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tivity issues in 3D wireless sensor networks (WSN). In particular, the problem of
supporting full coverage, while ensuring full network connectivity is a fundamental one
for such applications. Unfortunately, designing a 3D network is significantly more difficult,
as compared to designing a 2D network. Previously, it has been shown that dividing a 3D
space into identical truncated octahedral cells of radius equal to the sensing range and
placing a sensor at the center of each cell, provides full coverage with minimum number
of nodes [2]. But this requires the ability to deploy and maintain sensor nodes at such
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Polyhedron particular locations. In many environments, this is very difficult, if not impossible, to do.
Node placement In this paper, we investigate the coverage and connectivity issues for such 3D networks,
k-Coverage especially underwater networks, while assuming random and uncontrollable node loca-

tions. Since node location can be random, redundant nodes have to be deployed to achieve
100% sensing coverage. However, at any particular time, not all nodes are needed to
achieve full sensing coverage. As a result, a subset of the nodes can be dynamically chosen
to remain active at a time to achieve sensing coverage based on their location at that time.
One approach to achieve this goal in a distributed and scalable way is to partition the 3D
network volume into virtual regions or cells, and to keep one node active in each cell. Our
results indicate that using cells created by truncated octahedral tessellation of 3D volume
minimizes the number of active nodes. This scheme is fully distributed, and so it is highly
scalable. By adjusting the radius of each cell, this scheme can be used to achieve k-cover-
age, where every point inside a network has to be within the sensing range of k different
sensor nodes. We analyze and compare the performance of these schemes for both 2D
and 3D networks. While for 1-coverage, the 3D scheme is less efficient than the 2D scheme,
the performance of 3D scheme improves significantly as compared to 2D scheme for
k-coverage, for values of k is larger than 1. As a result, such a distributed and scalable
scheme can be more useful in 3D networks than in 2D networks. Although this paper tar-
gets in particular 3D underwater networks, much of our results are applicable to other 3D
networks, such as for airborne applications, space exploration, and storm tracking.

© 2014 Elsevier B.V. All rights reserved.
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Applications of sensor networks for underwater
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study, (as well as in other applications such as space exploi-
tation, airborne surveillance and greenhouse gas monitoring)
require deployment of 3D wireless sensor networks.
Although practical wide-scale deployment of 3D networks
is still relatively limited, there has much work in progress
that promises to make 3D networks significantly more
ubiquitous in the not-so-far future. For example, underwater
acoustic sensor networks have generated a lot of interest
among researchers [1,11,15,19,38-41,43]. Ocean column
monitoring requires the nodes to be placed at different depths
of ocean, which creates a three-dimensional network [1]. In
an article of Business 2.0 magazine, eight technologies have
been identified that can save the world from global warming
and its catastrophic consequences [13]. That article identifies
environmental sensor networks as one of those eight technol-
ogies Since sensor nodes in such environmental wireless
sensor networks will be distributed over a 3D space, they
must be modeled as a 3D network as well.

Many detection and tracking applications require full
coverage such that any point inside the network volume
(also referred to here as network space) is monitored at
any time by at least one sensor [5,9,12,23,25,33]. It is also
important to maintain connectivity, so that detection
information can be transmitted to the sink or a command
center. While coverage and connectivity issues have been
thoroughly investigated in the technical literature, the
scope of most of those works relates to terrestrial 2D sen-
sor networks. Unfortunately, many of those results cannot
be directly applied to 3D networks. In fact, many widely
used coverage analysis and placement strategies devel-
oped for 2D networks become NP-Hard in 3D [36]. It is
not surprising, given the historical fact that many prob-
lems in 3D required many centuries of effort to be solved,
while their 2D counterparts can be solved trivially. For
example, Kepler's sphere packing problem has been
around since 1611, but a proof of Kepler's conjecture has
only been found in 1998 [17]. It is still an open problem
if Kelvin’s conjecture holds when the cells have identical
shape. Similarity with Kelvin’s conjecture has been used
before to solve coverage and connectivity problem in 3D
networks [2,3]. But these works are applicable only under
the assumption that sensor nodes can be deployed and
maintained at specified arbitrary locations. Although this
assumption may be realistic in some communication envi-
ronments, it could be consider less practical in large
deployment of underwater sensor networks. In this paper,
we investigate the coverage and connectivity issues in 3D
networks where this latter assumption does not hold.
Instead, we assume that we have no control over the
movement of a node. As a result, the position of a node
can be random and a large number of redundant nodes
have to be deployed in order to ensure that every point
of the network is within the sensing range of at least one
sensor node. However, at any time instant usually not all
nodes are needed for full sensing coverage. The challenge
is to find a distributed and scalable scheme that dynami-
cally selects a suitable subset of nodes to remain active
based on their location, while putting other nodes into
sleep mode. Since energy consumption during sleep mode
is insignificant, this approach prolongs network lifetime
significantly. Although it is possible to solve this problem

in many different ways, however, finding a distributed
and scalable scheme that adjusts in real-time with changes
in the network topology (e.g., movement of nodes) is diffi-
cult [28]. Any solution that depends on a lot of message
passing is unlikely to achieve this objective, especially
because of the particular characteristics of the underwater
communication environment.

In this paper, we propose a very fast, distributed, and
scalable scheme to dynamically select a subset of active
nodes, such that full sensing coverage and connectivity is
always maintained. We assume that sensing and
communication range of each sensor node is deterministic,
homogeneous, and spherical. It is also assumed that each
sensor node has a localization component that allows it
to determine its position. (Such schemes have been studied
extensively in the technical literature; see e.g., [44-46].)
The main idea is to divide the 3D network space into iden-
tical regions based on the sensing range and communica-
tion range of the sensor nodes. Among the sensor nodes
located in each region, one sensor node is dynamically
and locally selected to perform the sensing operation for
that region and to maintain connectivity with active nodes
of the neighboring regions.

Although this general idea has been used before [34],
the challenging part is to determine the best possible
division that minimizes the number of regions (and thus
minimizes the number of active nodes at any time). There
are two constraints here. First, the diameter of the circum-
sphere of each region cannot be greater than the sensing
range of each sensor node. This is because, unlike in
[2,3], we do not have any control of the position of the
node. In the extreme case, it is possible that the selected
active node is located in one corner of the region. Still this
sensor node must be able to sense all the points of its
region. Second, maximum distance between two furthest
points of the neighboring regions cannot be greater than
the communication range of each sensor node. This
constraint guarantees that active nodes of two neighboring
region are able to communicate between them, irrespec-
tive of their positions inside each region. These two
constrains ensure that full coverage and connectivity are
maintained even though active nodes are selected locally
by the nodes inside each region.

Our contributions, results, and conclusions of this work
can be summarized as follows:

e We investigate the problem of coverage and connectiv-
ity for 3D networks where deployment of a node at any
predetermined position and maintaining that node
position cannot be ensured. As a result, a large number
of nodes have to be randomly deployed. Since at any
particular time, all nodes are not needed for maintain-
ing full sensing coverage and connectivity, it is
important to put the redundant nodes into sleep mode,
thus limiting the energy use and prolongs the network
lifetime. This must be done in a dynamic fashion based
on the position of the nodes at that instant. The scheme
must be highly distributed and scalable, because node
movement is unpredictable. We introduce such a
scheme that dynamically determines the active node
locally.
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e Our scheme partitions the 3D network space into
regions (or, cells) and keeps one node active in each cell.
Partitioning must be done in such a way that the num-
ber of cells is minimal (again, to prolong the network
lifetime), while ensuring that the active node, which
can be located anywhere inside the cell, can monitor
the entire cell and that the active node is able to com-
municate with active nodes of all the neighboring cells.
Using Kelvin’s conjecture, we speculate that this can be
achieved if the shape of the cell is truncated octahedral.
We define a metric called volumetric quotient (V.Q.)
which is the ratio of the volume of a polyhedron to
the volume of its circumsphere. The larger the V.Q. of
the shape of cell is, the smaller is the number of the
required active nodes. We show that the V.Q. of trun-
cated octahedron is 0.68329, much larger than other
possible space-filling polyhedrons. For example, the
V.Q. of rhombic dodecahedron is 0.477, hexagonal prism
has volumetric quotient of 0.477, and cube has just
0.36755. These results imply that if the shape of the cell
is rhombic dodecahedron or hexagonal prism, then we
need 43.25% more nodes than in the case when the
shape of the cell is truncated octahedron. We also com-
pare different partitioning scheme based on their
energy efficiency. We find that cell lifetime is maxi-
mized if we use truncated octahedron based cell.

We provide a very simple mechanism that allows each
sensor node to identify their cell id instantly if they
know their own position. This scheme requires only a
constant number of arithmetic operations to compute
the cell id of each node and hence is computationally
very efficient. Once they identify their cell id, the sensor
nodes can easily choose the active node locally.

While our scheme is highly distributed and scalable,
and active nodes are dynamically selected locally in
each cell without any message passing between nodes
in different cells, sometime the scheme keeps more
nodes active than a centralized scheme that has global
knowledge about the position of all nodes. We compare
the efficiency of our scheme with that of a centralized
scheme that can deploy nodes at any arbitrary location.
Since such a centralized scheme can control the posi-
tion of the nodes, it requires even fewer active nodes
than the optimal scheme that cannot control the posi-
tion of the nodes. In order to highlight this distinction,
we call this centralized scheme SuperOpt. We compare
our scheme with SuperOpt for k-coverage, where a point
is monitored by k sensor nodes rather than just one sen-
sor node. We found that the gap between our scheme
and SuperOpt decreases significantly when k is greater
than 1. While the ratio of the number of active nodes
between the distributed scheme and SuperOpt goes
down both in 2D and 3D, only in 3D k-coverage can
be maintained with high probability.

The rest of the paper is organized as follows. Section 2
presents some necessary background information on
space-filling polyhedron, Voronoi tessellation, famous
conjectures of Kelvin and Kepler, and describes related
works in network literature. Section 3 formally describes
the problem and the assumptions. Section 4 analyzes the

problem and describes the results. Section 5 discusses
how our scheme can be adjusted when the ideal assump-
tions are not valid. Finally, Section 6 concludes the paper.

2. Preliminaries

In this section, we define some relevant terms and
provide some background information necessary for the
presentation of our research. The last subsection describes
selected related works in the technical literature.

2.1. Space-filling polyhedron

A polyhedron is a three-dimensional shape consisting of
finite number of polygonal faces. The faces meet in straight
line segments called edges and the edges meet at points
called vertices of the polyhedron. A polyhedron surrounds
a bounded volume in three-dimension. Example of polyhe-
drons includes cubes, prisms, and pyramids. Polygon is a
two-dimensional analog of polyhedrons. The general term
for a shape of any dimension is polytope.

A space-filling polyhedron is a polyhedron that can be
used to perfectly fill a volume of space, without overlaps
or gaps (a.k.a. tessellation or tiling). At first, we provide a
short overview on space-filling polyhedron. It is not easy
to show that a polyhedron has space-filling property. For
example, although Aristotle claimed that the tetrahedron
fills space [4], his claim was incorrect [ 18], and the mistake
remained unnoticed until the 16th century [22].

Some of the important results on space-filling polyhe-
dron are as follows: There are exactly five regular polyhe-
drons (a.k.a. platonic solids or regular solids) [26]: cube,
dodecahedron, icosahedron, octahedron, and tetrahedron, as
was proved by Euclid in the last proposition of the Elements
([42]). Among them, only cube has the space-filling prop-
erty [16]. There are only five convex polyhedrons with reg-
ular faces having space-filling property: triangular prism,
hexagonal prism, cube, truncated octahedron [26,31], and
gyrobifastigium [20]. The rhombic dodecahedron, elongated
dodecahedron, and squashed dodecahedron are also space-
fillers. A combination of tetrahedrons and octahedrons fills
space. In addition, octahedrons, truncated octahedrons,
and cubes, combined in the ratio 1:1:3, can also fill space.

2.2. Kelvin’s conjecture

In 1887, Lord Kelvin asked the following question [27]:
“What is the optimal way to fill a three dimensional space
with cells of equal volume so that the surface area (interface
area) is minimized?” This is essentially a problem of finding
a space-filling structure having the highest isoperimetric
quotient. If the volume and surface area of a structure are
V and §, respectively, then in three-dimensions its isoperi-
metric quotient can be defined as 362“2. Sphere has the
highest isoperimetric quotient and it is 1. Kelvin’s answer
for his question was 14-sided truncated octahedron having
a very slight curvature of the hexagonal faces and its
isoperimetric quotient is 0.757, but he could not prove
that it is optimal. Uncurved truncated octahedron has iso-
perimetric quotient of 0.753367. For more than a century,
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Kelvin’s solution was generally accepted as correct [32]
and is widely known as Kelvin’s conjecture. But in 1994,
two physicists Denis Weaire and Robert Phelan came up
with another space-filling structure consisting of six
14-sided polyhedrons and two 12-sided polyhedrons with
irregular faces of equal volume that has 0.3% less surface
area than truncated octahedron [29,30]. The isoperimetric
quotient of this structure is 0.764. But any proof that the
structure of Weiare and Phelan is optimal, or that Kelvin’s
solution is optimal for identical cells, is yet to be found.

2.3. Voronoi tessellation

In three-dimension, for any (topologically) discrete set S
of points in Euclidean space, the set of all points closer to a
point c of S than to any other point of S is the interior of a
convex polyhedron called the Voronoi cell for the point ¢
(see e.g., [6]). The set of such polyhedrons tessellate the
whole space, and is called the Voronoi tessellation corre-
sponding to the set S. If we find the solution of our problem,
i.e., the optimal location of the nodes, then their Voronoi
tessellation provides the optimal shape of each cell.

2.4. Kepler’s conjecture

Another closely related problem is Kepler's sphere
packing problem. The problem is to find the most efficient
way to pack a volume using equal-sized spheres. In 1611,
Kepler made a guess that the face-centered cubic (FCC) lat-
tice was the most efficient of all arrangements, but was
unable to prove this. After four hundred years of failed
efforts, Kepler’'s conjecture was finally proved to be correct
by Thomas Hales in 1998 [10]. The proof extensively uses
methods from the theory of global optimization, linear
programming, and interval arithmetic. The computer code
and data files used for the proof required more than 3 GB of
space for storage. The Voronoi tessellation of face-centered
cubic (FCC) lattice is rhombic dodecahedron and although
FCC lattice is the optimal solution for sphere packing, in
this paper we will show that truncated octahedron, which
is the Voronoi tessellation of body-centered cubic (BCC)
lattice, actually require 43.25% fewer nodes for our prob-
lem. This significant difference is not very intuitive. Note
that, FCC lattice has packing density of 74.048% (optimal
solution for sphere packing) while BCC lattice has packing
density of about 68%.

2.5. Related works in networks

Conserving energy, and thus prolonging the network
lifetime, by keeping a subset of the nodes active in a dense
network while putting the rest of the nodes into sleep
mode has been proposed for terrestrial 2D sensor networks
[7,10,34,35,37]. Some of these works can be applied to 3D
networks as well. Our work in this paper is most closely
related to geographic adaptive fidelity (GAF) [34], while
extending its scope. However [34] is only applicable to
2D networks and extending that work to 3D network is
very difficult, because it is hard to find best partitioning
scheme in 3D. We investigate this problem in our paper.
Another limitation of GAF is that sometime it requires

more nodes than a centralized scheme with global
information about node locations. We address that issue
by providing an innovative scheme for k-coverage. Our
scheme achieves k-coverage with high probability, while
significantly decreasing the gap in the number of active
nodes needed relative to the centralized scheme.

As selected examples only, we mention here a few other
references on three-dimensional networks in the litera-
ture. Modeling 3D cellular networks has been investigated
in [8,14]. Shape of the cell is modeled as rhombic dodeca-
hedron in [8] and in [14] each cell is represented as hexag-
onal prism. However, our work shows that both rhombic
dodecahedron and hexagonal prism shaped cell requires
43.25% more active nodes than the case when the shape
of the cell is truncated octahedron. Coverage and connec-
tivity issues of 3D networks have been investigated in
[2,3]. However, those works assume that nodes can be
deployed at any desired location and that the positions of
those nodes can be maintained during the entire lifetime
of the network. In this paper, we investigate the case
where this assumption does not hold, which would be
the practical case of underwater sensor nodes without
being equipped with self-propelling means.

3. Problem statement

The main assumptions and the problem goals are
defined as follows.

3.1. Assumptions

e Sphere-based sensing: We assume a sphere based sens-
ing model such that each active sensor has a sensing
range of r5; an active sensor can reliably detect any
object that is located within a distance of r; from the
Sensor.

Sphere-based communication: We assume a spherical
communication model where each active sensor has a
transmission range (or, communication range) of ry;
i.e, if the distance between two active sensors is less
than or equal to r,, then they can communicate reliably
with each other.

Homogeneous sensing and communication range: We
assume that all sensors have the same sensing range
and that the communication range of all sensors is also
identical.

No boundary effect: We assume that the network is
very large and there is no boundary effect, so that the
number of nodes required for a placement strategy is
inversely proportional to the volume of a Voronoi cell
of the nodes.

Random node position: We make no assumption about
the location where any particular node is deployed.
However, sensor node density must be high enough,
so that full coverage can be maintained.

3.2. Goal

The main goal is to find a distributed scalable scheme to
dynamically determine the subset of nodes that remains
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active. As shown in the next section, we accomplish this
goal by achieving the following sub-goals.

e Given any fixed sensing range rs, find the best partition-
ing scheme that keeps minimum number of required
active nodes at any time. Also find out the best parti-
tioning scheme such that lifetime of a cell (i.e., time
until the last node in a cell dies out) is maximum.
Find a distributed and efficient algorithm for the deter-
mination of which cell a sensor node belongs to.

Find a solution for k-coverage problem, such that any
point is within the sensing range of at least k nodes.
Determine the efficiency of the scheme compared to
an optimal scheme where an “oracle” determines which
nodes to keep active and nodes position can be adjusted
as needed.

4. Analysis

One simple distributed and scalable scheme to dynam-
ically determine the subset of nodes that needs to remain
in active mode is as follows. Partition the 3D network
space into identical regions (i.e., cells) in such a way that
if any node inside that region is active, it can monitor the
entire region. Thus full sensing coverage can be achieved
by locally selecting an active node in each such a cell. No
coordination or message passing with nodes outside the
cell is needed. Local selection of the active node can be
done based on any standard leader selection algorithm'
(e.g., [24]) and the leader can be selected to serve as the
active node. All other nodes go into sleep mode until the lea-
der dies or moves to another cell. In order to maintain con-
nectivity among nodes, partitioning must be done in such a
way that the distance between two active nodes from neigh-
boring region must be less than or equal to the transmission
range, r.. This simple but powerful scheme does not require
any coordination with nodes outside the cell and so is highly
distributed and scalable. Furthermore, this scheme can also
quickly adapt to rapid node movement. (The assumption
here is that the topological changes resulting from nodes’
movement is slower than the rate at which the active node
selection is performed.) However, there are two main con-
siderations that need to be addressed:

1. Node density must be large enough, so that there is at
least one node in each cell to provide full sensing
coverage.

2. In some cases, this scheme is less than optimal in terms
of the number of active nodes. (Later in this paper, we
investigate the requirement of the number of active
nodes for k-coverage, where the goal is to provide mon-
itoring by k sensor nodes of each location (instead of
just one sensor node). We found that in 3D networks,
relative requirement of the number of active nodes goes
down for larger values of k, while the probability of
k-coverage remains very large.)

! Leader selection can be as simple as choosing the node that is closest to
the center of the cell. In the case of a tie, node energy level or node id can be
used as a tie breaker.

While the scheme mentioned above is interesting and
analog to a scheme that had been investigated in the
context of 2D networks [34], one major and challenging
problem is to find the right partitioning procedure in the
context of 3D networks.

4.1. Determining the right partitioning scheme

In order to find the right partitioning scheme, it is
important to identify the criteria of what constitute the
best partitioning scheme. One criterion could be minimiz-
ing the number of active nodes at any instant. Since there
is one active node per cell, minimizing the number of cells
achieves this goal. In order to obtain a general solution, we
assume that the 3D network volume to be monitored is
infinite, so there are no boundary effects. Although, it
may be the case that the best partitioning scheme does
not create identical cells, we assume that all cells are iden-
tical for the following reasons:

1. This makes the problem tractable and allows us to focus
on the shape of the cell.

2. Identical cells provide a regular pattern and allow us to
deterministically establish the location of any cell using
a simple set of equations. This is important to make the
algorithm efficiently fully distributed and scalable.

3. Due to symmetry and infiniteness of the 3D network
space, it is unlikely that the shape of cells will be differ-
ent in the best partitioning scheme.

4. Practical deployment of the scheme in an underwater
environment would be significantly simplified with
the use of identical cells.

If the shape of all cells is identical, then maximizing the
volume of a cell minimizes the number of cells. There are
three following constraints:

1. Shape of a cell must be a space-filling polyhedron.

2. Diameter of the circumsphere of the cell cannot be
greater than the sensing range, rs.

3. Distance between two furthest points of two neighbor-
ing cells cannot be greater than the transmission
range, rr.

The first constraint limits the number of possible poly-
hedrons. Since maximizing the volume is the goal, for any
shape of the cell, the diameter of the circumsphere must
always be r;. Thus the volume of the circumsphere must

be: %n(rz—Sf = ’%3, which is the upper bound of the volume
of the cell. This allows us to create an instinctively useful
metric, defined as the ratio of the volume of a cell to the
volume of its circumsphere, useful for comparing different
shapes of a cell. We refer to this metric as volumetric
quotient (V.Q.). If the volume of a cell is V, then, its V.Q.
is: %. The value of V.Q. is always between 0 and 1. Our

goal is to find the space-filling polyhedron with the largest
(i.e., closest to 1) V.Q.

Finding the optimal polyhedron and proving its opti-
mality seems to be a very hard problem, given that many
of the 3D optimality problems them took centuries to
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prove (Kelvin’s problem is still open after more than one
century, while Kepler's conjecture was proven only
recently after almost five centuries of efforts). Since pro-
viding any rigorous proof is likely to be an intractable
problem, we proceed in the following way. At first we pro-
vide some intuition why truncated octahedron is the most
likely solution by drawing similarity of our problem with
the Kelvin’s conjecture. Then we choose three other differ-
ent space-filling polyhedrons that have been used by other
researchers in similar problems and are reasonable con-
tenders to truncated octahedron as a possible solution.
We then show that truncated octahedron has much higher
V.Q. than other contenders and, thus, requires much fewer
active nodes.

Kelvin’s problem is essentially finding a space-filling
polyhedron that has minimum ratio of surface-area to vol-
ume. We claim that the space-filling polyhedron that has
the minimum ratio of surface-area to volume should best
approximate the sphere. It is well known that among all
structures:

1. For a given volume, sphere has the smallest surface
area.

2. For a given surface area, sphere has the largest
volume.

From above two statements, we claim the following.
Suppose that any two space-filling polyhedrons P; and P,
have equal volume. If surface-area of P; is smaller than
the surface area of P,, then P; is a better approximation
of sphere than P,. Again if P; is a better approximation of
sphere than P,, then P; has higher volumetric quotient
than P,. Recall that among all shapes, sphere has the high-
est volumetric quotient, which equals to 1.

Thus the solution of the Kelvin’s problem is essentially
the solution of our problem. Since until now, truncated
octahedron is the best known solution for Kelvin’s prob-
lem for a single cell shape, we conjecture that truncated
octahedron is also the most likely solution for our prob-
lem. Note that, we will consider the uncurved version of
truncated octahedron, because it is mathematically more
tractable than the curved version and the difference
between the curved version and the uncurved version is
practically negligibly small. Since the argument given
above is not strictly rigorous, so next we choose other
likely contenders of truncated octahedron and provide
comparison of truncated octahedron with those space-
filling polyhedrons.

One can attempt to solve our problem using Kepler’s
problem in the following way. Find the maximal packing
of spheres and then select the Voronoi tessellation corre-
sponding to the centers of the spheres. Define the radius
of the spheres such that the maximum distance from a
center to any vertex of the corresponding Voronoi cell is
the sensing range, ;. Kepler’s conjecture for sphere packing
problem has been proven recently after five centuries of
efforts, with the Face-Centered Cubic (FCC) lattice being
the solution for that problem. The Voronoi tessellation of
FCC lattice is rhombic dodecahedron. So we choose rhom-
bic dodecahedron as one of the contender of truncated
octahedron.

As another attempt, consider the fact that the solution
of our problem in 2D is hexagon [21]. The polyhedron that
has hexagon as its cross section in all three directions (x, y,
and z) does not have space-filling property. The polyhe-
drons that have space-filling property and hexagonal cross
section are rhombic dodecahedron and hexagonal prism.
So, we include both in our comparison. Finally, most sim-
plistic choice is cube and it is the only regular polyhedron
that tessellates in 3D space. So we compare truncated octa-
hedron with rhombic dodecahedron, hexagonal prism, and
cube, and show that truncated octahedron has better volu-
metric quotient that the rest of the choices and hence
required fewer nodes to cover a given volume.

Given the diameter of the circumsphere to be r;, we
determine that V.Q.-s of cube, rhombic dodecahedron and
truncated octahedron as: ﬁ =0.36755, 237 =0.477,
% = 0.68329, respectively. In the case of hexagonal
prism, diameter of the circumsphere does not ensure a
unique hexagonal prism. This is because, there can be
many hexagonal prisms with different heights and differ-
ent sizes for the hexagonal faces and still have the same
diameter for their circumsphere. We chose the hexagonal
prism that has the highest V.Q. and found it to be
2 =0.477. Clearly, if the truncated octahedron is the shape
of the cell, then the number of active nodes is the fewest.

Next, we consider the arrangement of four types of cell.
We call their regular 3D tessellation as CB (for cube), HP
(for hexagonal prism), RD (for rhombic dodecahedron),
and TO (for truncated octahedron) models. For cube and
hexagonal prism, several alternate arrangements of cells
are possible by shifting one layer with respect to another
neighboring layer. We consider the furthest possible move-
ment, where one corner of a cell is at the center of a cell in
the neighboring layer, and call these models Alt-CB and
Alt-HP (see Fig. 1). Considering only these two alternative
arrangements (for both cube and hexagonal prism) is
sufficient, as in each cases they are two extreme
possibilities and at least one of them is better than the
other possible models.

Relative number of active nodes for each model can be
determined directly from the V.Q. of the shape of the unit
cell in each model. The number of active nodes in various
models with respect to that of TO model is depicted in
Fig. 2.

Next, our goal is to determine the minimum transmis-
sion range needed for each model. Given a fixed sensing
radius, 15, the minimum required transmission ranges for
the CB, Alt-CB, HP, Alt-HP, RD, and TO models are calculated
below.

4.1.1. CB model

A cell has 26 neighboring cells: 6 Type 1¢3 neighboring
cells each shares whole one side of a cube, 12 Type 2
neighboring cells each shares a common line, and 8 Type
3¢ neighboring cells each shares just a common point with
the cell (see Fig. 3).

The largest distance between any point in the cell and
any point in a Type 15 neighboring cells is r;v/2; for Type
2¢ and Type 3¢ neighbors, it is r;v/3 and 2r;, respectively.
The active node of a cell can communicate with active
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(d) T0

(e) Alt-CB

CB = cube

HP = hexagonal prism

RD = rhombic dodecahedron
TO = truncated octahedron

(f) Alr-HP

Fig. 1. Possible 3D space-partitioning shapes.
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Fig. 2. The number of active nodes in various models.
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Fig. 3. Different types of neighbors in CB model.

nodes of all first-tier neighboring cells if the minimum
transmission range is: r, = max (rs\fZ, V'3, 2r5> =2r,.

4.1.2. Alt-CB model

A cell has 16 first tier neighboring cells: 4 Type 1a;_cs
neighboring cells each shares whole one side of a cube, 4
Type 2ai:_c neighboring cells each shares a common line,
and 8 Type 3a:_cg neighboring cells each shares one
quarter of one side of the cell (see Fig. 4).

‘pe N

(@) Type Lay.cp
Neighbors

(d) Type 3air-cs
Neighbors

(®) Type 24-cp
Neighbors

Fig. 4. Different types of neighbors in Alt-CB model.

The largest distance for Type 1a,_cg, Type 2ar_cg and
Type 3an_cs cells is r,v/2, rs/3, and rs\/%, respectively.
The minimum required transmission range in Alt-CB model

is: r = max (rs\/f, V3, rs\/%) =r;V/3.

4.1.3. HP model

A cell has 20 first tier neighboring cells: 6 Type 1pp
neighboring cells each shares a common square plane, 2
Type 2up neighboring cells each shares a common hexago-
nal plane, and 12 Type 3y4p neighboring cells each shares a
common line with the cell (see Fig. 5).

Suppose that each side of a hexagonal face of an HP cell
is of length @, and its height is h. In an HP cell with optimal
height, h=av2. So the radius of the HP cell is
L =,/a> + (a?/2) = av/3/V2. Maximum distance from
any point of the cell to any point of a Type 1yp, Type 2yp,

and Type 3pp neighbor is 4/ (a\/ﬁ)z +h = rs\ﬁ.
(2a0)* + (2h)* =rv2, and 4/ (a\/l—g)z +(2h)?* = rs\ﬁ,

respectively. The active node of a cell can communicate
with active nodes of all neighboring cells if the minimum

transmission range is r, = max (rs\/é, rsV2,Ts \/;) =T \/%

4.1.4. Alt-HP model

A cell has 12 first-tier neighboring cells: 6 Type 14;_np
neighboring cells each shares a square plane and 6 Type
2aic-pp Neighboring cells each shares one third of a
hexagonal plane with the cell (see Fig. 6).

e 3ok

(@) Type lyp (b) Type 2p

_ (¢) Type 3pp
Neighbors Neighbors

Neighbors

Fig. 5. Different types of neighbors in HP model.

Please cite this article in press as: S.M. Nazrul Alam, Z,J. Haas, Coverage and connectivity in three-dimensional networks with random node
deployment, Ad Hoc Netw. (2014), http://dx.doi.org/10.1016/j.adhoc.2014.09.008



http://dx.doi.org/10.1016/j.adhoc.2014.09.008

8 S.M. Nazrul Alam, ZJ. Haas/Ad Hoc Networks xxx (2014) Xxx—-xxx

. €
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Fig. 6. Different types of neighbors in Alt-HP model.

Maximum distance for Type 14 _pp and Type 2ai_np

,/(a\/ﬁ)z—khz:rs\/% and
\/(30)* + (2h)* = rs\/ﬁ, respectively. Thus the minimum

transmission range needed is: 1, = max (rs \/é, Ts ﬁ)
=T \/%

4.1.5. RD model

A cell has 18 first tier neighboring cells: 6 Type 1zp
neighboring cells each shares just a point and 12 Type
2rp neighboring cells each shares a plane with the cell
(see Fig. 7).

The maximum distance for Type 1gp and Type 2gp neigh-

neighbors is

bor is 2rs and rg \/g respectively. Thus minimum transmis-
sion range required in

max (er, rs\é) =215,

4.1.6. TO model

A cell has 14 first tier neighboring cells: 6 Type 110
neighboring cells each shares a common square plane
and 8 Type 270 neighboring cells each shares a common
hexagonal plane with the cell (see Fig. 8).

Maximum distance for Type 110 and Type 210 neighbor is

rsv/17/+/5 and r,v/14//5, respectively. The active node of a
cell can communicate with active nodes of all neighboring
cells if the transmission range is at least: r, =

max (rs\/g, Ts \/153) =T \/g

The minimum transmission range required for main-
taining connectivity in each model is shown in Fig. 9.

Next, we provide a comparison of the models based on
energy consumption. We use a simplified model to calcu-
late the network lifetime of the different partitioning
schemes. We assume that the number of packets transmit-
ted and relayed by a cell is the same in each model. Then,
the lifetime of a cell depends on the transmission range
used by a model and the number of nodes that resides
inside a cell in that model. If we assume that the sensor

RD model is: 1=

(b) Type 2zp Neighbors

(a) Type 1gzp Neighbors

Fig. 7. Different types of neighbors in RD model.

(a) Type 170 Neighbors (b) Type 27, Neighbors

Fig. 8. Different types of neighbors in TO model.

24

0.4 1 —

(Sensing range as the unit)
o
\

TO Alt-HP HP Alt-CB RD CB
Model

Minimum Transmission Range

Fig. 9. Minimum transmission range required in different models.

nodes are uniformly distributed, the number of nodes in
a cell is proportional to the volume of the cell. Finally, we
assume that in our radio network, power consumption to
transmit a packet is proportional to the square of the
transmission range. Suppose that two models A and B has
transmission range r, and rp, respectively. Volumes of a cell
in models A and B are V* and V2, respectively. If cell
lifetimes of models A and B are denoted by [* and L,
respectively, then we have:

oz v
LT; = a X W .

Using this equation, cell lifetime of each model, as com-
pare to the cell lifetime of TO model, is calculated below:

2 2
r3 T3
© (w5 & e () 4
LTSN TN N 7 an
s 55 (Ts\/§> 5V5

% 717\/§LAII—HP

17517 fs\/g)z
T 36v3L™ (rs\@)z Xl T 56 M0

5V5

2 2
g s (8 g s
B 2743 g 0 2 64
(y2) 3% 10 e
The cell lifetimes of various models as compared to the
cell lifetime of the TO model are shown in Fig. 10.

4.2. A distributed and scalable way for partitioning the volume

In order to select the subset of active nodes, first we
need to find a scheme that allows each node to determine
its cell in a distributed and scalable way. If every node
knows which cell it belongs to, then choosing the active
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Fig. 10. Cell lifetime in various models.

node is easy, because all nodes that belong to a cell are
within the transmission range of each other. A technique
that allows every node to determine which cell it belongs
to in a distributed and scalable way is described below.
Since the technique is similar for all models, without loss
of generality, we assume that the model is the TO model.
We use the triple (u,7,w) as a unique cell id, and the cell
which contains the information sink (IS) as having the cell
id of (0,0,0). If the coordinates of the IS are (x,y,z), then the
coordinates of the center of a virtual cell (u,v,w) can be
expressed by the general equation as: f(u,v,w)=

Cu+w)rs Qv+w)rs Wrs H
<x +=s Yt st ﬁ). For example, a cell with

id (-1, —1, 2) has its center at coordinates (x,y,z+27’§).

We assume that the sensing range r; is embedded in the
sensors before deployment. The IS broadcasts its coordi-
nate (x,y,z) to all nodes, and a sensor node determines its
own coordinate (xs,ys,2s) using a localization scheme. In
order to determine its cell id (usz,ws), a brute force
method is to check all possible values of (us, v, ws) and
choose the cell whose center has minimum Euclidean dis-
tance from the node, i.e.,

2
. r
(us, s, ws) =arg min , Kx —X- (2u+W)7S§>

Ts

+ <ys—y—(2v+w)%>2+ <zs—z—w\/§>2}

where Z is set of all integers. However, such an exhaustive
search can easily be avoided. Since the value of a square
term is never negative, we can set the value of the square
terms to zero to get the values of us, s, and ws. Since these
values must be integer, we can get two possible integral
values for each variable by taking ceiling (denoted by sub-
script h) and floor (subscript [):

w=| (6 —x—24+2)V5/2r, |, u = [(x —x -2 +2)V5/2r],

|0s—y—z+2)V5/2r |, on = [~y 2 +2)V5/2rs),
W= [(zs ~2V5 /rSJ Wi = [(zs N /rs].

4]

Thus we have eight possible values of (us, zs,ws). Each
node has to calculate its distance from each of the eight
centers and choose the minimum one as its cell id; i.e.,

(us, vs,ws)=arg  min

e \2
ue{up,uy} {(XS e QLH_W)E)

UE{?){,?)},}

we{wwp}

+<y5—y—(20+w)%>2+ (zs—z—wif}

As cell id is a straightforward function of the location of
a sensor, if a sensor knows its location, it can readily calcu-
late its cell id. Once sensors have their cell id, then sensors
with the same cell id can use any standard leader selection
algorithms [24] to choose a leader among them, which can
act as the active node of that cell. All nodes that have the
same cell id are within the communication range of each
other and the mechanism of keeping one node active
among all the sensors with the same cell id is essentially
same for both 2D and 3D networks. Thus results from 2D
networks can be used here to achieve this goal.

4.3. k-coverage and performance analysis

While our approach of dividing a network into cells and
keeping one node active in each cell allows us to achieve
our goal in a highly distributed and scalable way, it does
not always use minimum number of active nodes. The rea-
son is obvious; since the active node is selected locally by
the nodes inside a cell, it cannot compete with a central-
ized approach that has global information. However, it is
important to evaluate how much efficiency is lost in our
distributed scheme, comparing to such a centralized
approach. To achieve this, we compare our scheme with
the scheme where nodes can be placed at any desired loca-
tion (as opposed to our random deployment), with an “ora-
cle” deciding where to deploy those nodes. We call this
comparison scheme SuperOpt.

A similar scheme in 2D that uses hexagonal shaped cells
requires 4 times more nodes than SuperOpt. In the worst
case, our scheme requires 8 times more nodes than Super-
Opt. While this is not surprising, we find that it is possible
to devise a similar highly distributed and scalable scheme
in 3D that requires significantly fewer nodes for k-coverage
with high probability. In what follows, we examine such a
scheme.

4.3.1. k-coverage in 2D

Let us first explore how we can ensure k-coverage in 2D.
For 1-coverage, we have to keep one node active in a hex-
agonal cell with radius r=r,/2, where ry is the sensing
range of each sensor. A naive approach, can simply keep
k such node active in each cell. In that case, node require-
ment is still 4 times of the SuperOpt scheme. An alternative
scheme would be to use smaller cells, while still keeping
one node active in each cell. We determine that the radius

of each cell has to be r = rs/ <2\/ (k/4}) in that case. This

scheme provides k-coverage with high probability, but
not with certainty when k>1. We want to answer the
following two questions:
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1. What is the probability that this scheme has k-
coverage?

2. How many nodes this scheme needs compare
toSuperOpt?

To answer the two questions, first we need the help of
the following theorem.

Theorem 4.1. Suppose that we have two areas and in each
area nodes are randomly distributed based on a 2D Poisson
distribution. Then the sum of the number of nodes in two
(independently) selected sub-areas is Poisson with parameter
equal to the sum of the expected number of nodes in each
individual area.

Proof. Omitted due to space limitations.
Now, for our proposed scheme for 2D k-coverage, the

area of each cell is 3v/3r?/2 = 3v/3r2/8[k/4]. Since we
keep one node active in each such cell, active node density

isp= 1/3‘75% node per unit area. Within r; distance of
any point, the number of active nodes is aPoisson random

nr2  _ 8m[k/4] _
7 = 3,5 - Ihe prob
2 47k/4]

ability that any point is within the sensing radius of at least
k nodes is:

variable K with parameter: A, =

k-1

- P(K =)

i=0
k-1 i 8nk/4 | k=1 i
s - am 87k /4 .
=1-Yexk=1_¢ <3“§) ( )/z!
& 253

Now, it can be shown that SuperOpt solution for k-coverage
is dividing the 2D plane into hexagonal cells of radius r;
and keep k nodes active at the center of each cell. (Note
that this scheme is not applicable when nodes are ran-
domly deployed, we mention it here only to find a lower
bound on the number of nodes needed for k-coverage).
Thus the number of nodes needed by our proposed scheme

3v/3r2 2k nc/41
3V3 r2/8 k4

needed by SuperOpt.

From Table 1, we see that our proposed scheme
provides 1-coverage with probability 1, but the active
node requirement is 4 times than the lower bound. On the
other hand, 4-coverage requires the same number of node
as that of the lower bound, but the probability of at least
k-coverage falls to 0.72. Note that SuperOpt assumes nodes
can be deployed at any desired place, so the actual lower
bound is likely larger, which in turn means that our
scheme performs better that the above comparison. O

PK > k)=1-PK <k) =

is at most times the number of nodes

Table 1
Probability of k-coverage and node requirement in 2D.

K P(K = k) Number of nodes vs. SuperOpt (%)
1  4.8367983 1 400
2 48367983 0.9616325 200
3 4.8367983 0.8688446 133
4 48367983 0.7192460 100
5 9.6735966 0.9639949 160

4.3.2. k-coverage in 3D

For 1-coverage, we have to keep one node active in a
truncated octahedron cell with r =r5/2, where r; is sensing
range of each sensor. For k-coverage, we propose the fol-
lowing scheme: set the radius of each truncated octahe-

dron cell to r = rs/2\3/m and keep one node active in
each cell. Then the volume of each «cell is
32r3/5\/§ = 4r§/(5\/§[k/8l). Since we keep one node
active in each such cell, active node density is
p =5v5[k/8]/(4r3) node per unit volume. Within r; dis-
tance of any point, the number of active nodes is aPoisson

3
random variable K with parameter: j;, = 375 — V58,

5y 5k/8

The probability that any point is within the sensing
radius of at least k nodes is then given by:
k-1

~PK<k)y=1-) PK=

i=0

k-1 i k-1
B M 5\/57tk/8 5\/‘7'61(/8
_l—goe kﬁ_l— (

i—

i=0

PK > k) =1

Now, it can be shown that one optimal solution for
k-coverage is dividing the 3D space into hexagonal cells
of radius r; and keeping k nodes active at the center of each
cell. (Note that this scheme is not applicable when nodes
are randomly deployed, we mention it here only to find a
lower bound on the number of nodes needed for k-cover-
age.) So the number of nodes needed by our proposed

I</8

scheme is at most 5” times the number of nodes

m
needed by SuperOpt in 3D.

From Table 2, we see that our scheme achieves 4-cover-
age with probability 0.9971 with twice the number of
nodes needed in SuperOpt. Unlike in 2D, we can achieve
k-coverage with very high probability for higher values of
k in 3D. Thus, the proposed scheme performs better in
3D than in 2D for larger values of k.

5. Discussions

Based on a number of assumptions, this paper provides
the node placement strategy that achieves full coverage
and connectivity for random node placement. The assump-
tions underlying our work, the sphere-based sensing, the
sphere-based communication (disk based in 2D), and the
homogenous sensing and communication range of each
sensor, are standard assumptions in most network
modeling works, and are applicable to the underwater

Table 2
Probability of k-coverage and node requirement in 3D.
K Ik P(K > k) Number of nodes
vs. SuperOpt (%)
1 11.70802455 1 800
2 11.70802455 0.9999 400
3 11.70802455 0.9994 233
4 11.70802455 0.9971 200
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Fig. 11. Coverage of a cube shape 3D space in TO model with
20 x 20 x 20 nodes.

networks as well. To adjust to real world situation, the net-
work designer should conservatively estimate the sensing
range and communication range (i.e., set sensing range
and communication range at some fractional level of the
actual sensing and communication range).

Our assumption of no boundary effect cannot be valid in
practice, as of course all real networks will be finite in size.
However, if the height, width and length of the network
are sufficiently large as compared with the sensing range
of each node, then a 3D volume of any shape can be cov-
ered with small overhead near the boundary. The smaller
the sensing range, the smaller the boundary effect, with
the boundary effect vanishes when the sensing range
become infinitesimally small. Fig. 11 shows how a cube-
shaped space is covered by a network consisting of
20 x 20 x 20 nodes placed with the TO model.

Finally, our work does not require absolute positioning
mechanism; rather any relative positioning mechanism
where a node knows its position relative to the informa-
tion sink or seed node is sufficient. Since in many sensor
network applications (e.g., detection, monitoring) it is
important to know from where information originates,
sensor networks that are deployed for such application
must already include some positioning mechanism. Thus,
our node placement strategy can get the position informa-
tion from such a mechanism without adding any extra
expense.

Our focus in this paper was on the relationship between
connectivity and coverage in 3D networks. Of course, this
is just “one piece of the puzzle” which relates to many
other aspects of design, implementation, and operation of
a 3D underwater networks. As an example, we did not dis-
cuss here routing in such a 3D network; neither the route
establishment process, nor the relationship between con-
nectivity and the route determination. We also did not dis-
cuss the management of the sleep-wake patterns and the
related required coordination. Furthermore, there are other
technologies that are of fundamental importance to enable
the schemes presented here, such as underwater localiza-
tion (e.g., [44-46]), for instance.

6. Conclusions

In this paper, we investigate the coverage and connec-
tivity issues in three-dimensional networks in situations
where it is difficult to deploy and maintain nodes in pre-
determined positions. As a result, a large number of
nodes has to be randomly and uniformly deployed, such
that full sensing coverage can still be achieved. However,
at any time instant not all nodes are required for full
sensing coverage. It is important to dynamically put
those redundant nodes into sleep mode to increase net-
work lifetime. We provide a highly distributed and scal-
able scheme to achieve this goal in 3D networks. While
an analogous solution exists for 2D networks, transition
from 2D to 3D is typically a difficult task, given that
many problems in 3D are harder than their 2D counter-
parts by orders of magnitude. In order to make the solu-
tion highly distributed and scalable, we partition the 3D
network space into identical regions (or, cells) and keep
one node active in each such cell. Finding the right par-
titioning scheme for 3D networks - one of the most
challenging problems of this work - is also the main
contribution of this paper. Using a century-old Kelvin's
conjecture, we show that truncated octahedral tessella-
tion of 3D space is the most plausible solution for this
problem. We define a metric called volumetric quotient
(V.Q.) that is a measure of the quality of the competing
space-filling polyhedrons for our problem. The higher
the V.Q. of the shape of a cell, the lower the number of
active nodes required for full coverage. Truncated octa-
hedron turns out to be the best choice with V.Q. of
0.68329, which is much better than the V.Q. of the other
possible choices (both optimized hexagonal prism and
rhombic dodecahedron have V.Q. of 0.477, while cube
has just 0.36755). We also compared different partition-
ing schemes based on their energy consumption, and we
found that the truncated octahedron based partitioning
scheme has longer cell lifetime than the other schemes.
We describe a mechanism for each sensor node to deter-
mine which cell it belongs to based on the cell’'s own
position, by using a simple set of arithmetic operations.
No message passing between nodes in different cells is
needed to choose the active nodes. We extend our work
for k-coverage, where sensing coverage by k sensor
nodes is needed. Our scheme can provide k-coverage in
3D with high probability, while significantly decreasing
the gap with the centralized scheme with respect to
the number of active nodes required. While the relative
number of active nodes can be decreased in both 2D
and 3D, the k-coverage in 3D can be ensured with high
probability.
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