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Abstract - We establish some new results on the capacity |INTRODUCTION
of wireless sensor networks that employ single-user

detection, and we present the implications of esults on In recent years, there has been an increasingegtter

the scalability of such networks. In particular, Wied certain class of wireless networks calleiteless sensor
bounds on the maximum achievable per-sensor eeddo- networks, Typically, wireless sensor networks are deployed
throughput A, and the maximum number of simultaneouslo collect information about an environmental valéaby
successful wireless transmissions,"", under a more observing the information gathered at a setlesfination
general network scenario than previously consideragbdes from a set ofensor nodes in the network:

Furthermore, in the derivation of our results, wakeino Scalability of wireless sensor networks has been an
restrictions on the mobility pattern of the senaaod the important research topic in the recent years, tsecafithe
destination nodes or on the number simultaneoggowing demand to support a large number of nodes i
transmissions and/or receptions that the nodesapable future sensor networks, which are envisioned tcsisbrof

of maintaining. In our derivation, we also analyze effect thousands to millions of sensor nodes. Two importan
of parameters such as the area of the network @omai questions in this context are: (1) Are wireless ssen
the path loss exponeny, the processing gair;, and the networks scalable? In other words, is it possiblsupport a
SNR threshold,3 Specifically, we prove the following large number of nodes in a wireless sensor netw(@k#
results for a wireless sensor networlkNoensor nodes andthere are scalable patterns of wireless sensomnkegywhat

M destination nodes that are equipped with omnitiea! are the conditions that govern their scalability?

antennas: To answer these questions, one must first definat wh
scalability is. In this work, we interpret scalayilas: the
Sbility of the network to operate with a non-vaiighper
sensor end-to-end throughput, bounded end-to-efad/,de
(2) N™™ has an upper bound that does not dependl,on bounded power consumption, bounded processing power
which is the simultaneous transmission capacitytref and bounded memory at each node, as the numbedetn
network domainN,%. For a circular network domaih?is ~grows large.

O(A™2.3y if 1y 2 2 andO(A/log(A)) if y = 2. In addition, In this paper, we focus on the throughput aspect of
N is O(y?) andO(G/3). Moreover, lack of attenuation angscalability. Our objectives are: (1) to obtain tretizal

lack of space are equivalent, whek® cannot exceed "esults that show the dependencies among the psosse
1+GIB. end-to-end throughput capacitl, the number of sensor

_ nodesN, and other parameters of a wireless sensor nefwork
(3) AsN — o« a desired per-sensor end-to-end throughputdad (2) to determine the implications of these Itesan the
not achievable, unless the average number of hefweebn  scalability of such networks.
a sensor-destination node pair does not grow initely One of the most well known studies that stimulatesl
with N, bothM andA grow withN such that is Q(N), and  research on the capacity of wireless sensor nesvors
N is O(A™ /21 if 1y 2 2 andO(A/log(A)) if y = 2. published by Gupta and Kumar [1]. In that paperp tw
network models were proposed to analyze the capatit
Vireless networks. The first network model, gmbitrary
network model, assumes that &llnodes in the network are
static, there are no restrictions on nodes’ locati@nd the
This work has been supported in part by the DoD tMisciplinary network QOma_ln (.e. t.he region within which tmdas are
University Research Initiative (MURI) program adistered by the Office |Ocate_d) Isa circular disk of area f-_rE_aCh node is _capable
of Naval Research under the grant number N00014-0864, the DoD Of maintaining at most one transmission or oneptoe at
Multidisciplinary  University Research Initiative (QRI) program any given time. There are no restrictions on theiaeh of
administered by the Air Force Office of ScientiResearch under the grant el . .
number F49620-02-1-0233, and by the National Sedfaundation grant trans_mlssmn powers, tl'a_ffIC_ pattern, rouyng pmﬂ_o and
number ANI-0081357. spatial-temporal transmission scheduling policy. e Th

second model is theandom network model, which assumes

This article is substantially based on our previpublication "On the 5 yniform distribution of node locations, a randtadfic

Scalability and Capacity of Planar Wireless Netvgorkwith .
Omnidirectional Antennas" by O. Arpacioglu and ZHaas, published in pattern, and a common transmission power that dsese

the Wireless Communication and Mobile Computingrdalj vol. 4, issue
3, pp: 263-279 in May 2004. Copyright © 2004 JohileW& Sons Ltd.
Reproduced with permission. Y In the literature, sensor nodes are also calledces, and destination
nodes are also called sinks, collectors or observer
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with N, while ensuring the connectivity of the networkNas the all-to-all model, where each sensor node has to
tends to infinity. broadcast the information that it generates to cdlier
From a sensor network perspective, the arbitradytha sensor nodes in the network. For these two traffiterns,
random network models correspond to sensor netwiorks they concluded that, is ©(1/N).
which each node has the ability to be a sensor aodea  In [4], Chakrabarti et al. concluded thal, is
destination node. _ O(log(N)/N) for the random network model of [1], if the
Additionally, in [1], two models for successful egtion  al|-to-one traffic pattern and an adaptive transiois rate
are proposed. The first reception model is finetocol  model are used instead of the random traffic pated the
model, which considers a transmission unsuccessfuléf thyresholdSNR based reception model, respectively.
receiver is within the interfering range of an tended In [5], Toumpis and Goldsmith also used an adaptite
transmitter. The second model is gigsical model, which  mogel, and using numerical methods, they evaluged
better represents realistic reception in practiwaleless effect of spatial reuse, multi-hop routing and powentrol
networks. In the physical model, for a transmissiorbe for 5 particular placement of the nodes. They el that
successful, the Signal-to-Interference-and-NoisetioRa gach of these schemes provides expansions of faeita
SINR, at the receiver of the transmission has to bev@boyegion that is defined by the set of achievablesretween
some threshold value. It is assumed that the aateare e nodes.
omnidirectional and thaP/x” is the power received at a |p [6], Li et al. pointed out the effect of trafffmttern on
distance x from a given transmitter, wher® is the ) ang concluded that only wireless networks withaloc
transmitted power and the path loss exponeistassumed traffic patterns can be scalable.
to be larger than 2. _ - Usage of directional antennas at the transmitterthe
[1] concluded that, with the protocol modele is” receivers can provide significant increasesiindepending
©(1/YN) for arbitrary networks, whereasl is on how narrow the width of the antenna’s main label
(9(1/«/N log(N )) for random networks. With the physicalhow small the side lobes of the antenna radiatiattem
model, they concluded thdgis O(1/{/N) andQ(1/¥/N) can be made. For example, in [7], using a sendseeba
for arbitrary networks, whereas)e is O(l/m ) and interference model, Yi, Pei, and Kalyanaraman itigated

Q(1/,/NTog(N)) for random networks. the improvement inl. provided by the usage of directional
~ One of the assumptions of [1] is that all nodes aemtennas for arbitrary and random wireless networks
immobile. In [2], Grossglauser and Tse explored twareor The ability of a node to maintain multiple simuiémus

not introducing mobility can increasé&. Their network transmissions and/or receptions can also provida@ease
model introduced some additional restrictions ore thn A, For example, in [8], using directional antenrRexaki
random network model of [1]Firstly, they used the and Servetto studied random networks with and witho
physical model, but allowed wideband communicatign multiple simultaneous transmission or receptionabijty,
incorporating the processing gain, as to redueaference. and they concluded that an improvement of at most
Secondly, the locations of the mobile nodes form @gog?(N)) can be achieved over tr@(1//NTog(N)) result
stationary ergodic process with a uniform statignar
distribution in the network domain. Thirdly, as [d], of [1]. ) .
source-destination pairs do not change over tirmally, _DePloyment of a wired backbone can also provide an
they assumed that very long end-to-end packet sitay increase i, since it allows reducing average ngmper of
tolerable. Grossglauser and Tse concluded in [&] there wireless transmissions per packet. For examplg]inLiu

exists a routing and scheduling policy that detivempacket €t al. considered the benefit of deploying baseiosts
to its destination with no more than two hops, alaws A, connected to a wired backbone in the random netwbrk

to be@(1) asN becomes large. Moreover, both [1] and [2ft]: They concluded that if the number of base istat
concluded that it is possible to schedN) many Jrows asymptotically faster than/N', then aggregate
simultaneously successful transmissions in a wagelefNroughput capacity increases linearly with the bemof
network. base stations.

In [3], Marco et al. explored, with two particular traffic 1€ results of studies such as [1]-[9] are basedhen
patterns. They used a half-duplex reception madeich is 2SSUmption that the nodes are equipped with Sirggle-
based on the protocol model, and they assumedtiba deteqtlon be_tsed receivers, which are widely usedday s
sensor nodes are static, they are uniformly disteithin the Practical wireless networks. These types of recsive
circular network domain, and the transmission raige attempt to de_tectapartl_cul_ar transm|_55|on,wlndat|ng all
constant. The first traffic pattern that they cdesed is the Other interfering transmissions as noise. On theroband,
all-to-one model, where each sensor node has the saftddies such as [10]{12] concluded that sizablsgin
destination node which is located at the centerthef network throughput can be provided by not treating
network domain at all times. The second trafficterat is interference simply as noise, but rather employingre

sophisticated receivers and implementing certain
2 \We will use the standard asymptotic notations:flastdg be nonnegative COOpPeration strategies among the nodes during érg;od
functions of a variable. f is O(g) with respect t, if there exist positive transmission and decoding stages of each commioricat
real numbers, andyo, such that G f < yog for everyx > x. f is Q(g) with Our work has been motivated by the desire to retame
respect tox, if there exist positive real numbexs andy,, such that of tha |imitations of [1]-[4], and to improve oneiin models.

0< yig < f for everyx > x. f is ©(g) with respect to, if f is bothO(g) and . : .
Q(g) with respect tox. We will omit the phrase “with respect xbwhen it In partICUIar’ the radio prOpagatlon model of [[m and

can be understood from the context. Also, we witika use of the fact [4], (i.e., P/X) becomes inappropriate as the transmitter-
thatf is ©(g) with respect to if f(x)/g(x) has limit in (Oy) asx— .
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receiver separation becomes small. Since the nktwand thatNy =N+M if and only if the set of sensor nodes

domain in these studies has a fixed ared\ gsows large,
the intended transmitter-receiver pairs get antiijralose
to each other, which leads to a very optimistid@aton of
the SINR values due to the assumed propagationInibole
avoid this problem, we use a bounded propagatiodemo
which we discuss in Section 2.3. In terms of mogilin

and the set of destination nodes are disjoint.

The task of each sensor node is to send the caflect
information to a destination node (of course, tiestination
node other than itself, if the node itself happemde a
destination node, too). We assume thaEN. Typically,
this inequality is satisfied with<"” in practical wireless

(1], [3] and [4] thenodes are immobile, while in [2] thegensor networks. An immediate consequence of the

mobility pattern is a very special one. In our wosle allow
for a general mobility pattern of the nodes. Furitere, by
allowing a general traffic pattern, we relax thsuasption
of [1]-[4] which states that the source-destinatioairs
never change over time, and the assumption ofrjd][4],
which states that the traffic pattern is eitheit@bne or all-
to-all. Moreover, in [1]-[4] each node can maintaither a
single transmission or reception at any given timegreas
our work also considers the situtation when theesduave
the ability to maintain multiple transmissions amd/
receptions at the same time. In addition, we afsdyae the
effect of parametersuch asA, y; G and S on A, none of
which has been addressed in previous works. Abbyvera
evaluate the implications of our results on thdadskty of
wireless sensor networks.

The main contribution of this study is in the datien of
new results on the capacity and scalability of lese
sensor networks through the use of a more genetalonk
model and a more realistic bounded propagation mede
compared with the models of the previous studies.

The rest of the paper is organized as follows: iSe@
presents our network model, and Section 3 providiesed
definitions. In Section 4, we derive the upper kigion the
simultaneous transmission capacity and the peresems-
to-end throughput capacity. In Section 5, we araelize
derived upper bounds, together with illustrativgufies.
Section 6 establishes the tightness of the schkhgvior of

Ae With respect tdN. Section 7 discusses the implications o

our results on scalability. Finally, we concludesaction 8.

2. SENSOR NETWORK MODEL

In this section, we explain the assumptions undeyly
our results. Some of these assumptions are quitergle

allowing our upper bound results to hold even imeleiss

sensor networks that are configured with optiméiregs of

the parameters. Although this paper is primaritgéted at
the sensor networks, the generality of our assumpti
allows straightforward extensions of the results tiofs

paper to many other types of wireless networksh sag
wireless ad hoc networks. We will elaborate on sother

consequences of these general assumptions afssnpireg

our results.

2.1 NETWORK DOMAIN AND NODES

We denote the total number of nodes in the netvogrk
Nwtar. There are two types of nodes in the netweseksor

inequalityM <N is thatN;» =N if and only if all destination
nodes are also sensor nodes. Note that this cassponds
to the network models of [1] and [2].

Network domain is defined to be the space withirictvh
each node is constrained to reside. We denotesplaise by
Q. We will assume thd is a closed disk with a diameter
and an ared\. There are no restrictions on the mobility
pattern of the nodes withiQ.

2.2 TRANSMITTER AND RECEIVER MODEL

Each of the nodes is capable of being a transnzittéfor
a receiver at any given time. All transmitters aadeivers
are equipped with omnidirectional antennas. There a
no restrictions on the variation of transmissionwgo
during a transmission or on the number of simubase
transmissions and/or receptions that a node isbbe pet
maintaining. Hence, the assumption in [1]-[4] thatode is
capable of maintaining either one transmission pbe o
reception at any given time is one of the many €ase
covered by our model. For the time being, we assivae
all transmissions take place within the same conication
bandwidth, but we will relax this assumption latat. the
intended receiver of a transmitted signal, all btfet
remaining received signals are considered as erterte.
4(t) is the power of the thermal noise present in the
ommunication bandwidth at receivérat time t. We
ssume that each of the receivers can receiveniatan
intended for itself reliably at a rate not largban Wiax
bits/s and only when tHaNR at the receiver is greater than
or equal to theSINR threshold, 8. Information received
when the above condition does not hold is consitlere
unreliable and, thus, discarded. In this work, etgflbe any
positive real number. In genergf is dependent on the
modulation scheme, the required bit error rate loé t
received information, the required transmissioe,rahd the
type of the error control code. Tipeocessing gain, G, is
the factor by which the total received interferepogver is
reduced at each of the receivers. In this worklev& be
any positive real number. Typicall@>1 for wideband
communication systems, such as spread spedBDMA,
and is taken to be 1 for narrowband communications.

2.3 PROPAGATION MODEL

For any given two given transmissions, ileindj be the
indices that represent the transmissions. Beft) be the
power transmitted by transmitteat timet. Letd;(t) be the

nodes anddestination nodes. There areN sensor nodes and distancé between transmittgrand receivei at timet. Let

M destination nodes. Any given node is either acensde
or a destination node or both of them, and the tfpthe

node remains the same at all times. Two immediate

consequences of these assumptions are Npgt<N+M,

3 In this paper, all distance measures and areaumesagire in units of
“meter” and “mete?,” respectively.
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P'(t) denote the power received by receiverfrom  On the other hand, as in [1]-]4], we assume that
transmitterj at timet. We will assume that intermediate nodes that act as relays do not jogricode
P (t) =R (Ha(d, (1)), (a.1) @and transmit chunks of information that are gattidrem
distinct transmissions.
Finally, we denote thaverage number of hops between

the originating sensor node and the destination of a bit by

, and we let it be any real number larger thangoraéto
since each bit has to be transmitted over at @ae hop

to reach its destination.

where a(x) is the attenuation function. One of the most
commonly used expressions fa(x) is 1&", wherey> 0 is
the path loss exponehtdowever, this expression become
inappropriate ag becomes smaller than 1, as it results if
receiving power that is larger than the transmigeder. In .’
fact, the received power in the formula approachésity
asx tends to zero. Of course, this is unrealistic &ndn
artifact of the inappropriateness of the expreséiorsmall 3. DEFINITIONS

distances. The inappropriateness of theiformula was

also noticed in some previous works on connectidityd to ~ We define a transmission at an arbitrary titme be a
obtain more meaningful results at small distanegsije successful transmission, if the SINR at the intended receiver
approximating the conventional model at large dists, of the transmission at timeis not smaller thans. We
the following alternative propagation model waspmsed denote the number of simultaneously successful

in those studies (see, e.g., [15] and [16]): transmissions at timeby N;. We define thes multaneous
1 transmission capacity of the sensor network, N\™ as the
a(x) :W’ x20. (a2)  maximum value oN, over all the placements of the nodes,

the choices of the transmitters, their intendeéikexs, and
the transmission powers. Next, we define simsultaneous
transmission capacity of the network domain, N° as the
maximum value o\, over all the placements of the nodes,
the choices of the transmitters, their intendeéikexs, and
2.4 TRAFFIC PATTERN the transmission powers, given that there are stvicdons

o o on the number of nodes in the network. An immediate
We make no restrictions on the temporal variatibthe  consequence of these definitions is REE* < N2

destination of each of the sensor nodes, the sabeof the Let by (T) be the total amount of bits of information

intermediate nodes that are involved in routing thgsnerated by sensor notand received by its destinations

information originated by the sensor nodes, and thRyring aT second time interval [0]. We define theend-to-
segmentation of information, so that different segta can g throughput of sensor nodei, 4, as follows:

possibly be transmitted over different paths andifé¢rent b(T)
times. Note that, together with the assumptiong the A= lim—=, 1<isN.’

stated in Section 2.1, these imply that the cldstadfic T T

patterns that our model covers is indeed a vegelatass; We also define theper-sensor average end-to-end
in particular it contains allmany-to-many type traffic throughput as the arithmetic mean 4fs, i.e.,

We call this propagation model, thewer law decaying
propagation model,’® and we will use this model in our
calculations.

patterns for which the set of sensor nodes isast las large A .:ii/]
as the set of destination nodes. Hence, this dastains CNET
the two specific traffic patterns considered in 8 well. Next, we propose two achievability definitions: emd-

to-end throughputl, is said to beachievable by all sensor
4 In free spacg/ = 2, but in realistic mobile radio channejs,can take nodes, if there exist a mOblllty pattern of the nodesyafic

values between 1.6 and 6 (see [13] and [14]). pattern, a spatial-temporal transmis$ion schedupioiecy,
® The precise reason for this problem can be expthars follows: Consider and a temporal variation of transmission powers thed

the free space case. In the derivation of the vedepower expression, a A=A for all 1<i<N. Likewise, an end-to-end throughplst

unity gain point source in free space is assumed the flux of the . . . K X -
transmitted powelP, per unit surface area of the sphere with radius is said to beachievable on average, if there exist a mobility

around the source is calculated. The resulting pofex density Pattern of the nodes, a traffic pattern, a spatiaiporal
expressionpP; / 4%, has the unit Watts/meferThe wave-front of the transmission scheduling policy, and a temporalatiam of
transmission occupies only part of the aperturthefreceiving antenna, so transmission powers so that> A,. Note that if Ay is

that the power captured by the aperture results fooly that part of the . o .
wave-front that is seen by the aperture. To quantfs partial aperture achievable by all sensor nodes, then it is alseezable on

area occupied by the wave-fromffective aperture area, A, is defined as average, and ily is not achievable on average, then it is not
the ratio of the available power at the termindlshe receiver antenna to gchievable by all sensor nodes, either. Hence, e w

the power flux density at the location of the reeeiantenna. In generd . . . . .
depends on the physical characteristics of theivecantenna and the Shortly say thatl, is not achievable if Ao is not achievable

distancex between the transmitter and the receiver antenmagl], [2] on qverage. . o
and [4],A is assumed to be independenkaind is taken to berémetef, Finally, we propose two capacity definitions: ther-

so that the received power expression simplifieB toc. In fact, ax—0,  sensor end-to-end throughput capacity, A, is the supremum

the power flux density approaches infinity, and hwihe constantAe of all end-to-end throughputs that are achievatyeatb
assumption, the received power also approachestinfiThis shows that

Ae should not be taken as a constant for small vadtiesin fact, A. should sensor nodes. Theper-sensor average end-to-end
approach zero ax approaches zero, so that the received powethroughput capacity, A, is the supremum of all end-to-end
A Pi/ 4imé, never exceedB.

5 The corresponding. for this model in free space is equal fTx#(1+x)*
metef. Note that this expression converges to Metef asx becomes ' Our results also apply with a more general déinitof throughput,
large, which is also the assumed aperture ard®indnventional model.  where “lim” is replaced with “liminf”.
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throughputs that are achievable on average. An diate
consequence of these definitions is thgt Je.

4. DERIVATION OF THE UPPER
BOUNDS

4.1 UPPER BOUNDS ON SIMULTANEOUS
TRANSMISSION CAPACITY

In this subsection, we prove the following theorérat
provides upper bounds &§™* andN:

Theorem 1: Let t be an arbitrary time ingtant. Then,

(i) the simultaneous transmission capacities of the sensor
network and the network domain have the following upper
bounds:

Ntmax < NtQ SUV’ (Tll)
Ntmax < Ntotal (1+G /13) , (TlZ)
where

-1 (y-2)[1+<)d?
(r-1(r-2)(2+5) yO{13 (T1.3)

2(1+ re - ’”-)

(+d)?  (1+a)?
’ (21+5)d 1 (TL4)

e D eI} Y= 4 '
(1)
(1+%)d2 -5

Aogwrar) VT T
d=D/\2-£. (T1.6)

(i) no node can be receiving more than 1+G/ 3 successful
transmissionsat timet.

Proof of Theorem 1:

Recall that\; is the number of simultaneously successful
transmissions at time Now, index each transmitter-receiver

pair that belongs to the same transmission witmigue
number between 1 anl. So, receivei is the intended
receiver of transmitteir for every i <N;. Let SINR; (t) be
the SINR at receiver at timet. Then

P” (t)

ZP«)

(m)

From the definition of a successful transmissidw,
simultaneously successful transmissions can talieepat
timet if and only if

SNR (1) =

1<i<N,. (1)

GO+~

SNR(t)>ﬁ Ki<N,
PO -

>= ZP’(t)< 5 g, Kis<N,
(J¢|)

<= Z R (Da(d, () < P"ﬂ‘t’ GO, EisN,
(J¢I)

013 RIMa, ) _1_ &0
G 2 R (Ma(d,®) S Tk :

)

where stepd) follows from (a.1), and step) follows from
dividing both sides byP" (t) = P' (t)a(d, (t)) .

In general, for0O< x<y+z, y=0,andz=0,

1 1 - 1 _ 1 '
@+x) (@+y+zy (+y+z+yz)y (+y) (+z)
Therefore, foa(x) as defined by (a.2),

a(x)za(y)a(z), 0sx<y+z, y=0,andz=0.

®3)

Now, let I;(t) be the distance between receiyeand
receivern at timet. Then, from the triangle inequality,

d () <d;(©+1;(1), 1<i<N, and kj<N,.
=d;(t), y = d;(t) andz =1;(t) in (3) we find that
a(d; (1)) 2 a(d; (t))a(l; (1)) . 4)

Thus, from (2) and (4), iN: simultaneously successful
transmissions can take place at tirnénen

Settingx

N, Pl(t)a(d“(t))a(lu (t)) G G{ (t) <i<N
i R'(t)a(d, (1)) ﬂ Fii(t)a(dn(t))' I
. (5)
Define, _
py ()= 5 DA (6)

R (ha(d; (1) -

Next, we add all inequalities in (5), while incorgting (6).
Hence, if N, simultaneously successful transmissions can
take place at timg then

33 aq, tp, s -4

i

i=1 d:ll) IB i=1 RI (t)a(dll (t))
= 2 Z (a0, ®) p, ) +al, ®)p, (t)) ﬂ
2 Z_ Z a'(IIJ (t))( p]| (t) + pu (t)) ,8
:>N(Z_:l i 2a(l; ) = %
- i 3 (a0 vat, ) < 5t
- NZNZ a(l, (t) s%
K3
o Z 3 al, @) < ﬂ @)

(%)
where stepsd), (c), and ¢) follow from the fact thah(l;(t)) =
a(l(t)) for everyi, j, t, and steplf follows from the fact
thatx+1/x> 2 for every positive real numbgr

From (7), we observe that the problem of obtairang
upper bound o\, can be reduced to finding a lower bound
on the summation term on the left-hand side of uiaity
(7). This term involves the sum of the attenuafiemction
evaluated at the inter-receiver distances defingdthe
N (N; —1)/2 pairs of receivers. To find the lower bounc
make use of Lemma 1, which is derived in the next
subsection.
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4.1.1 INTERPOINT DISTANCE SUM INEQUALITY B(D) Bs(U,)

In this subsection, we derive a lemma that giveager
bound on the sum of the square of the nearestsebend N\
nearest, ... , and the-{)* nearest neighbor distances from A
each of then points that are arbitrarily located in a disk of i \
diameterD. el T o \\

Lemma 1. (Interpoint distance sum inequality for a disk) o
Let B(D) be a disk haVing diameter D. Let n points be Figure 1- Computation of the overlap  Figure Nimign of the overlap
arb_ltr_arlly_ placed in B(D). Suppose each point is mdex_ed by ratio betweerB(D) andBs(Uim) ratio as a function p& uin/D.

a distinct integer between 1 and n. Let [;; be the Euclidean s ) )
distance between point i and point j. Define the m" ¢l osest f.,=f_ . Hence, by definingc,:=f(1), we obtain the
point to point i, am and the Euclidean distance between following lower bound on f for every Ii<n and

0 0.2 0.4 0.6 0.8 1

point i and the m" closest point to point i, Ui, as follows: 1<m<n-1:
a, = ﬁg{gzng}ir{lu}, gi<n, f, 2c,, wherec,=2-3%.
i ) ) This shows that at leas} fraction of the disks iR, are
&y = aD{r?Z n}““{'q} , ¥isn and2msn- insideB(D). Hence, for every<i<n andl<ms<n-1,
] ,2,..00
iR adiy A(B (u,,) n B(D)) 2 c,A(B (u,,)). (L1.3)
Un = i, s disn ankimsn- Adding all then inequalities in (L1.3) for a given value of
Then m, we obtain the following inequality for every
n mD?2 l1<ms<n-1:
du,’< , 1lsmsn-1, (L1.2) " "
G 2 ABB (u,) N B(D))2C, Y ABB(U,)). (L1.4)
i=1 i=1

where ¢, :=2-%

Since all disks iR, are non-overlapping,

Proof of Lemma 1: n

The proof involves a spherical geometric approach, > A(B (u,) n B(D)) < A(B(D)). (L1.5)
which is used to solve similar problems in [17]t BxX) =
denote the disk of diametey whose center is at point (L1.4) and (L1.5) imply,

Consider the following sets of disks: n
" AB(D))2¢,Y AB (u,)). (LL6)
R, ={B(u,):1<i<n}, l<msn-1. (L1.2) =l

Let us first consider the disks Ry. All disks inR, are non- N (L1.6), A(B(D))=7D%4 and A(Bi(u1)=7mi,74.
overlapping® This can be proven by contradiction: SupposadPstituting these equalities into (L1.6) and diglboth
that there exist two pointsandj such thai(u;) andB,(u,) Sides byrzc; /4, we obtain,
are overlapping. This, by the definition of ovepam, Zn:”' 2 ¢ D_2 (LL.7)
implies i1 +u;)/2>15;. Without loss of essential generality, = , ’
suppose Ui1>Uus1. Then u>l;. However, this would ) ,
contradict the definition ofu;. Therefore, our original NEXt letus consider the disksk for every2<ms<n-1.
assumption, i.e., the existence of two overlappiigks in N this case, there can be overlaps between soime qfa
Ry, is invalid. disks inRy. Consider two overlapping disk&; (ux) and
Let A(X) denote the area of a regién|f X is a disk with Bj(Um) centered at the poinisandj, respectively. Now we
diametera, thenA(X) = 7a%4. Next, we find a lower bound SNOW that iftim> Ujm thenjOSm, whereSm={ak: 1 <k <
on f_:= A(B(D)n B (u,))/A(B (u,)) for every ki<n m-1}. This can be proven by contradiction: Suppfis&n
and 1< m<n-1. Pick any pointS from the periphery of When Ui = U SinceB; (Um) and B (yy) are overlapping,
. . - (uim+ Ujm) /2 >|ij- Then, sincey,> Uimy Uim=> Iij- However,
B(D) and consider the following overlap ratio: together with our assumptigflS,, this would contradict
fS:= AB(D) n By(u,))/ A(Bs(U,)), 1<i<n, 1sms<n-1. the definition ofuy, Therefore, our original assumption,
i.e., jOSm, is invalid.

. . s i
Geometrical computation of.; using Figure 1 leads to the Next, we show that any arbitrarily chosen pointhivit

following formula: fi,i = f(y)| _um » Where B(D) does not belong to more tham overlapping disks
o from Ry, The proof is again by contradiction: Supposeeher
f(y):=L(1—2)arccost }1-1 [L_1 is a point inB(D) that belongs to more than overlapping
) ”(1 y ) € vy 4 disks fromR,. Take the largesnh+1 of these overlapping

Figure 2 shows the variation bfy) with y. Sincef (y) is a disks. Consider the largest disk. lete the point at the
decreasing function of and uim < D, f5> f(1). Also center of this largest disk. Then all otimedisks belong to
m ’ im = . ’

- Sm due to the result proved in the previous paragraph
However, this contradicts the fact that the cadiiypaf S,
is m-1. Therefore, our original assumption, i.e., the

8 Two disks are defined to beverlapping if the distance between the
centers of the disks is smaller than the sum of&lé of the two disks.
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existence of a point belonging to more tharoverlapping
disks fromR,, is invalid.

We use Kuhn-Tucker Theory from [18] to find the
minimum value off (x) subject to the constraint in (L2.1).

Since any chosen point withB(D) can belong to at most We define the constraint functiog(x) as follows:

m overlapping disks fronR,, then for every2<ms<n-1,
we have

n

2. A(B (u,) n B(D)) < MA(B(D)). (L1.8)
(L1.4) and (L1.8) imply,
Zn:uimzs mclzz’ 2<ms<n-1.  (L1.9)

Combining (L1.7) and (L1.9) completes the proof. O

4.1.2 APPLICATION OF THE INTERPOINT
DISTANCE SUM INEQUALITY

In this subsection, we derive Lemma 2, which
combination with Lemma 1, provides a necessary itiand

for N; simultaneously successful transmissions. Next, by

using this necessary condition and another lemreayrha
3, we complete the derivation of the upper boundNomN,®
andN™

In Lemma 1, by settingn = N; and the location of the
points as the location of the receivers at titneu(t)
becomes the Euclidean distance between receiard the
m" closest receiver to receivieat timet. Hence, we obtain
the following inequality:

& » _mD?
- (t < — s 8
;:l,[ulm( )] ( )

Also, from (7), we obtain the following necessaopndition
for Ny simultaneously successful transmissions at time

1<sms<N, -1

> Da@, )= 2 at, O)s
=1 i=1 izl(%:il)
_ N1 N, 1 <ﬂ ©)

mzzlizzl(nuim(t))y Y
To incorporate the constraint of (8) into (9), weeuhe
following lemma:

Lemma 2. For n>1, let x,X,,....x, ,C be nonnegative
real numbers satisfying the following inequality:

n

Y x*sC. (L2.1)
i=1
Let b be a nonnegative real number. Then
< 1 n
2 5 - (L2.2)

Fex) (1445)

Proof of Lemma 2:

g(x) ::C—Zn:xz >0.
i=1

Let y=[y, y,-.y,]" be the column vector at whidttakes

its minimum value. Then, from Kuhn-Tucker Theotyerte
exists =0, such that the following conditions are
satisfied:

(Of (x) -6 EIg(x))|X:y >0, (L2.3)

y' (Of ()-8 EIg(x))|X:y =0, (L2.4)

fg(y) =0, (L2.5)

g(y)=0. (L2.6)

irl]:rom (L2.3) and (L2.4) we obtain,
ﬁueyi >0, 1I<i<n, (L2.7)
+Y,
Zy [—(1+_yb)b*l +20y, ] =0. (L2.8)

Sincey > 0, we need to determine whether the constraint is
binding or not. Namely, we need to determine wiretire
not there exist any components ythat are zero. To do
this, we compare the valuesfah all possible cases. Lgt
hask zero components, i.&,:= [{i : ¥, =0, 1<i <n}|. So,
O<ks<n. If 0sk<n then from (L2.7) >0, from
(L2.5) g(y) = 0, and from (L2.8) all non-zero components of
y are equal to each other. Thus, sigfg = 0, all non-zero
components o are equal toQ/(n-k)]*’. If k = n then all
components of are zero and (y) =n. Hence,

k+—k_-  O<k<n
f(y):{ )

n

(L2.9)
k=n

Next, we show that the expression in (L2.9) is mined
for k = 0 and thereforg has no-zero components. To show
this, we prove the validity of the following inedifg

L SN n
o =) oo
Define the function on the left-hand side of (L2.88h(x).

Taking the partial derivative di(x) with respect toc and
using Bernoulli's Inequality from [19], we obtain,

oh_, T+ | OIS %S
&_1— o> == L20.
N i  Cor =

So, h(X) is an increasing function of on [0n). Hence,

x0[0,n) . (L2.10)

For b=0, (L2.2) is satisfied with equality. Thus, wenh(x) > h(0) for everyx(J[0,n). This completes the proof of

consider the case whé»0. Define the column vectox
and the multivariate functioh(x) as follows:

x =[x X, %]
F)=S

1
i=1 (1+

x)

(L2.10) and also implies th&tly) assumes minimum value
for k=0. This further implies that all componentsyoére
equal to C/n)*? and that f (y) = n/ [1+(C/n)*]". Since

f (x) > f (y) for everyx > 0, (L2.2) follows. O

Next, in Lemma 2, we sat = N, b = 1 % = un(t),
C=mD?c, for every 1<i<n, and 1<sms<n-1, so that
(L2.1) and (8) become identical. Also the left-haide of
(L2.2) and the inner summation in (9) become idehti
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Hence, we obtain the following lower bound on teé-I| R, _ -2a(1-a’)(2x-a)
hand side of (9): X (1ex)" % [2x2 Ca@r 1)}2

Ne-1 N, 1 N -1 N
(10) Also, Iirrg R :Iing R, =0 . So,R: andR; are non-decreasing

>0, al(-10).

2 : .
mzzlizzl(huim(t))y mzzl(1+o Nﬁ)y
Ve N and non-negative functions xfFinally, IimR =lmR,=1.

Next, we definad := D / ¢,*’% The quantityd is the diameter

of the network domain divided by a constant appraely 1herefore,
equal to (_).625. Combin!ng this definition with _@)d (20), _ 2x° < 1,a|](—oo,—1) 0 (0]]
we obtain the following necessary condition fok 2x(x—a)(1+l)a+a(a+1)
simultaneously successful transmissions at time X
N 2x(x-a)(1+21)* 2
y L .S _2x(oa) ) 2¢ ) al(=o0,~1)0(0,1] (L3.4)
"o f7) £ aa+l)  a(a+d)
' and,
@ "N -y G 1)?
= [(1+d ) ks J2(x-a)(1) a0(-10
1( ) B R 2 -a(@+1) (-9
®2N, " u-1, G a
= —t dus—, 11 2x(x—a)(1+1 2
d? 3 F; an  _ 2x(x-a){+3)" 2 -1, ab(-1,0). (L3.5)
I a(a+1) a@+l

where step & follows from the fact that
PP f(x)dx< TP, f(m), whenevera and b are integers
andf (x) is a continuous and non-increasing functiom of

Combining (L3.4) and (L3.5) we obtain

2 - 1)
¢, Zx(x-a)(1s) , as<landad{-1¢

[a, b+1], and stepk) follows from changing the variable of a(a+l) a@@+l)
the integration by defining=1+d(x'N,)"”*. Next, we define 2 a(iey P @1y T |
. . . 2x%
thecommunication density at timet, g; as follows: = ETE) -1
(a+1) (a+1)
0 \/.W‘/d ' v sz[a(ky)aﬂ:iaﬁmﬂ ZX(X_a)ﬁ%)a, a<landal{-19
The quantityo? is proportional to the average number of a(a+) afa+l)
successful transmissions per unit area. Combiridg &énd
(12), the necessary condition foN . simultaneously - 2x2{ (;D[(H y)aﬂ _(1+ %)m}—;l[(k y)* _( i ;1)3}}
successful transmissions at titieecomes:
1+d =1, a<l andal{-1,0G .
20° I (ul'y —u'V)du 59. (13) {19
1+ B This completes the proof of (L3.1). We prove (L3&)d
Next, we use the following lemma to obtain a closed-3-3) as follows: Let(]{-1,0}. Then
form solution for the upper bound obix || (a)l_ |
_=1lim
Lemma 3: Let a, x, and y be real numbers such that o
xy>1>a. Also, let | := 25 [, (u? —u*")du . Then, ® I_m{2x2[a (1+y)"'- @+1)(1+ y)ﬂ+ 2¢
=i -
2¢[a(y - @+ 1)y ari a(a+1) a(a+1)
el i ] 26.-1, a<l and a0{-1g 2y 2 logty )1 1= 0
(L3.1) © y 9 Z ’
| > 2%y - 2 log(i+y )- 1, a=0 (L3.2) oy |og(1+y)_%_1 i=-1
| > 2 log(1+ y)-22~ 1, a=-1.(L3.3) y

where stepd) follows from the continuity of ata =i, step
(b) follows from (L3.1), and stepc| follows from

Proof of Lemma 3:
L'Hbpital’'s Rule from [20]. This completes the pfoof

Firstly, consider the case when< 1 andal}{-1,0}.

Define Lemma 3. o
252 By settinga = 1-), x = gandy =d in Lemma 3,l
R(x,a):= 2x(x—a) (L) + a 1),aD(—°°,—1)D(0,]] becomes equal to the left-hand side of (13). Hensing
X\x-a){l+s) +a@+ (L3.1), (L3.2), and (L3.3), we obtain the following
2x(x—a)(1+ l)a necessary conditions folN;, simultaneously successful
R(xa)=—5—"—"— a0d(-1,0). transmissions at time
2x“—a(a+l) 202( 2y )
R, and R, are differentiable functions ok and partial o w207 1<% o L3 (4
derivatives othem with respect tr are (1_y)( 2— y) (1_ y)( 2— y) B’ it
al datar 2y a0 0, al(-~,-1)0(0,4 S
—= 2 1 a _007_ ) 2 - 2 - =
O (oo - 72 M‘ﬂz 20°d - 20 |og(1+d)—Jsﬁ, y=1 (15)
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, 20%d G On the other hand, due to paiif Of Theorem 1, we know
20" log(1+d )~ 1+d ‘]Szv y=2. (16) that no destination node can receive more tha/®+

) - transmissions successfully. Since each transmissaanot
Solving (14), (15), and (16) foo and substitutings from t t th this implies that at the qi
(12), we obtain the following upper bound N oceur at a rate more thallha, this implies that at the given

timet, the total rate at which information is being deted

N <U,, (A7) {0 the destinations cannot exceldW,.(1+G/5). Hence,

whereU, is defined as in (T1.3), (T1.4) and (T1.5). the total average rate at which information is \d=kd to

Recall thatN? is the maximum value dfi over all the the destinations over the time intervab®, which is equal
placements of the nodes, the choice of the tratemsittheir to NA, cannot exceeMW,,,(1+G/3). This implies

intended receivers, and the transmission powevenghat NA<SMW_ (1+G/p). (19)
there are no restrictions on the valueNofSince there have o0 (18) and (19) imply that
been no restrictions on any of these parameteiiagltine ' W
derivation of (17), hence, the right-hand sideldof)(is also Ay (20)
an upper bound ofl,%, which is not less thah,™ This HN
completes the proof of (T1.1) in Theorem 1. W, M G

Finally, we prove (T1.2) and partiX of Theorem 1 as A ST[HEJ' 1)

follows: Suppose there is a single receiver node &n
transmissions intended for this node at tim&hen, in (7),
l;j(t) is equal to zero for eveiyj, andt. Thus,N; will be no
more than 1&/4. This shows that none of the nodes ¢
receive more than I3/4 simultaneously successful
transmissions intended for itself. This completes proof
of part (i) of Theorem 1. Now, (T1.2) follows from pait)(
and the fact that the total number of nodes inntktevork is

It is worth emphasizing that, because of the gditeraf
the network model underlying the derivation of (20)d
21), they are applicable even when the mobilititgra of
e nodes, the spatial-temporal transmission sdimedu
policy, the temporal variation of transmission posyethe
sensor-destination pairs, and the possibly mulfi-pautes
between them are optimally chosen as to maximize
Similarly, (20) and (21) are applicable even whHemnodes

equal toNig - " oare capable of maintaining multiple transmissions/er
receptions simultaneously.
4.2 UPPER BOUNDS ON PER-SENSOR Recall that A, is the supremum of all end-to-end

END-TO-END THROUGHPUT CAPACITY  throughputsi, for which there exist: a mobility pattern of
the nodes, a traffic pattern, a spatial-tempoi@igmission
gscheduling policy, and a temporal variation of srarssion
powers, so thad >4, There have been no restrictions on

Theorem 2: A and A, have the following upper bounds: ~ these parameters during the derivation of (20) €2iJ.
W Hence, the right-hand sides of (20) and (21) ase apper

In this subsection, firstly, we prove the followin
theorem:

A SA ==L, (T2.1) bounds oMy, which is not less tha.. This completes the
HN proof of (T2.1) and (T2.2). The proof of (T2.3)identical
W, ..M G with the proof of (T2.1) except that the expressoonthe
A=Ay < N [1+ E] ’ (12.2) right-hand side of (T1.2) is used insteadJof [ |
W.axNioa G So far, there have been no restrictions on the eurob
A S Ay < HN [1+Ej' (T2.3) simultaneous transmissions and/or receptions timatde is

capable of maintaining. If, as in [1]-[4], there atso the

Proof of Theorem 2: additional restriction that a node cannot transiuitd
Let t be an arbitrary time instant, and define tb&al receive simultaneously and that a node is capalfle o

information transmission rate of the network at timet, C(t), maintaining at most one transmission or one rece phi

as follows: any given time, then the upper bounds/erand A, can be
N further tightened. We will henceforth refer to tltiase as
C(t)= Z_l:W. ®). the half-duplex restricted case. In this case, no destination

. T . node can receive more than a single transmissiah traus
where W (1) is the transmission rate of t@ successful following the same derivation method that was used
transmission at timé. By the definition of H in section penyeen (18) and (19) shows thatWiaM/N. Combining
2-4, each bit of information delivered to its deation is s jnequality with (18), and following the samerivation
transmitted inH hops on the average. Therefore, the tim@ethod that was used after (19) in the proof ofcfam 1
average ofC(t) over the time interval [8;) is not less than g4 {0 the following upper bound daand,, for the half-
HZUA =HNA . Also, sinceW (t) < Wna andNe < N™  duplex restricted case:

we find thatC(t) < Wha N™ Thus, average doE(t) over A

any time interval cannot excedbh,,, multiplied by a time A <A, < Tmm{ﬁy, M } (22)
invariant upper bound of,™ Since the quantityJ, in
(T1.1) is such an upper bound, this implies

HNA<W_U (18)

max= y "

Finally, we show that dividing the communication
bandwidth into several sub-channels of smaller tafith
does not change the terms other thdgp. in all of the
results on/. and A, that we have presented so far. An
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assumption behind those results is that all trassions are
taking place in the same communication bandwidtlthé
communication bandwidth is partitioned into sevesab-
channels of smaller bandwidth, then there stilhmsupper

bound on the transmission rate in each of these sL
of the upper bounds on simultaneot

channels. All
transmission capacities & and the network are still valid
for each of these sub-channels individually. Thenmef if
there arek sub-channels and the transmission rate okthe
sub-channel is no more thah,™, then all of the upper
bounds onl. and A, are still valid if Wiax is replaced with
ZE:kamax'

5. ANALYSIS OF THE UPPER BOUNDS

In this section, we analyze how the upper boundsi8n

N™ A, and A, are affected as various parameters of the

network are varied individually.

Firstly, we analyze the asymptotic and limiting aeior
of the upper bound, in Theorem 1, to draw the following
conclusions abou¥,® :

2
(1+%) D

. V]
o |im—<L=2_
Yoo V20

= N2 isO(y?)

vl . .
- lim =3 -ﬁ(h%) = N2 isO(D) if y=1
. m‘;—;: = (1-%)(1+8) = N isOD) if y< 2
(¥<2)
Uy,

=4 (1+S) =N° isO(D/log(D)) if y=2

D - o D?/log(D)

G
B
g) =Nl isOD) if y>2

; U_y_(y—l)(y—Z)(
B Lol G
(v>2)
- U _ — U Q
. Iémw a5 = Tr.d) = 5575 = Ne~ isO(G/B)
e limU =limU_=1+& = Lack of attenuation is
yio Y pio ¥ B

equivalent to lack of space

Also, since the area of the network domaikis 70?4,
D can be replaced with A47)*>. Doing so, we can also
conclude that\,? is O(A™ V2.1 if ;£ 2 andO(A/log(A))
if y= 2. Regardless of the value pfthis also implies that
N;* cannot grow with the area @ super-linearly. Linear

growth is not possible whep < 2, and can only be possible

wheny> 2.
In Figure 3,U, is plotted as a function gk and ; for
G=p4=10. This figure illustrates the growth trendlfas y

200

150

U, 100

50

» 6 . ¢
B 4 dOma\“ @‘
2 K
AWOr
of 0
Aved
Figure 3 — Upper bound on the simultaneousstréssion capacityf
the network domain as a functidrthe area of the netwol

domain and the path loss exponent

00

yalso shows tha,™® is O(1) with respect t&A andy. The
reason is that beyond some finite valuesAobr ), the
network domain provides sufficient space and atéon,
so that the upper bound on the number of simuliasmeo
receptions per-node, i.e., GH3 becomes the limiting
factor.

Next, we analyze asymptotic and limiting behavibthe
upper bounds o#e and A, Inequality (T2.1) of Theorem 2
shows thatl, and A, areO(1/N) andO(1/H ). It also shows
thatA. and A, areO(G/53). ° We also observe that and Ay
are upper bounded bWna(1+G/B8)/( HN) when the
network domain lacks attenuation or space. Duer®?2),

Ae and A, cannot exceedW,,M(1+G/B)/N, which is
independent of A and . So, the upper bound in (T2.2)
becomes more restrictive than the upper bound 1T
beyond some finite values #for y; and thusi, and A, are
O(1) with respect toA and y. Similar behavior is also
observable in the half-duplex restricted casegf@mple, if
the set of sensor nodes and the set of destinatidas are
disjoint andH =1,° then beyond some finite values/dbr

¥ the network domain provides sufficient space and
attenuation so that at any given time, there ilaegment of
the nodes for whichM simultaneously successful
transmissions can be established betw&enof the N
sensors and theM destinations. However, no more
transmissions can be scheduled, since there are no

and/orA increase. It is possible to observe the lineat afiemaining inactive destination nodes, and thysnd An

the sub-linear growth dd , with A wheny> 2 and 0 ¢/<2,

respectively. The figure also illustrates the eglénce of
the lack of attenuationy& 0) and the lack of spac@ € 0).

One should also notice the quadratic growth) pivith y

Secondly, we analyze the upper bounds Ni*
Inequality (T1.1) of Theorem 1 shows thd{"® is O(1)
with respect toN. Since N™ < N, all of the above
asymptotic results are valid fok™;, too.

However, from (T1.2) and the facts thdita <N+M and
M<N, we find thatN,"® < 2N(1+G/f3). Therefore, for a
givenN, G, andg, the upper bound oN,"®in (T1.1) loses
its tightness beyond some finite values Df and y
Existence of an upper bound B" independent ob and

90

cannot exceellV,.x M/N, which can be observed from (22).
In general, there is a region oA, ¢) pairs for which the
dominant upper bound oA, and A, is Wy, I(HN).
From (T2.1) and (T2.2), it can observed that tleigion is
contained within the region bounded by tAeaxis, they
axis, and the set of A()) pairs for which
U,=MH(1+G/p). SinceU,is an increasing function &
and y this region will expand a1 (and thusN, since

9 The O(G/3) result assumes thsli., is not dependent d&/5. However,
in some practical system#/y is inversely proportional t6/43, as we will
see in section 7. _

% Note that this is the least possible valueHof, and is achieved when
each sensor node transmits the information thegrierates directly to its
destination node.
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Fig. 4 — Upper bound on the normalized per sensorto-enc  Fig. 5— Upper bound on the normalized per sensor-to-enc
throughput capacity as a functiontibé area of the throughput capacity as a functiontleé area of the
netwrk domain and the path loss expol network domain and the number of senedes

M<N) increases. This shows that the limitatiomgandA, constant level so that it does not rule out thesitilsty of

due to shortage of space and attenuation is mdtehieving a non-vanishing per-sensor end-to-ermbifirput

pronounced wheM (and thusN) is large compared td,. @S the number of sensor nodes grows large. We will

Additionally, we have shown that, is OA™ 2.5y when elaborate on this result in section 7.

y#2, ©(Allog(A)) when y=2, and also®(y?). These

observations support the claim that for lahyg¢and thusN) 6. A AND Ay ARE 6(1/N)

there is a region off,)) pairs where additional space and

additional attenuation provide considerable inoeeasA. In the previous section, we have shown thaandA,, are

and A, where the behavior of, and A, resembles the O(1/N). Next, to prove that they are al@{1/N), we will

asymptotic behavior otJ,, and beyond this region theshow that they ar€(1/N). We do this by constructing a

behavior/, and A, changes int@®(1) with respect téA and TDMA scheme that assigns each of the sensor nodes a

V. separate time slot of constant duration. In sudtleme,
Next, we demonstrate the above results through Higre areN slots in each cycle and each of the sensor nodes

example. Consider the half-duplex restricted c&se.this transmits directly to its destination in the slssigned to

case, we have shown thiatand A, cannot exceed the right- ItSelf, with a transmission power large enoughausgy the

hand side of (22). Now, we normalize this quantifgh Signal to noise ratio requirement. Assumifigs an upper

respect tolNma, and we denote the resulting expression Beund on the power of noise in the used communicati

Au. In Figure 4./, is plotted as a function @ andy The bandwidth, a transmission power Bf/a(D) guarantees

other parameters for this example a@s= =10, N=250, Successful reception.

M=N/2, and H =1. This figure illustrates the variation in Al.though th's simple scheme takes no adva'nt.age of

the growth trend of, as a function oA for various values spatial reuse, it allows each of the sensor nadesmitting

of 1 Also. it demonstrates the presence of a redi 1/N fraction of the time. Thus, assuming that each
y SO, onstrates P . gioh9) transmission satisfying the signal-to-noise ragiguirement
pairs where the limitation of, and A, is due to shortage of

3 ) X ' can occur with rat&V, an node end-to-end throughput of
fgg‘ig‘; a;hdor?;tgg%?tliﬁgétli:\/cg éﬁﬁ?} a‘iggsng‘ét:édg&ttﬁ: WIN is achievable by all sensor nodes. This showsthat
dominant limitation, and thusiV,.M/N becomes the andAy areQ(1/NN). As a resultd. and Ay are&(1/N).
dominant upper bound od. and A, (this can also be
observed from (22)). 7. IMPLICATIONS OF THE RESULTS ON

In Figure 5, parameter values are the same exhapht SCALABILITY

is now an independent variable (sdMs sinceM=N/2 in

this example) ang’r= 3. The light green region consists of In this section, we consider the following scalipil
the A, N) pairs where the limitation of. and A, is due to problem: we are increasing the number of sensoesaul
shortage of space. For the N) pairs outside of this region, the network indefinitely, and we want to achievdesired
namely inside the darker blue region, shortagenattive per-sensor end-to-end throughput, sdy /A, is not
destination nodes is the dominant limitation, amaist achievable if no other parameter is increased fametion
WhaxM/N is the dominant upper bound dg and A, The of N, since due to (T2.1). and A, are no more than
figure. al.so demonstrates that if the area of thmm WiaU,/(HN), which is O(1/N). So, one or more of the
domain is kept constant and the number of sensdes parameters oMW, ¥ G/, or A must increase with\

increased, themly decays a€(I/N), so thatde and An  angN must be increasing according to a functioidgf so
vanish asN grows large. However, if the area also increas St W UJ(FIN)=>o (note thatH cannot be indefinitely
with N, we observe that it can be possible to kdgpat a ma =
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reduced to compensate for increasiMigpecauseH =1, as
every bit of information has to be transmitted &trleast

one hop). This shows th&N must beO(WiaU,).

For practical systems, yis a property of the wireless

channel and it cannot increase WNhW,,,, cannot increase

indefinitely with N, because of the presence of noise ar
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These limit reliable information transmission tdes that
do not grow withN. On the other hand/S depends on the
implementation of
increasing it for a given system bandwidth usuetlyuires

decreasingMnax. FOr example, it is shown in [13] that in
spread spectrum CDMA, for a given system bandwidtl

symbol transmission rate is inversely proportiot@lthe
processing gain. Likewise, reducing? requires a
proportional decrease in the symbol transmisside ta
satisfy a given bit error rate requirement. Themfo
increasingG/g will not compensate for increasing So,
the only way of achieving, would be increasind\ asN
increases. Henc®& must be increasing as a function/of
We have shown that, is @A™?%) when y # 2 and
O(A/log(A)) when y=2. Therefore, unlessN is
O(A™2.1y when y# 2 andO(A/ log(A)) wheny= 2, Ay is
not achievable. AlsoH must be®(1) with respect t\
due to the following reasoning. We know that> 1, which
implies that H is Q(1). To see whyH must beO(1) with
respect td\, observe thatl, cannot exceedV¥,.(1+G/3)
/H due to (T2.3) and the fact thst<N. Since increasing

G/ requires a proportional reduction\.«, as is the case

in spread spectrum CDMA, we find that compensaftorg
indefinitely growingH by increasings// is not possible.

the communication system an
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Figure 6 — Curves formed by tha,I{) pairs for which/ly = 0.1. For th
AN) pairs above the curves, any normalized throug
greater than or equal to 0.4asachievable

plotting the AN) pairs, for which A, =0.1 and
¥1{0,1,2,3}. We know that normalized, and A, are no
more thanAy. Also, it follows from the definition oy
that /Ay is a decreasing function M and an increasing
function of A when Ay <M/N=0.5. Therefore, each of
these curves separates a region AN) pairs where a
normalized end-to-end throughput of 0.1 is not
achievable and another region where it may be sahle

on average or by all sensor nodes. For examplen ywhe?,
and A,N)=(3,400), the normalized end-to-end throughput
0.1 is not achievable, whereas it may be achievable
average or by all sensor nodes fdN)=(3,100). The
corollary tells us that for the sequence @&fN) pairs

On the other hand), is not achievable unless the UPPeforming each of the curves in Figurejs O(1), O(AY?),

bound in (T2.2) is at least as big ds& Hence, (T2.2)
implies that ifM is not Q(N), then Ay is not achievable,

O(Allog(A)), andO(A) whenyis 0, 1, 2 and 3, respectively.
Equivalently, for the sequence &,p) pairs associated with

because the above argument in the previous patagrap.n of these curvew, is O(L/A), O(L/AY?), O(L/log(A),

shows that\V,,.(1+G/fB) cannot grow indefinitely with.
The above results can also be stated in terms ef
sensor density, o := N/ A. From the aboveO(-) results,
dividing N and the asymptotic upper boundshmy A, we
obtain the following result: unlegsis O(A™ 21 when
y # 2 andO(Llog(A)) when y = 2, Apis not achievable.
In other words, A, is not achievable ifo grows with
N indefinitely when y > 2, if dog(A) grows with N
indefinitely when y = 2, and if pA"™"? grows with
N indefinitely wheny < 2. In any case), is not achievable
if o grows withN indefinitely. Also, wheny < 2, unlesso

decays down to 0 all — o, Ay is not achievable. Our

observations in this and the previous two paragrgpbve
the following corollary regarding practical systems
Corallary: (A necessary condition for the scalability of
practical systems) A desired per-sensor end-to-end
throughput is not achievable as N — o, unless H is ©(1)
with respect to N, M and A grow with N, such that M is
Q(N), and the following equivalent conditions are satisfied:
« Nis O(A™¥2: 3 when y#2 and O(A/log(A)) when y= 2,
* pisO(A™V21% when y#2 and O(1/log(A)) when y=2.
|

t%nd@(l) wheny is 0, 1, 2 and 3, respectively.

8. CONCLUSIONS

In this paper, we have studied the capacity ofleiuger-
detection based wireless sensor networks throughusie
of a more general network model than the modeld use
the literature.

Instead of the propagation model used in the pusvio
studies, we used the bounded power law decaying
propagation model, which was proposed in otherietudn
connectivity such as [15] and [16], to obtain meealistic
results for small transmitter-receiver distanceshilev
approximating the conventional model at large dists.
Using this model, we concluded thi{"™ cannot exceed
N©, which'* is independent o, but depends oA, y; G,
andS. The analysis of the upper boundNf in Theorem 1
has revealed thaN? is OA™2My for y#2 and is
O(Allog(A)) for y=2. The analysis has also shown that
is O(y?) andO(G/p).

Figure 6 illustrates this corollary. In this figure ™ The difference between our results and the resultt] and [2], which
G=p4=10 H =1 M=N/2 and the curves are obtained b)zoncluded thatNy™ is ©(N), is due to the bounded nature of our
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Additionally, since the network model that we hassed REFERENCES

is quite general, our results in this paper do ardy hold
for the network scenarios of [1]-[4], but also hdidr
networks whose nodes move with any mobility pattern
are capable of maintaining any number of simultaseo
transmissions and/or receptions. Hence, we have bele (2]
to show that the maximum achievable per-sensortend-
end throughput i®(1/N), even when the mobility pattern of
the sensor and the destination nodes, the spatigidral
transmission scheduling policy, the temporal vatatof
transmission powers, the sensor-destination paird, the
possibly multi-path routes between the sensors twed 4
destinations are optimally chosen. Furthermores thsult
holds even the communication bandwidth is partétbmto
sub-channels of smaller bandwidth.

Moreover, our results are valid for any nonnegatiakie
of y. 12 This allowed us to characterize the behaviolNgt ,
N™ A, and A, under low attenuation conditions. In
particular, it allowed us to show that lack of attation and [6]
lack of space are equivalenthere N™® and N;? cannot
exceed 1&/0. Also, in these equivalent casek,and A,

cannot exceetNy,(1+G/B)I(HN). 71
We have also shown that no node can receive mare th
1+G/gB simultaneously successful transmissions intended fg]

itself. This allowed us to show th&™ A, and A, are
O(1) with respect tcA and yfor a givenN. Together with
(T2.1) and (T2.2), this also allowed us to justifiat the
limitation of A and A, due to shortage of space and®]
attenuation is more pronounced whdrandN are large.

Finally, we have studied the implications of ousuks
on the scalability of wireless sensor networks. Wave [10]
shown that atN becomes large, unless one or more of the
parameters froM\Vy,a. ¥ G/3, or A grows withN, and HN [11]
is O(WhalJ,), a desired per-sensor end-to-end throughput is
not achievable. Regarding scalability of practisgstems,
we have concluded tha must beQ(N) and H must be [12]
©(1) with respect tiN. Moreover, we have concluded that
A is the only remaining parameter whose growth can
compensate for increasig Above all, we have proved [13]
that asN — <, a desired per-sensor end-to-end throughput
is not achievable, unless also grows withN, and N is  [14]
O(A™'2.8) wheny#2 and isO(A/log(A)) wheny= 2.

In summary, in this paper, we analyzed the capacity
of single-user-detection based wireless sensor orksv
through the use of a more general network model, vem [15]
determined several necessary conditions for thialsitity
of such networks. This was performed by considednky
one of the fundamental requirements for scalabiliiich
is the requirement of a non-vanishing per-sensdfterend
throughput as the number of sensor nodes grows.|#gy
interesting extension of this work would be to detiee the
additional necessary conditions that result from othgn7)
fundamental requirements for scalability, such asnoled
end-to-end delay, bounded power consumption, balindes]
processing power, and bounded memory consumptitreat
nodes.
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