwidth - thus increasing the throughpdt an
MOS in general. The MCS index determines the actual data
rate. The large white spaces between the “strips” are dacirti

of the MCS index layout. The ranges of indices are broadly
divided based on spatial streams (SS): indices 0-7 for 1 SS,
8-15 and 32-37 for 2 SS, 16-23 and 38-51 for 3 SS, and 24-
31 and 52-75 for 4 SS. Within each sub-range, all possible
modulation schemes are available. However, some of these
modulation schemes have a high BER at low SNR, while
all modulation schemes have low BER at high SNR. This is
what causes the white “strips” in Figure 2. One can see that
these strips disappear at a SNR of 10000 (Figures 2b and 2d),
whereall modulation schemes have low BER. Because the data

rate increases and BER/PER decreases as better modulation
MCS Index MCS Index schemes are chosen at high SNRs, for a user, the throughput
(c) User2, SNR=20dB (d) User2, SNR=40dB increases, thus decreasing the delay and increasing the MOS

Fig. 2: Heatmap showing the MOS (higher MOS is better) ofi" 9eneral. At low SNRs, the data rate can be multiplied up to
User 1 (data download workload) at (a) low SNR and (b) highfour-fold by using multiple spatial streams and a modufatio

SNR; MOS of User 2 (VoIP workload) at (c) low SNR and scheme Wlth a Ic_>w symbol rate. This is how the MOS can
(d) high SNR. On the X axes is the MCS index, and on the@Pproach its maximum value even at low SNRs; however, only

Y ‘axis is the allocated bandwidth represented as the numb&g"Y few MCS indices cause high MOS (as compared to high
of allocated subcarriers. Darker areas indicate larger MOS °NR conditions).

Simulation SetupThe jMetal library provided an imple-

to solve this problem, because of 1) their stochastic naturgentation of constrained NSGA-II in our Java based simu-
and 2) their ability to accommodate multiple objectivesr Fo lator. The default values of the parameters are as follows:
example, wherS is not specified, the above problem can beSNR = 100 = 20dB, B = 4000 and s = s*> = 60MB.
transformed into a multi-objective problem where the secon The performance of our scheme (GA) is compared to two
objective is to minimize the used bandwidth(1) + V(3). other schemes for two d_|ff_erent obJ_e<_:t|ves: maximizing the
Genetic algorithms, and the NSGA-II algorithm in particula average MOS and maximizing the minimum MOS. Each data
are popular choices for evolutionary algorithms. The inputPoint for GA is averaged over 20 random runs. The two
which is the integer valued vectdr, is called a “chromo- Other schemes are: Opt - which uses brute force search to

and mutation, new candidate chromosomes (i.e., solutames) bandwidth equally among the users. For a given number of

front is obtained. maximizes MOS by iterating over all MCS indices. Note that
Opt is feasible to implement only when the number of users,
as well as the available bandwidth, are small; as the nuntber o
subcarriers increases, the number of ways to divide it welyqu

In this section we present the performance evaluation oAmong many users increases exponentially. While Prop has
our scheme. First, we discuss the MOS profiles of the twahe least computational overhead, Opt has the highest,gowin
users, and then evaluate the performance of the bandwidtb the exhaustive search. Finally, the problem of equalizin
allocation schemes. The users are assumed to be connecteser MOS is discussed, and evaluated. A note on how results
to an 802.11n based LHWN access point. The Middlewareare visualized: we compare GA and Prop against Opt not by
installed on both of the users’ devices, has profiled the apusing the absolute MOS valudsjt as a percentage relative to
plication’s coefficients asi, a1, as,as (Equations 6 and 7) Opt This is because a difference in MOS of 0.1 at the MOS
and sent it to the Scheduler running on the LHWN device. Itvalue of 1 (10%) has a higher impact on the user’s already
should be noted that profiling an application and deternginin low QoE more than a difference of 0.1 at the MOS value
the coefficients is not a trivial task and a research problenof 3 (3.33%). We assume that user SNRs are the same, for
in itself. The cloud service provider has tasked the Scteedul comparison purposes only.
with reducing bandwidth usage while ensuring certain user
Quality of Experience objectives, so that more users cam. Maximizing the Average MOS
be accommodated on the same spectrum. Available channel
bandwidth is 20MHz (52 subcarriers), and channel condition
change frequently. There are a total of 76 possible modulati
and coding schemes for 20MHz 802.11n, using a maximu
of 4 spatial streams.

0 15 30 45 60 75 0 15 30 45 60 75

IV. PERFORMANCEEVALUATION

Figure 3 shows the performance of our scheme GA when
the objective is to maximize the average user MOS (Equa-
rﬁion 3). The available bandwidth is constrained at various
values § = 3,13,26,39,52 in Equation 9), to generate each
data point. There is no constraint on the maximum spatial
User Profile: The MOS profile of each user at different streams that can be used, i.e., no constraint on the MCS.index
SNRs can be seen in Figure 2 (higher MOS is better). Duringhe result is shown in Figure 3a. As available bandwidth
unfavorable channel conditions with a SNR of 100, the MOSincreases, so does the MOS, due to higher data rates. The
profile of user 1 is shown in Figure 2a, and user 2 inperformance of GA iddentical to Opt. On the other hand,
Figure 2c. As the number of subcarriers increases, so dod¥op behaves inconsistently - sometimes as much as 17.6%
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Fig. 3: Maximizing the average MOS of users. (a) Performaricair scheme (GA) as compared to optimal (Opt) and propaatio
(Prop) for allocation of 20MHz (52 subcarriers), SNR = 20dB} legend for figures (c)-(e). Effect of: (c) SNR, (d) appday
MTU, and (e) packet size on the performance of GA, Opt, angh,Paballocations of 10 and 20MHz.

[-6- GA  -F3- Prop & Opt | 5 5 5
5 ] ] ] ] ] 0 4 w4 n 4
w4 B} 10MHz GA (%) 03 o3 O3
o3 -~ 10MHz Prop (%) =2 =2 =2
=2 - 20MHz GA (%) g1 g 1 g1
g (1) 7 20MHz Prop (%) g 0 1S 0 g 0
E —A— 10MHz Opt c ' =
£ - 20MHz Opt s 3 s S -
= . — 160 —— EANEANEALEAN W)
0 4 8 12 16 20 10 20 30 40 50 20 40 60 80 100 20009000 6000 8000
Available Bandwidth (MHz) SNR (dB) App Layer MTU (MBs) Packet Size (bits)
(a) Comparison (b) Legend (c) SNR (d)y MTU (e) Packet Size

Fig. 4: Maximizing the minimum MOS of users. (a) Performarmfeour scheme (GA) as compared to optimal (Opt) and
proportional (Prop) for allocation of 20MHz (52 subcarslerSNR = 20dB; (b) legend for figures (c)-(e). Effect of: (d)F§
(d) app layer MTU, and (e) packet size on the performance of Ggt, and Prop, at allocations of 10 and 20MHz.

below optimal at 10MHz. This is because less bandwidtin MOS is not that high - only about 10%, as packet size
needs to be allocated to user 2 (Figure 2c), and not in equahcreases from 100 to 8000 bits. The advantage of large packe
proportion. To ensure an average MOS of about 3.5, thsizes is that multiple frames can be aggregated at the ata li
reduction in required bandwidth, when using GA, as comparethyer, as proposed in 802.11n as well as 802.11ac. Multiple
to Prop, is about 33%. This means that more users can BECP packets could fit inside a single frame. Thus, our scheme
accommodated since bandwidth usage is reduced. The effectis able to take advantage of frame aggregation by using the
changing channel conditions for allocations of 10 and 20MHZzpacket size to generate the feasibility region, which iduse

is shown in Figure 3c. As the SNR increases from 10dB tahe optimizer. Again, GA performs identical to Opt, whileoPr
50dB, channel conditions improve, decreasing the BER/PERleviates by at most 21.5% at 10MHz and 1.6% at 20MHz.
and increasing the throughput, thereby increasing the MOS. o o

Not much improvement can be noticed between 40 and 50de3- Maximizing the Minimum MOS

since high modulation rates like 128-QAM are not available g performs identical to Opt (Figure 4a) and outperforms
in the 802.11n standard (unlike the upcoming PHY standardpq, \which performs inconsistently. GA is able to save 25%
such as 802.11ac). We note that improving SNR provides fopanqwidth when ensuring a minimum MOS of 3.9. At a low

much higher MOS than increasing .the bandW|dth.. At bothgnR of 10dB (Figure 4c), the minimum MOS is close to zero.
10 and 20MHz, GA performs identical to Opt, while Prop This can be contrasted with Figure 3c, where the objective
deviates by at most 17.6% and about 3% on average. Thgas to maximize the average MOS. In order to boost the
effect of changing application layer MTU) for users can be  minimum MOS, a lot of bandwidth has to be allocated to user
seen in Figure 3d. With a sma!ler MTU,_the_ deIay_ls reducedi, whose MOS profile is not as “flat” as user 2. Since this
thus increasing the MOS; for video applications this delay ¢ s not an ideal operating condition, we address the problem
be interpreted as the initial V|d_eo buffering time. At a h|gh of equalizing user MOS in the next section. GA performs
MTU, the delay is higher - but since Prop allocates bandwidthgentical to Opt, while Prop deviates by at most 34.66%. &ffe

independent of MTU, MOS increases because of the Usftincreasing MTU is seen in Figure 4d. For a five fold increase
profile characteristics. However, depending on the apifita i, MTU size from 20 to 100MB, the reduction in MOS is

encoding, using lower MTU sizes can incur higher overheadyq ¢ 21 5%, Performance of Prop is fairly constant across
At the same time, using higher MTUs require larger buffersyitys, since there are no constraints on the MCS index. In
and processing capabilities. Depending on the applicati®n  rigre e, the result of increasing packet size over tworastle
MTU size should be chosen and relayed to the Middleware, sg,agnitudes is seen. The reduction in MOS in this case is about

that an optimal amount of bandwidth can be allocated. GASqe4 |n poth cases, GA performs identical to Opt, while Prop
performance is identical to Opt, while Prop deviates by a$mo performs within 37%. We conclude that, irrespective of the

23.4% at 10MHz and 0.11% at 20MHz. Note that as MTUgpiactive, the performance of GA is identical to Opt; howeve
changes, all algorithms adjust the MCS index accordindiig; t this result comes at the cost of increased computation. In
explains the somewhat constant performance across MTUg; cloud service scenario, the LHWN can easily use cloud
Effect of increasing packet sizés] is shown in Figure 3e. The  computation resources to compute this optimal bandwidth
PER increases with increasirig for constant BER (which is gjiocation, instead of performing it on the device itselfo
determined by the bandwidth and MCS index). The penalty,erforms inconsistently, based on the available bandwidth
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Fig. 5: At SNR of 20dB: (a) Pareto front for GA scheme
between variance and mean of users’ MOS, for bandwidth
allocations of 5, 10, and 20 MHz. (b) performance of GA [3]
scheme for three different tolerances of variance in use6GMO

(6]
C. Equalizing MOS and Fairness

It is possible that while maximizing the average MOS in a [7]
system, some users are unfairly penalized with a low MOS Ol g
small bandwidth allocation. Fairness can be quantifiedgusin
a measure of dispersion - in this case, the variance of usersfg
MOS. Ideally the variance should be zero, but in practice a
very low variance can be tolerated, if it means an increas
in average MOS. This inherent trade off can be characterize
as a Pareto front. It can be obtained using our optimization )
scheme as follows. The objective of the optimization proble
(Equation 8) is changed to dual objectives: minimizing all2]
measure of dispersion (variance) of the users’ MOS, while
maximizing the average MOS. Using a chromosome poo!13]
size of 500, a Pareto front was obtained and can be seen In
Figure 5a. Clearly, the variance in user MOS can be reduced to
zero, but at the cost of decreased average MOS. This is becau$?
there is no tuple ofd, p, r) such that/*(d, p,r) = U?(d, p, r).
However, this observation is specific to the QOE-QoS profile 0[15)
the two users, as well as the channel conditions. The network
operator may choose to equalize users’ MOS within a specified
tolerance. Our system can easily accommodate such a demafif]
by solving the dual objective problem for a given available
bandwidth, and then choosing the solution that maximizes
performance while satisfying the tolerance bound. Thelt®su [17]
for such a scheme can be seen in Figure 5b for three different
values of variancet0~7, 103, and co. We see that MOS can 18]
be equalized more favorably (i.e. with higher average MQS) aj19]
higher bandwidths, while a tight tolerance results in veny |
QoE at low bandwidths. Tolerating a very small MOS variance
of 10~ allows the average MOS to double. The key takeawa;ﬁzo]
here is that MOS can be equalized, but at the cost of average
MOS, and that this tradeoff can be controlled by the network
operator. [21]

0]

V. FUTURE WORK

The authors are currently designing a testbed where thg?!
above scheme is to be implementéthsS,,, will be gathered
for multiple users using extensive experimentation. lpooat-  [23]
ing limits on the number of spatial streams used (i.e., numbe
of antennas) as well as a finite number of encoders is ongoin
For multiple users, 802.11ac will replace 802.11n becaus
of the increase in supported data rates. Finally, aspects su
as computation complexity, other QoS metrics, non-uniforni2s]
subcarrier fading as well as optimal power allocation wél b
considered.

4]
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