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Abstract - We establish some new results on the capacity 
of wireless sensor networks that employ single-user-
detection, and we present the implications of our results on 
the scalability of such networks. In particular, we find 
bounds on the maximum achievable per-sensor end-to-end 
throughput, λe, and the maximum number of simultaneously 
successful wireless transmissions, Nt

max, under a more 
general network scenario than previously considered. 
Furthermore, in the derivation of our results, we make no 
restrictions on the mobility pattern of the sensor and the 
destination nodes or on the number simultaneous 
transmissions and/or receptions that the nodes are capable 
of maintaining. In our derivation, we also analyze the effect 
of parameters such as the area of the network domain, A, 
the path loss exponent, γ, the processing gain, G, and the 
SINR threshold, β.  Specifically, we prove the following 
results for a wireless sensor network of N sensor nodes and 
M destination nodes that are equipped with omnidirectional 
antennas: 

(1) λe is Θ(1/N) under very general conditions that we 
identify in this paper. 

(2) Nt
max has an upper bound that does not depend on N, 

which is the simultaneous transmission capacity of the 
network domain, Nt

Q. For a circular network domain, Nt
Q is 

O(Amin{γ / 2 ,1}) if γ  ≠ 2 and O(A/log(A)) if γ  = 2. In addition, 
Nt

Q is O(γ 2) and O(G/β ). Moreover, lack of attenuation and 
lack of space are equivalent, where Nt

Q cannot exceed 
1+G/β . 

(3) As N → ∞ a desired per-sensor end-to-end throughput is 
not achievable, unless the average number of hops between 
a sensor-destination node pair does not grow indefinitely 
with N, both M and A grow with N such that M is Ω(N), and 
N is O(Amin{γ /2,1}) if γ  ≠ 2 and O(A/log(A)) if γ  = 2. 

Keywords: Wireless sensor networks, capacity, scalability, 
throughput, omnidirectional transmission*  
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1. INTRODUCTION 

In recent years, there has been an increasing interest in 
certain class of wireless networks called wireless sensor 
networks. Typically, wireless sensor networks are deployed 
to collect information about an environmental variable by 
observing the information gathered at a set of destination 
nodes from a set of sensor nodes in the network.1 

Scalability of wireless sensor networks has been an 
important research topic in the recent years, because of the 
growing demand to support a large number of nodes in 
future sensor networks, which are envisioned to consist of 
thousands to millions of sensor nodes. Two important 
questions in this context are: (1) Are wireless sensor 
networks scalable? In other words, is it possible to support a 
large number of nodes in a wireless sensor network? (2) If 
there are scalable patterns of wireless sensor networks, what 
are the conditions that govern their scalability? 

To answer these questions, one must first define what 
scalability is. In this work, we interpret scalability as: the 
ability of the network to operate with a non-vanishing per 
sensor end-to-end throughput, bounded end-to-end delay, 
bounded power consumption, bounded processing power 
and bounded memory at each node, as the number of nodes 
grows large.  

In this paper, we focus on the throughput aspect of 
scalability. Our objectives are: (1) to obtain theoretical 
results that show the dependencies among the per-sensor 
end-to-end throughput capacity λe, the number of sensor 
nodes N, and other parameters of a wireless sensor network, 
and (2) to determine the implications of these results on the 
scalability of such networks. 

One of the most well known studies that stimulated the 
research on the capacity of wireless sensor networks was 
published by Gupta and Kumar [1]. In that paper, two 
network models were proposed to analyze the capacity of 
wireless networks. The first network model, the arbitrary 
network model, assumes that all N nodes in the network are 
static, there are no restrictions on nodes’ locations, and the 
network domain (i.e., the region within which the nodes are 
located) is a circular disk of area 1 m2. Each node is capable 
of maintaining at most one transmission or one reception at 
any given time. There are no restrictions on the choice of 
transmission powers, traffic pattern, routing protocol, and 
spatial-temporal transmission scheduling policy. The 
second model is the random network model, which assumes 
a uniform distribution of node locations, a random traffic 
pattern, and a common transmission power that decreases 

                                                                    
1 In the literature, sensor nodes are also called sources, and destination 
nodes are also called sinks, collectors or observers. 
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with N, while ensuring the connectivity of the network as N 
tends to infinity. 

From a sensor network perspective, the arbitrary and the 
random network models correspond to sensor networks for 
which each node has the ability to be a sensor node and a 
destination node. 

Additionally, in [1], two models for successful reception 
are proposed. The first reception model is the protocol 
model, which considers a transmission unsuccessful if the 
receiver is within the interfering range of an unintended 
transmitter. The second model is the physical model, which 
better represents realistic reception in practical wireless 
networks. In the physical model, for a transmission to be 
successful, the Signal-to-Interference-and-Noise Ratio, 
SINR, at the receiver of the transmission has to be above 
some threshold value. It is assumed that the antennas are 
omnidirectional and that P/xγ is the power received at a 
distance x from a given transmitter, where P is the 
transmitted power and the path loss exponent γ is assumed 
to be larger than 2. 

 [1] concluded that, with the protocol model, λe is2 
( )1/ NΘ  for arbitrary networks, whereas λe is  
( )1/ log( )N NΘ  for  random networks. With the physical 

model, they concluded that λe is ( )1/O Nγ  and ( )1/ NΩ  
for arbitrary networks, whereas, λe is ( )1/O N  and 

( )1/ log( )N NΩ  for random networks. 
One of the assumptions of [1] is that all nodes are 

immobile. In [2], Grossglauser and Tse explored whether or 
not introducing mobility can increase λe. Their network 
model introduced some additional restrictions on the 
random network model of [1]. Firstly, they used the 
physical model, but allowed wideband communication by 
incorporating the processing gain, as to reduce interference. 
Secondly, the locations of the mobile nodes form a 
stationary ergodic process with a uniform stationary 
distribution in the network domain. Thirdly, as in [1], 
source-destination pairs do not change over time. Finally, 
they assumed that very long end-to-end packet delays are 
tolerable. Grossglauser and Tse concluded in [2] that there 
exists a routing and scheduling policy that delivers a packet 
to its destination with no more than two hops, and allows λe 
to be Θ(1) as N becomes large. Moreover, both [1] and [2] 
concluded that it is possible to schedule Θ(N) many 
simultaneously successful transmissions in a wireless 
network. 

In [3], Marco et al. explored λe with two particular traffic 
patterns. They used a half-duplex reception model, which is 
based on the protocol model, and they assumed that the N 
sensor nodes are static, they are uniformly distributed in the 
circular network domain, and the transmission range is 
constant. The first traffic pattern that they considered is the 
all-to-one model, where each sensor node has the same 
destination node which is located at the center of the 
network domain at all times. The second traffic pattern is 
                                                                    
2 We will use the standard asymptotic notations: Let f and g be nonnegative 
functions of a variable x. f is O(g) with respect to x, if there exist positive 
real numbers x0 and y0, such that 0 ≤ f ≤ y0g for every x ≥ x0. f is Ω(g) with 
respect to x, if there exist positive real numbers x1 and y1, such that  
0≤ y1g ≤ f for every x ≥ x1. f is Θ(g) with respect to x, if f is both O(g) and 
Ω(g) with respect to x. We will omit the phrase “with respect to x” when it 
can be understood from the context. Also, we will make use of the fact  
that f is Θ(g) with respect to x if f (x)/g(x) has limit in (0,∞) as x→ ∞. 

the all-to-all model, where each sensor node has to 
broadcast the information that it generates to all other 
sensor nodes in the network. For these two traffic patterns, 
they concluded that λe is Θ(1/N). 

In [4], Chakrabarti et al. concluded that λe is 
( )log( ) /N NΘ  for the random network model of [1], if the 

all-to-one traffic pattern and an adaptive transmission rate 
model are used instead of the random traffic pattern and the 
threshold SINR based reception model, respectively. 

In [5], Toumpis and Goldsmith also used an adaptive rate 
model, and using numerical methods, they evaluated the 
effect of spatial reuse, multi-hop routing and power control 
for a particular placement of the nodes. They concluded that 
each of these schemes provides expansions of the capacity 
region that is defined by the set of achievable rates between 
the nodes. 

In [6], Li et al. pointed out the effect of traffic pattern on 
λe and concluded that only wireless networks with local 
traffic patterns can be scalable. 

Usage of directional antennas at the transmitters or the 
receivers can provide significant increases in λe, depending 
on how narrow the width of the antenna’s main lobe and 
how small the side lobes of the antenna radiation pattern 
can be made. For example, in [7], using a sender-based 
interference model, Yi, Pei, and Kalyanaraman investigated 
the improvement in λe provided by the usage of directional 
antennas for arbitrary and random wireless networks. 

 The ability of a node to maintain multiple simultaneous 
transmissions and/or receptions can also provide an increase 
in λe. For example, in [8], using directional antennas, Peraki 
and Servetto studied random networks with and without 
multiple simultaneous transmission or reception capability, 
and they concluded that an improvement of at most 
Θ(log2(N)) can be achieved over the ( )1/ log( )N NΘ  result 

of [1]. 
 Deployment of a wired backbone can also provide an 

increase in λe, since it allows reducing average number of 
wireless transmissions per packet. For example, in [9], Liu 
et al. considered the benefit of deploying base stations 
connected to a wired backbone in the random network of 
[1]. They concluded that if the number of base stations 
grows asymptotically faster than N , then aggregate 
throughput capacity increases linearly with the number of 
base stations. 

The results of studies such as [1]-[9] are based on the 
assumption that the nodes are equipped with single-user-
detection based receivers, which are widely used in today’s 
practical wireless networks. These types of receivers 
attempt to detect a particular transmission, while treating all 
other interfering transmissions as noise. On the other hand, 
studies such as [10]-[12] concluded that sizable gains in 
network throughput can be provided by not treating 
interference simply as noise, but rather employing more 
sophisticated receivers and implementing certain 
cooperation strategies among the nodes during encoding, 
transmission and decoding stages of each communication.  

Our work has been motivated by the desire to relax some 
of the limitations of [1]-[4], and to improve on their models. 
In particular, the radio propagation model of [1], [2] and 
[4], (i.e., P/xγ ) becomes inappropriate as the transmitter-
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receiver separation becomes small. Since the network 
domain in these studies has a fixed area, as N grows large, 
the intended transmitter-receiver pairs get arbitrarily close 
to each other, which leads to a very optimistic evaluation of 
the SINR values due to the assumed propagation model. To 
avoid this problem, we use a bounded propagation model, 
which we discuss in Section 2.3. In terms of mobility, in 
[1], [3] and [4] the nodes are immobile, while in [2] the 
mobility pattern is a very special one. In our work, we allow 
for a general mobility pattern of the nodes. Furthermore, by 
allowing a general traffic pattern, we relax the assumption 
of [1]-[4] which states that the source-destination pairs 
never change over time, and the assumption of [3] and [4], 
which states that the traffic pattern is either all-to-one or all-
to-all. Moreover, in [1]-[4] each node can maintain either a 
single transmission or reception at any given time, whereas 
our work also considers the situtation when the nodes have 
the ability to maintain multiple transmissions and/or 
receptions at the same time. In addition, we also analyze the 
effect of parameters such as A, γ, G and β on λe, none of 
which has been addressed in previous works. Above all, we 
evaluate the implications of our results on the scalability of 
wireless sensor networks. 

The main contribution of this study is in the derivation of 
new results on the capacity and scalability of wireless 
sensor networks through the use of a more general network 
model and a more realistic bounded propagation model, as 
compared with the models of the previous studies. 

The rest of the paper is organized as follows: Section 2 
presents our network model, and Section 3 provides related 
definitions. In Section 4, we derive the upper bounds on the 
simultaneous transmission capacity and the per-sensor end-
to-end throughput capacity. In Section 5, we analyze the 
derived upper bounds, together with illustrative figures. 
Section 6 establishes the tightness of the scaling behavior of 
λe with respect to N. Section 7 discusses the implications of 
our results on scalability. Finally, we conclude in section 8. 

2. SENSOR NETWORK MODEL 

In this section, we explain the assumptions underlying 
our results. Some of these assumptions are quite general, 
allowing our upper bound results to hold even in wireless 
sensor networks that are configured with optimal settings of 
the parameters. Although this paper is primarily targeted at 
the sensor networks, the generality of our assumptions 
allows straightforward extensions of the results of this 
paper to many other types of wireless networks, such as 
wireless ad hoc networks. We will elaborate on some other 
consequences of these general assumptions after presenting 
our results. 

2.1 NETWORK DOMAIN AND NODES 

We denote the total number of nodes in the network by 
Ntotal. There are two types of nodes in the network: sensor 
nodes and destination nodes. There are N sensor nodes and 
M destination nodes. Any given node is either a sensor node 
or a destination node or both of them, and the type of the 
node remains the same at all times. Two immediate 
consequences of these assumptions are that Ntotal ≤N+M, 

and that Ntotal =N+M if and only if the set of sensor nodes 
and the set of destination nodes are disjoint. 

The task of each sensor node is to send the collected 
information to a destination node (of course, to a destination 
node other than itself, if the node itself happens to be a 
destination node, too). We assume that M≤N. Typically, 
this inequality is satisfied with “≪” in practical wireless 
sensor networks. An immediate consequence of the 
inequality M≤N is that Ntotal =N if and only if all destination 
nodes are also sensor nodes. Note that this case corresponds 
to the network models of [1] and [2]. 

Network domain is defined to be the space within which 
each node is constrained to reside. We denote this space by 
Q. We will assume that Q is a closed disk with a diameter D 
and an area A. There are no restrictions on the mobility 
pattern of the nodes within Q. 

2.2 TRANSMITTER AND RECEIVER MODEL 

Each of the nodes is capable of being a transmitter and/or 
a receiver at any given time. All transmitters and receivers 
are equipped with omnidirectional antennas. There are 
no restrictions on the variation of transmission power 
during a transmission or on the number of simultaneous 
transmissions and/or receptions that a node is capable of 
maintaining. Hence, the assumption in [1]-[4] that a node is 
capable of maintaining either one transmission or one 
reception at any given time is one of the many cases 
covered by our model. For the time being, we assume that 
all transmissions take place within the same communication 
bandwidth, but we will relax this assumption later. At the 
intended receiver of a transmitted signal, all of the 
remaining received signals are considered as interference. 
ζi(t) is the power of the thermal noise present in the 
communication bandwidth at receiver i at time t. We 
assume that each of the receivers can receive information 
intended for itself reliably at a rate not larger than Wmax 
bits/s and only when the SINR at the receiver is greater than 
or equal to the SINR threshold, β. Information received 
when the above condition does not hold is considered 
unreliable and, thus, discarded. In this work, we let β be any 
positive real number. In general, β is dependent on the 
modulation scheme, the required bit error rate of the 
received information, the required transmission rate, and the 
type of the error control code. The processing gain, G, is 
the factor by which the total received interference power is 
reduced at each of the receivers. In this work, we let G be 
any positive real number. Typically G >1 for wideband 
communication systems, such as spread spectrum CDMA, 
and is taken to be 1 for narrowband communications. 

2.3 PROPAGATION MODEL 

For any given two given transmissions, let i and j be the 
indices that represent the transmissions. Let ( )j

tP t  be the 
power transmitted by transmitter j at time t. Let dji(t) be the 
distance3 between transmitter j and receiver i at time t. Let 

                                                                    
3 In this paper, all distance measures and area measures are in units of 
“meter” and “meter2,” respectively. 
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( )ji
rP t  denote the power received by receiver i from 

transmitter j at time t. We will assume that 
( ) ( ) ( ( ))ji j

r t jiP t P t a d t= ,    (a.1) 

where a(x) is the attenuation function. One of the most 
commonly used expressions for a(x) is 1/xγ, where γ ≥ 0 is 
the path loss exponent.4 However, this expression becomes 
inappropriate as x becomes smaller than 1, as it results in 
receiving power that is larger than the transmitted power. In 
fact, the received power in the formula approaches infinity 
as x tends to zero. Of course, this is unrealistic and is an 
artifact of the inappropriateness of the expression for small 
distances.5 The inappropriateness of the 1/xγ formula was 
also noticed in some previous works on connectivity, and to 
obtain more meaningful results at small distances, while 
approximating the conventional model at large distances, 
the following alternative propagation model was proposed 
in those studies  (see, e.g., [15] and [16]):  

        
1

( )
(1 )

a x
x γ=

+
,     0x ≥ .     (a.2) 

We call this propagation model, the power law decaying 
propagation model,6 and we will use this model in our 
calculations. 

2.4 TRAFFIC PATTERN 

We make no restrictions on the temporal variation of the 
destination of each of the sensor nodes, the selection of the 
intermediate nodes that are involved in routing the 
information originated by the sensor nodes, and the 
segmentation of information, so that different segments can 
possibly be transmitted over different paths and at different 
times. Note that, together with the assumptions that we 
stated in Section 2.1, these imply that the class of traffic 
patterns that our model covers is indeed a very large class; 
in particular it contains all many-to-many type traffic 
patterns for which the set of sensor nodes is at least as large 
as the set of destination nodes. Hence, this class contains 
the two specific traffic patterns considered in [3], as well. 

                                                                    
4 In free space γ  = 2, but in realistic mobile radio channels, γ  can take 
values between 1.6 and 6 (see [13] and [14]).  
5 The precise reason for this problem can be explained as follows: Consider 
the free space case. In the derivation of the received power expression, a 
unity gain point source in free space is assumed and the flux of the 
transmitted power Pt, per unit surface area of the sphere with radius x 
around the source is calculated. The resulting power flux density 
expression, Pt / 4π x2, has the unit Watts/meter2. The wave-front of the 
transmission occupies only part of the aperture of the receiving antenna, so 
that the power captured by the aperture results from only that part of the 
wave-front that is seen by the aperture. To quantify this partial aperture 
area occupied by the wave-front, effective aperture area, Ae, is defined as 
the ratio of the available power at the terminals of the receiver antenna to 
the power flux density at the location of the receiver antenna. In general, Ae 
depends on the physical characteristics of the receiver antenna and the 
distance x between the transmitter and the receiver antennas.  In [1], [2] 
and [4], Ae is assumed to be independent of x and is taken to be 4π meter2, 
so that the received power expression simplifies to Pt / x

2. In fact, as x→0, 
the power flux density approaches infinity, and with the constant Ae 
assumption, the received power also approaches infinity. This shows that 
Ae should not be taken as a constant for small values of x. In fact, Ae should 
approach zero as x approaches zero, so that the received power,  
Ae Pt / 4π x2, never exceeds Pt. 
6 The corresponding Ae for this model in free space is equal to 4πx2/(1+x)2 
meter2. Note that this expression converges to 4π meter2 as x becomes 
large, which is also the assumed aperture area in the conventional model. 

On the other hand, as in [1]-[4], we assume that 
intermediate nodes that act as relays do not jointly encode 
and transmit chunks of information that are gathered from 
distinct transmissions. 

Finally, we denote the average number of hops between 
the originating sensor node and the destination of a bit by 
H , and we let it be any real number larger than or equal to 
1, since each bit has to be transmitted over at least one hop 
to reach its destination. 

3. DEFINITIONS 

We define a transmission at an arbitrary time t to be a 
successful transmission, if the SINR at the intended receiver 
of the transmission at time t is not smaller than β. We 
denote the number of simultaneously successful 
transmissions at time t by Nt.  We define the simultaneous 
transmission capacity of the sensor network, Nt

max, as the 
maximum value of Nt over all the placements of the nodes, 
the choices of the transmitters, their intended receivers, and 
the transmission powers. Next, we define the simultaneous 
transmission capacity of the network domain, Nt

Q as the 
maximum value of Nt over all the placements of the nodes, 
the choices of the transmitters, their intended receivers, and 
the transmission powers, given that there are no restrictions 
on the number of nodes in the network. An immediate 
consequence of these definitions is that Nt

max ≤ Nt
Q. 

Let bi  (T) be the total amount of bits of information 
generated by sensor node i and received by its destinations 
during a T second time interval [0,T]. We define the end-to-
end throughput of sensor node i, λi, as follows: 

        

( )
: lim i

i T

b T

T
λ

→∞
= , 1 i N≤ ≤ . 7 

We also define the per-sensor average end-to-end 
throughput as the arithmetic mean of λi's, i.e.,  

 
1

1
:

N

i
iN

λ λ
=

= ∑ . 

Next, we propose two achievability definitions: an end-
to-end throughput λ0 is said to be achievable by all sensor 
nodes, if there exist a mobility pattern of the nodes, a traffic 
pattern, a spatial-temporal transmission scheduling policy, 
and a temporal variation of transmission powers, so that  
λi ≥λ0 for all 1≤i≤N. Likewise, an end-to-end throughput λ0 
is said to be achievable on average, if there exist a mobility 
pattern of the nodes, a traffic pattern, a spatial-temporal 
transmission scheduling policy, and a temporal variation of 
transmission powers so that λ ≥ λ0.  Note that if λ0 is 
achievable by all sensor nodes, then it is also achievable on 
average, and if λ0 is not achievable on average, then it is not 
achievable by all sensor nodes, either. Hence, we will 
shortly say that λ0 is not achievable if λ0 is not achievable 
on average. 

Finally, we propose two capacity definitions: the per-
sensor end-to-end throughput capacity, λe, is the supremum 
of all end-to-end throughputs that are achievable by all 
sensor nodes. The per-sensor average end-to-end 
throughput capacity, λm, is the supremum of all end-to-end 

                                                                    
7 Our results also apply with a more general definition of throughput, 
where “lim” is replaced with “liminf”. 
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throughputs that are achievable on average. An immediate 
consequence of these definitions is that λm ≥ λe. 

4. DERIVATION OF THE UPPER 
BOUNDS 

4.1 UPPER BOUNDS ON SIMULTANEOUS 
TRANSMISSION CAPACITY 

In this subsection, we prove the following theorem that 
provides upper bounds on Nt

max and Nt
Q: 

Theorem 1: Let t be an arbitrary time instant. Then, 
(i) the simultaneous transmission capacities of the sensor 

network and the network domain have the following upper 
bounds: 

max
t tN N Uγ≤ ≤Q ,  (T1.1) 
max (1 / )t totalN N G β≤ + ,  (T1.2) 

where 

 

( ) ( )( )
( ) ( )( ) { }

( )
( )

( )
( )

1 2

2

2 1

1 1

log(1 )

2

1

1 2 1
     1,2 ,

2 1

1
:                       1,

2 1

1
             2,

2 log(1 )

G

d d

G

d
d

G

d
d

d

d
U

d

d

γ γ

β

γ γ

β
γ

β

γ γ
γ

γ

γ

− −
− −

+ +

+

+

 − − + ∉ + − += =
−

+
= + −  

  32
3 2: /d D π= − .   (T1.6) 

(ii) no node can be receiving more than 1+G/β successful 
transmissions at time t. 

Proof of Theorem 1: 
Recall that Nt is the number of simultaneously successful 

transmissions at time t. Now, index each transmitter-receiver 
pair that belongs to the same transmission with a unique 
number between 1 and Nt. So, receiver i is the intended 
receiver of transmitter i for every 1≤ i ≤Nt. Let SINRi (t) be 
the SINR at receiver i at time t. Then 

( )
  1

( )
( )

1
( ) ( )

t ji

ii
r

i N

i r
j
j i

P t
SINR t

t P t
G

ζ
=
≠

=
+ ∑ ,         1 ti N≤ ≤ .      (1) 

From the definition of a successful transmission, Nt 
simultaneously successful transmissions can take place at 
time t if and only if  

    ( )iSINR t β≥ ,          1 ti N≤ ≤ , 

  1
( )

( )1
( ) ( )

t iiN
ji r

r i
j
j i

P t
P t t

G
ζ

β=
≠

⇒ ≤ −∑ ,          1 ti N≤ ≤ , 

( )

  1
( )

( )1
( ) ( ( )) ( )

t iiNa
j r

t ji i
j
j i

P t
P t a d t t

G
ζ

β=
≠

⇔ ≤ −∑ ,           1 ti N≤ ≤ , 

( )

  1
( )

( ) ( ( )) ( )1 1

( ) ( ( )) ( ) ( ( ))

t
jNb

t ji i
i i

j t ii t ii
j i

P t a d t t

G P t a d t P t a d t

ζ
β=

≠

⇔ ≤ −∑ , 1 ti N≤ ≤ ,

                        (2) 

where step (a) follows from (a.1), and step (b) follows from 
dividing both sides by ( ) ( ) ( ( ))ii i

r t iiP t P t a d t= . 

In general, for 0 x y z≤ ≤ + , 0y ≥ , and 0z ≥ ,  

1 1 1 1

(1 ) (1 ) (1 ) (1 ) (1 )x y z y z yz y zγ γ γ γ γ≥ ≥ =
+ + + + + + + +

. 

Therefore, for a(x) as defined by (a.2), 

( ) ( ) ( )a x a y a z≥ , 0 x y z≤ ≤ + , 0y ≥ , and 0z ≥ .      (3) 

Now, let lji(t) be the distance between receiver j and 
receiver i at time t. Then, from the triangle inequality, 

( ) ( ) ( )ji jj jid t d t l t≤ + ,    1 ti N≤ ≤  and 1 tj N≤ ≤ . 

Setting x = dji(t), y = djj(t) and z = lji(t) in (3) we find that 

( ( )) ( ( )) ( ( ))ji jj jia d t a d t a l t≥ .        (4) 

Thus, from (2) and (4), if Nt simultaneously successful 
transmissions can take place at time t, then 

  1
( )

( ) ( ( )) ( ( )) ( )

( ) ( ( )) ( ) ( ( ))

t
jN

t jj ji i
i i

j t ii t ii
j i

P t a d t a l t G tG

P t a d t P t a d t

ζ
β=

≠

≤ −∑ , 1 ti N≤ ≤ .

           (5) 
Define, 

( ) ( ( ))
( ) :

( ) ( ( ))

j
t jj

ji i
t ii

P t a d t
p t

P t a d t
= .        (6) 

Next, we add all inequalities in (5), while incorporating (6). 
Hence, if Nt simultaneously successful transmissions can 
take place at time t, then 

( )

( )

1   1 1
( )

1

1 1
1( )

1 1

( )

1 1

( )
      ( ( )) ( )

( ) ( ( ))

( ( )) ( ) ( ( )) ( )

( ( )) ( ) ( )

2 ( ( ))

t t t

t t

t t

t t

N N N
t i

ji ji i
i j i t ii

j i
N N

t
ji ji ij ij

i j i
N Na

t
ij ji ij

i j i
N Nb

ij
i j i

GN G t
a l t p t

P t a d t

GN
a l t p t a l t p t

GN
a l t p t p t

a l t

ζ
β

β

β

= = =
≠

−

= = +
−

= = +

= = +

≤ −⇒ + ≤

⇔ + ≤⇒ ∑∑ ∑∑ ∑∑ ∑∑
( )

1

1( )

1 1

1   1
( )

( )

1   1
( )

( ( )) ( ( ))

( ( ))

( ( )) ,

t t

t t

t t

t

N Nc
t

ji ij
i j i
N N

t
ji

i j
j i

N Nd
t

ij
i j

j i

GN

GN
a l t a l t

GN
a l t

GN
a l t

β

β

β

β

−

−

= = +

= =
≠

= =
≠

≤

⇔ + ≤

⇔ ≤

⇔ ≤

∑∑ ∑∑∑∑∑  

where steps (a), (c), and (d) follow from the fact that a(lji(t)) = 
a(lij(t)) for every i, j, t, and step (b) follows from the fact 
that x+1/x ≥ 2 for every positive real number x. 

From (7), we observe that the problem of obtaining an 
upper bound on Nt can be reduced to finding a lower bound 
on the summation term on the left-hand side of inequality 
(7). This term involves the sum of the attenuation function 
evaluated at the inter-receiver distances defined by the 
Nt (Nt −1)/2 pairs of receivers. To find the lower bound, we 
make use of Lemma 1, which is derived in the next 
subsection. 

(7) 

(T1.3) 

(T1.4) 

(T1.5) 



Onur Arpacioglu and Zygmunt J. Haas 
On capacity of wireless sensor networks with omnidi recitional antennas 
 

86  

4.1.1 INTERPOINT DISTANCE SUM INEQUALITY 

In this subsection, we derive a lemma that gives an upper 
bound on the sum of the square of the nearest, the second 
nearest, ... , and the (n-1)st nearest neighbor distances from 
each of the n points that are arbitrarily located in a disk of 
diameter D.    

Lemma 1: (Interpoint distance sum inequality for a disk) 
Let B(D) be a disk having diameter D. Let n points be 
arbitrarily placed in B(D). Suppose each point is indexed by 
a distinct integer between 1 and n. Let lij be the Euclidean 
distance between point i and point j. Define the mth closest 
point to point i, aim, and the Euclidean distance between 
point i and the mth closest point to point i, uim, as follows: 

{ }
{ }1

1,2,... ,
 :  arg  min ,          1i ij

j n
j i

a l i n
∈
≠

= ≤ ≤ , 

{ }
{ } { }

{ }
1
1

  1,2,... ,

  

 : arg  min ,         1  and 2 1
m

ik k

im ij
j n

j i a

a l i n m n
−
=

∈
∉

= ≤ ≤ ≤ ≤ −U , 

 :   ,                        1  and 1 1.
imim iau l i n m n= ≤ ≤ ≤ ≤ −  

Then 
2

2

1 2

n

im
i

mD
u

c=

≤∑ ,     1 1m n≤ ≤ − ,  (L1.1) 

where 32
2 3 2:c π= − . 

Proof of Lemma 1: 
The proof involves a spherical geometric approach, 

which is used to solve similar problems in [17]. Let Bi(x) 
denote the disk of diameter x, whose center is at point i. 
Consider the following sets of disks: 

{ }: ( ) :1  m i imR B u i n= ≤ ≤ , 1 1m n≤ ≤ − .       (L1.2) 

Let us first consider the disks in R1. All disks in R1 are non-
overlapping.8 This can be proven by contradiction: Suppose 
that there exist two points i and j such that Bi(ui1) and Bj(uj1) 
are overlapping. This, by the definition of overlapping, 
implies (ui1+uj1)/2>lij. Without loss of essential generality, 
suppose ui1≥uj1. Then ui1>lij. However, this would 
contradict the definition of ui1. Therefore, our original 
assumption, i.e., the existence of two overlapping disks in 
R1, is invalid. 

Let A(X) denote the area of a region X. If X is a disk with 
diameter a, then A(X) = π a2/4. Next, we find a lower bound 
on : ( ( ) ( )) / ( ( ))im i im i imf A B D B u A B u= ∩  for every 1 i n≤ ≤  

and 1 1m n≤ ≤ − . Pick any point S from the periphery of 
( )B D  and consider the following overlap ratio: 

: ( ( ) ( )) / ( ( ))S
im S im S imf A B D B u A B u= ∩ , 1 i n≤ ≤ , 1 1m n≤ ≤ − . 

Geometrical computation of S
imf  using Figure 1 leads to the 

following formula: ( ) uim
D

S
im y

f f y == , where 

 ( )2 2 2
1 2 1 1 1 1

2 41( ) : arccos( )  .y

y y y
f y π π= − + − −  

Figure 2 shows the variation of f (y) with y. Since f (y) is a 
decreasing function of y and uim ≤ D, (1)S

imf f≥ . Also, 

                                                                    
8 Two disks are defined to be overlapping if the distance between the 
centers of the disks is smaller than the sum of the radii of the two disks. 

S
im imf f≥ . Hence, by defining c2:=f (1), we obtain the 

following lower bound on imf  for every 1 i n≤ ≤  and 

1 1m n≤ ≤ − : 

                    2imf c≥ ,  where 32
2 3 2c π= − . 

This shows that at least c2 fraction of the disks in Rm are 
inside B(D). Hence, for every 1 i n≤ ≤  and 1 1m n≤ ≤ − , 

2( ( ) ( )) ( ( ))i im i imA B u B D c A B u∩ ≥ .  (L1.3) 

Adding all the n inequalities in (L1.3) for a given value of 
m, we obtain the following inequality for every 
1 1m n≤ ≤ − : 

2
1 1

( ( ) ( )) ( ( ))
n n

i im i im
i i

A B u B D c A B u
= =

∩ ≥∑ ∑ . (L1.4) 

Since all disks in R1 are non-overlapping, 

      1
1

( ( ) ( )) ( ( ))
n

i i
i

A B u B D A B D
=

∩ ≤∑ . (L1.5) 

(L1.4) and (L1.5) imply, 

           2 1
1

( ( )) ( ( ))
n

i i
i

A B D c A B u
=

≥ ∑ .  (L1.6) 

In (L1.6), A(B(D))=πD2/4 and A(Bi(ui1))=πui1
2/4. 

Substituting these equalities into (L1.6) and dividing both 
sides by π c2 /4, we obtain, 

       
2

2
1

1 2

 
n

i
i

D
u

c=

≤∑ .  (L1.7) 

Next, let us consider the disks in Rm for every 2 1m n≤ ≤ − . 
In this case, there can be overlaps between some pairs of 
disks in Rm. Consider two overlapping disks, Bi (uim) and 
Bj(ujm) centered at the points i and j, respectively. Now we 
show that if uim ≥ ujm then j∈Sim, where Sim:={ aik : 1 ≤ k ≤ 
m−1}. This can be proven by contradiction: Suppose j∉Sim 
when uim ≥ ujm. Since Bi (uim) and Bj(ujm) are overlapping, 
(uim + ujm) / 2 > lij. Then, since uim ≥ ujm, uim > lij. However, 
together with our assumption j∉Sim, this would contradict 
the definition of uim. Therefore, our original assumption, 
i.e.,  j∉Sim, is invalid. 

Next, we show that any arbitrarily chosen point within 
B(D) does not belong to more than m overlapping disks 
from Rm. The proof is again by contradiction: Suppose there 
is a point in B(D) that belongs to more than m overlapping 
disks from Rm. Take the largest m+1 of these overlapping 
disks. Consider the largest disk. Let b be the point at the 
center of this largest disk. Then all other m disks belong to 
Sbm due to the result proved in the previous paragraph. 
However, this contradicts the fact that the cardinality of Sbm 
is 1m − . Therefore, our original assumption, i.e., the 

 

  
Figure 1– Computation of the overlap    Figure 2– Variation of the overlap 
ratio between B(D) and BS(uim)                 ratio as a function of y = uim /D. 
 

2
imu

 
S 

2
D  

( )S imB u( )B D  
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existence of a point belonging to more than m overlapping 
disks from Rm, is invalid. 

Since any chosen point within B(D) can belong to at most 
m overlapping disks from Rm, then for every 2 1m n≤ ≤ − , 
we have 

1

( ( ) ( )) ( ( ))
n

i im
i

A B u B D mA B D
=

∩ ≤∑ .  (L1.8) 

(L1.4) and (L1.8) imply, 
2

2

1 2

n

im
i

mD
u

c=
≤∑ , 2 1m n≤ ≤ − . (L1.9) 

Combining (L1.7) and (L1.9) completes the proof.          □ 

4.1.2 APPLICATION OF THE INTERPOINT 
DISTANCE SUM INEQUALITY 

In this subsection, we derive Lemma 2, which in 
combination with Lemma 1, provides a necessary condition 
for Nt simultaneously successful transmissions. Next, by 
using this necessary condition and another lemma, Lemma 
3, we complete the derivation of the upper bound on Nt, Nt

Q 
and Nt

max. 
In Lemma 1, by setting n = Nt and the location of the 

points as the location of the receivers at time t, uim(t) 
becomes the Euclidean distance between receiver i and the 
mth closest receiver to receiver i at time t. Hence, we obtain 
the following inequality: 

[ ]
2

2

1 2

( )
tN

im
i

mD
u t

c=
≤∑ , 1 1tm N≤ ≤ − .      (8) 

Also, from (7), we obtain the following necessary condition 
for Nt simultaneously successful transmissions at time t :  

1

1   1 1   1
( )

     ( ( )) ( ( ))
t t t tN N N N

t
im ij

m i i j
j i

GN
a u t a l t

β

−

= = = =
≠

= ≤∑∑ ∑∑  

( )
1

1   1

1

1 ( )

t tN N
t

m i im

GN

u t
γ β

−

= =
⇔ ≤

+
∑∑ .        (9) 

To incorporate the constraint of (8) into (9), we use the 
following lemma: 

Lemma 2: For n≥1, let 1 2, ,..., ,nx x x C  be nonnegative 
real numbers satisfying the following inequality: 

         2

1

n

i
i

x C
=

≤∑ .   (L2.1) 

Let b be a nonnegative real number. Then 

             ( ) ( )1

1

1 1

n

b b
Ci i n

n

x=

≥
+ +

∑ .  (L2.2) 

Proof of Lemma 2: 
For b=0, (L2.2) is satisfied with equality. Thus, we 

consider the case when b>0. Define the column vector x 
and the multivariate function f (x) as follows: 

      [ ]1 2:  ....
T

nx x x=x , 

( )1

1
( ) :

1

n

b
i i

f
x=

=
+

∑x . 

We use Kuhn-Tucker Theory from [18] to find the 
minimum value of f (x) subject to the constraint in (L2.1). 
We define the constraint function, g(x) as follows: 

2

1

( ) : 0
n

i
i

g C x
=

= − ≥∑x . 

Let [ ]1 2 ....
T

ny y y=y  be the column vector at which f takes 

its minimum value. Then, from Kuhn-Tucker Theory, there 
exists 0θ ≥ , such that the following conditions are 
satisfied: 

           ( )( )  ( )f gθ
=

− ≥ 0∇ ∇∇ ∇∇ ∇∇ ∇
x y

x x ,  (L2.3) 

  ( )( )  ( ) 0T f gθ
=

− =∇ ∇∇ ∇∇ ∇∇ ∇
x y

y x x , (L2.4) 

                                              ( ) 0gθ =y ,  (L2.5) 

            ( ) 0g ≥y .  (L2.6) 
From (L2.3) and (L2.4) we obtain, 

     
( ) 1

2 0
1

ib

i

b
y

y
θ+

− + ≥
+

,     1 i n≤ ≤ , (L2.7) 

               
( ) 1

1

2 0
1

n

i ib
i i

b
y y

y
θ+

=

 − + = + ∑ .  (L2.8) 

Since y ≥ 0, we need to determine whether the constraint is 
binding or not. Namely, we need to determine whether or 
not there exist any components of y that are zero. To do 
this, we compare the values of f in all possible cases. Let y 
has k zero components, i.e., k := |{i : yi = 0, 1 ≤ i ≤ n }|. So, 
0 k n≤ ≤ . If 0 k n≤ <  then from (L2.7) 0θ > , from 
(L2.5) g(y) = 0, and from (L2.8) all non-zero components of 
y are equal to each other. Thus, since g(y) = 0, all non-zero 
components of y are equal to [C/(n−k)]1/2. If k = n then all 
components of y are zero and  f (y) = n. Hence, 

    ( )1
     0

( )
                     

b
C

n k

n kk k n
f

n k n

−

−

+
+ ≤ <=  =y . (L2.9) 

Next, we show that the expression in (L2.9) is minimized 
for k = 0 and therefore, y has no-zero components. To show 
this, we prove the validity of the following inequality: 

( ) ( )1 1
b b

C C
n x n

n x n
x

−

−+ ≥
+ +

,    [ )0,x n∈ .   (L2.10) 

Define the function on the left-hand side of (L2.10) as h(x). 
Taking the partial derivative of h(x) with respect to x and 
using Bernoulli’s Inequality from [19], we obtain, 

( )
( )

( )
( ) ( )

2 2 2

1

1 1 1 1
1 1 0

1 1 1 11

b C b C b C
n x n x n x

b C CC
n x n xn x

h

x b b

− − −
+

− −−

+ + + +∂ = − > − = ≥
∂ + + + ++

. 

So, h(x) is an increasing function of x on [0,n). Hence,  
h(x) ≥ h(0) for every x∈[0,n). This completes the proof of 
(L2.10) and also implies that f (y) assumes minimum value 
for 0k = . This further implies that all components of y are 
equal to (C/n)1/2 and that  f (y) = n / [1+(C/n)1/2] b.  Since  
f (x) ≥ f (y) for every x ≥ 0, (L2.2) follows.         □ 

Next, in Lemma 2, we set n = Nt, b = γ, xi = uim(t), 
C=mD2/c2 for every 1 i n≤ ≤ , and 1 1m n≤ ≤ − , so that 
(L2.1) and (8) become identical. Also the left-hand side of 
(L2.2) and the inner summation in (9) become identical. 



Onur Arpacioglu and Zygmunt J. Haas 
On capacity of wireless sensor networks with omnidi recitional antennas 
 

88  

Hence, we obtain the following lower bound on the left-
hand side of (9): 

( ) ( )
2

1 1

1   1 1

1

1 ( ) 1

t t t

t

N N N
t

mDm i mim
Nc

N

u t
γ γ

− −

= = =

≥
+ +

∑∑ ∑ .    (10) 

Next, we define d := D / c2
1/2. The quantity d is the diameter 

of the network domain divided by a constant approximately 
equal to 0.625. Combining this definition with (9) and (10), 
we obtain the following necessary condition for Nt 
simultaneously successful transmissions at time t :  

           

( )
1

1

1
     

1

t

t

N

mm
N

G

d
γ β

−

=
≤

+
∑  

           ( )( )

1

1
t

t

Na
x

N

G
d dx

γ

β
−⇒ + ≤∫  

           
1( )

2
1

2 1

d
Nt

db
tN u G

du
d uγ β

+

+

−⇔ ≤∫ ,     (11) 

where step (a) follows from the fact that 
1 ( ) ( )b b

a m af x dx f m+
=∫ ≤ ∑ , whenever a and b are integers 

and f (x) is a continuous and non-increasing function of x on 
[a, b+1], and step (b) follows from changing the variable of 
the integration by defining u=1+d(x/Nt)

1/2. Next, we define 
the communication density at time t, σ, as follows: 

       : /tN dσ = .     (12) 

The quantity σ 2 is proportional to the average number of 
successful transmissions per unit area. Combining (11) and 
(12), the necessary condition for Nt simultaneously 
successful transmissions at time t becomes: 

( )
1

1
2 1

1

2
d G

u u du
σ

γ γσ
β

+
− −

+

− ≤∫ .    (13) 

Next, we use the following lemma to obtain a closed 
form solution for the upper bound on Nt: 

Lemma 3: Let a, x, and y be real numbers such that 

xy ≥ 1≥ a . Also, let 2 1 1
1 1/: 2 ( )y a a

xI x u u du+ −
+= ∫ − . Then, 

2 1
22 (1 ) ( 1)(1 )

2
( 1) ( 1) 1

a ax a y a y
x

a a a aI
+   + − + +

+ +≥ −+ , 1a ≤  and { }1,0a ∉ −
                    (L3.1) 

2 22 2 log(1 ) 1I x y x y≥ − + − ,  0a =     (L3.2) 
222

12 log(1 ) 1x y
yI x y +≥ + − − ,  1a = − . (L3.3) 

Proof of Lemma 3: 
Firstly, consider the case when a ≤ 1 and a∉{−1,0}. 

Define 

( ) ( )
2

1
1

2
( , ) :

2 1 ( 1)
a

x

x
R x a

x x a a a
=

− + + +
, ( ) ( ], 1 0,1a ∈ −∞ − ∪  

( ) ( )1

2 2

2 1
( , ) :

2 ( 1)

a

xx x a
R x a

x a a

− +
=

− +
,      ( )1,0a ∈ − . 

R1 and R2 are differentiable functions of x and partial 
derivatives of them with respect to x are 

( )

( ) ( ) ( )

12 1 1

21 2

1
4 ( 1) 1

1 2 1 2 1 ( 1)
0

aa a

a a a a

a a x x x

x x x ax x a a x

R

x

−+ −

−

      + + −

+ + − + + +

∂ = ≥
∂

, ( ) ( ], 1 0,1a∈ −∞ − ∪  

( )
( )

2

21 2

2 2 (1 ) 2

1 2 ( 1)
0

a a

a a x a

x x x a a

R

x −

− − −

+ − +

∂ = ≥
∂    ,   ( )1,0a ∈ − . 

Also, 1 2
0 0

lim lim 0
x x

R R
↓ ↓

= = . So, R1 and R2 are non-decreasing 

and non-negative functions of x. Finally,  1 2lim lim 1
x x

R R
→∞ →∞

= = . 

Therefore, 

( )( )
2

1
1

2
     1

2 1 ( 1)
a

x

x
R

x x a a a
= ≤

− + + +
, ( ) ( ], 1 0,1a ∈ −∞ − ∪  

( ) ( )1 22 1 2
1

( 1) ( 1)

a

xx x a x

a a a a

− +⇒ ≥ −
+ +

,  a∈(−∞,−1)∪(0,1]  (L3.4) 

and, 

( )( )1

2 2

2 1
     1

2 ( 1)

a

xx x a
R

x a a

− +
= ≤

− +
,      ( )1,0a ∈ −  

( )( )1 22 1 2
1

( 1) ( 1)

a

xx x a x

a a a a

− +⇒ ≥ −
+ +

,      ( )1,0a ∈ − .   (L3.5) 

Combining (L3.4) and (L3.5) we obtain 

( ) ( )12 2 12
     1

( 1) ( 1)

a

xx x ax

a a a a

− +
− ≤

+ +
,    1a ≤ and { }1,0a ∉ −  

2 1
22 (1 ) ( 1)(1 )

2
( 1) ( 1) 1

a ax a y a y
x

a a a a

+   + − + +

+ +⇒ + −  

     
( )( )2 1 12 (1 ) ( 1)(1 ) 2 1

( 1) ( 1)

aa a
xx a y a y x x a

a a a a

+   + − + + − +
+ +≤ + , 1a ≤ and { }1,0a∉ −  

       

      ( ) ( ) ( ) ( ){ }112 1 1 1 1
( 1)2 1 1 1 1

a aa a

a x a xx y y
++

+
   = + − + − + − +     

  I= ,  1a ≤  and { }1,0a ∉ − . 

This completes the proof of (L3.1). We prove (L3.2) and 
(L3.3) as follows: Let i∈{−1,0}. Then 

( ) ( )

( )

12 2( )

2 2

( )
2

2

lim

2 1 ( 1) 1 2
      lim 1

( 1) ( 1)

2 2 log(1 ) 1     0,

      2
2 log(1 ) 1    1,

1

a

a i a i

a a
b

a i

c

I I

x a y a y x

a a a a

x y x y i

x y
x y i

y

= ↑

+

↑

=   + − + +   ≥ + −
+ +   − + − == 

+ − − = − +
where step (a) follows from the continuity of I at a = i, step 
(b) follows from (L3.1), and step (c) follows from 
L'Hôpital’s Rule from [20]. This completes the proof of 
Lemma 3.            □ 

By setting a = 1−γ, x = σ and y = d in Lemma 3, I 
becomes equal to the left-hand side of (13). Hence, using 
(L3.1), (L3.2), and (L3.3), we obtain the following 
necessary conditions for Nt simultaneously successful 
transmissions at time t :  

( ) ( )( )
( )( ) ( )( )

2 1

1 22
2

1 1
2 2

1
1 2 1 2

d d Gγ γ
γ γσ σ

γ γ γ γ β

− −
− −

+ +
−

+ − ≤
− − − −

, { }1,2γ ∉  (14) 

                  2 22 2 log(1 ) 1
G

d dσ σ
β

− + − ≤ ,  1γ =     (15) 
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2

2 2
2 log(1 ) 1

1

d G
d

d

σσ
β

+ − − ≤
+

, 2γ = .      (16) 

Solving (14), (15), and (16) for σ and substituting σ from 
(12), we obtain the following upper bound on Nt :  

tN Uγ≤ ,     (17) 

where Uγ  is defined as in (T1.3), (T1.4) and (T1.5). 
Recall that Nt

Q is the maximum value of Nt over all the 
placements of the nodes, the choice of the transmitters, their 
intended receivers, and the transmission powers, given that 
there are no restrictions on the value of N. Since there have 
been no restrictions on any of these parameters during the 
derivation of (17), hence, the right-hand side of (17) is also 
an upper bound on Nt

Q, which is not less than Nt
max. This 

completes the proof of (T1.1) in Theorem 1. 
Finally, we prove (T1.2) and part (ii) of Theorem 1 as 

follows: Suppose there is a single receiver node and Nt 
transmissions intended for this node at time t. Then, in (7), 
lij(t) is equal to zero for every i, j, and t. Thus, Nt will be no 
more than 1+G/β. This shows that none of the nodes can 
receive more than 1+G/β simultaneously successful 
transmissions intended for itself. This completes the proof 
of part (ii) of Theorem 1. Now, (T1.2) follows from part (ii) 
and the fact that the total number of nodes in the network is 
equal to Ntotal .            ■ 

4.2 UPPER BOUNDS ON PER-SENSOR  
END-TO-END THROUGHPUT CAPACITY 

In this subsection, firstly, we prove the following 
theorem: 

Theorem 2: λe and λm have the following upper bounds: 

max
e m

W U

H N

γλ λ≤ ≤ ,  (T2.1) 

max 1e m

W M G

N
λ λ

β
 ≤ ≤ +   , (T2.2) 

max 1total
e m

W N G

HN
λ λ

β
 ≤ ≤ +   . (T2.3) 

Proof of Theorem 2: 
Let t be an arbitrary time instant, and define the total 

information transmission rate of the network at time t, C(t), 
as follows: 

      
1

( ) : ( )
tN

i
i

C t W t
=

=∑ , 

where Wi  (t) is the transmission rate of the ith successful 
transmission at time t. By the definition of H  in section  
2-4, each bit of information delivered to its destination is 
transmitted in H  hops on the average. Therefore, the time 
average of C(t) over the time interval [0,∞) is not less than 

1
N
i iH HNλ λ=Σ = . Also, since Wi (t) ≤ Wmax and Nt ≤ Nt

max, 
we find that C(t) ≤ Wmax Nt

max. Thus, average of C(t) over 
any time interval cannot exceed Wmax multiplied by a time 
invariant upper bound on Nt

max. Since the quantity Uγ in 
(T1.1) is such an upper bound, this implies 

       maxHN W Uγλ ≤ .     (18) 

On the other hand, due to part (ii) of Theorem 1, we know 
that no destination node can receive more than 1+G/β 
transmissions successfully. Since each transmission cannot 
occur at a rate more than Wmax, this implies that at the given 
time t, the total rate at which information is being delivered 
to the destinations cannot exceed MWmax(1+G/β ). Hence, 
the total average rate at which information is delivered to 
the destinations over the time interval [0,∞), which is equal 
to Nλ, cannot exceed MWmax(1+G/β ). This implies 
  max(1 / )N MW Gλ β≤ + .     (19) 

Hence, (18) and (19) imply that 

      maxW U

HN
γλ ≤ ,      (20) 

      max 1
W M G

N
λ

β
 ≤ +   .     (21) 

It is worth emphasizing that, because of the generality of 
the network model underlying the derivation of (20) and 
(21), they are applicable even when the mobility pattern of 
the nodes, the spatial-temporal transmission scheduling 
policy, the temporal variation of transmission powers, the 
sensor-destination pairs, and the possibly multi-path routes 
between them are optimally chosen as to maximize λ. 
Similarly, (20) and (21) are applicable even when the nodes 
are capable of maintaining multiple transmissions and/or 
receptions simultaneously. 

Recall that λm is the supremum of all end-to-end 
throughputs λ0 for which there exist: a mobility pattern of 
the nodes, a traffic pattern, a spatial-temporal transmission 
scheduling policy, and a temporal variation of transmission 
powers, so that λ ≥λ0. There have been no restrictions on 
these parameters during the derivation of (20) and (21). 
Hence, the right-hand sides of (20) and (21) are also upper 
bounds on λm, which is not less than λe. This completes the 
proof of (T2.1) and (T2.2).  The proof of (T2.3) is identical 
with the proof of (T2.1) except that the expression on the 
right-hand side of (T1.2) is used instead of Uγ .        ■ 

So far, there have been no restrictions on the number of 
simultaneous transmissions and/or receptions that a node is 
capable of maintaining. If, as in [1]-[4], there is also the 
additional restriction that a node cannot transmit and 
receive simultaneously and that a node is capable of 
maintaining at most one transmission or one reception at 
any given time, then the upper bounds on λe and λm can be 
further tightened. We will henceforth refer to this case as 
the half-duplex restricted case. In this case, no destination 
node can receive more than a single transmission, and thus 
following the same derivation method that was used 
between (18) and (19) shows that λ≤WmaxM /N. Combining 
this inequality with (18), and following the same derivation 
method that was used after (19) in the proof of Theorem 1 
lead to the following upper bound on λe and λm for the half-
duplex restricted case: 

         max min ,e m

UW
M

N H
γλ λ  ≤ ≤    .    (22) 

Finally, we show that dividing the communication 
bandwidth into several sub-channels of smaller bandwidth 
does not change the terms other than Wmax in all of the 
results on λe and λm that we have presented so far. An 
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assumption behind those results is that all transmissions are 
taking place in the same communication bandwidth. If the 
communication bandwidth is partitioned into several sub-
channels of smaller bandwidth, then there still is an upper 
bound on the transmission rate in each of these sub-
channels. All of the upper bounds on simultaneous 
transmission capacities of Q and the network are still valid 
for each of these sub-channels individually. Therefore, if 
there are K sub-channels and the transmission rate of the kth 
sub-channel is no more than max

kW , then all of the upper 
bounds on λe and λm are still valid if Wmax is replaced with 

max
1

K
k kW=Σ . 

5. ANALYSIS OF THE UPPER BOUNDS 

In this section, we analyze how the upper bounds on Nt
Q, 

Nt
max, λe, and λm are affected as various parameters of the 

network are varied individually.  
Firstly, we analyze the asymptotic and limiting behavior 

of the upper bound Uγ  in Theorem 1, to draw the following 
conclusions about Nt

Q : 

• ( )2
2

21
2lim 1

U G
c Dγ

βγγ →∞
= +      ⇒ Nt

Q  is O(γ 2) 

• ( )1

1/ 2
2

1

2
lim 1

U
G

D cD

γ γ

β
=

→∞
= +      ⇒ Nt

Q  is O(D)  if γ = 1 

• ( )( )/ 2
2

1
2

( 2)

lim 1 1
U G
D cD

γ
γ γ

γ
β

γ
→∞
<

= − +  ⇒ Nt
Q  is O(Dγ ) if γ < 2 

• ( )2

2
2

1
2/ log( )

lim 1
U

G
cD DD

γ γ

β
=

→∞
= +     ⇒ Nt

Q  is O(D2/ log(D)) if γ =2 

• ( ) ( )2
2

1 ( 2)

2

( 2)

lim 1
U G

cDD

γ γ γ
β

γ

− −

→∞
>

= +     ⇒ Nt
Q  is O(D2)  if γ > 2 

• / 1 //
( , )lim    :

U U

G GG
f dγ γ

β ββ
γ +→∞

= = ⇒ Nt
Q  is O(G/β ) 

• 
0 0

lim lim 1 G

D
U Uγ γ βγ ↓ ↓

= = +     ⇒  

Also, since the area of the network domain is A = πD2/4, 
D can be replaced with (4A/π)1/2. Doing so, we can also 
conclude that Nt

Q is O(Amin{ γ /2 ,1}) if γ ≠ 2 and O(A / log(A)) 
if γ = 2. Regardless of the value of γ, this also implies that 
Nt

Q cannot grow with the area of Q super-linearly. Linear 
growth is not possible when γ  ≤ 2, and can only be possible 
when γ > 2. 

In Figure 3, Uγ is plotted as a function of A and γ, for  
G=β =10. This figure illustrates the growth trend of Uγ as γ 
and/or A increase.  It is possible to observe the linear and 
the sub-linear growth of Uγ with A when γ > 2 and 0 < γ ≤ 2, 
respectively. The figure also illustrates the equivalence of 
the lack of attenuation (γ = 0) and the lack of space (A = 0). 
One should also notice the quadratic growth of Uγ with γ. 

Secondly, we analyze the upper bounds on Nt
max. 

Inequality (T1.1) of Theorem 1 shows that Nt
max is O(1) 

with respect to N. Since Nt
max ≤ Nt

Q, all of the above 
asymptotic results are valid for Nt

max, too. 
However, from (T1.2) and the facts that Ntotal ≤N+M  and 

M≤N, we find that Nt
max ≤ 2N(1+G/β ). Therefore, for a 

given N, G, and β, the upper bound on Nt
max in (T1.1) loses 

its tightness beyond some finite values of D and γ. 
Existence of an upper bound on Nt

max independent of D and 

γ also shows that Nt
max is O(1) with respect to A and γ. The 

reason is that beyond some finite values of A or γ, the 
network domain provides sufficient space and attenuation, 
so that the upper bound on the number of simultaneous 
receptions per-node, i.e., 1+G/β, becomes the limiting 
factor. 

Next, we analyze asymptotic and limiting behavior of the 
upper bounds on λe and λm. Inequality (T2.1) of Theorem 2 
shows that λe and λm are O(1/N) and O(1/ H ). It also shows 
that λe and λm are O(G/β ). 9 We also observe that λe and λm 
are upper bounded by Wmax(1+G/β ) / ( H N ) when the 
network domain lacks attenuation or space. Due to (T2.2), 
λe and λm cannot exceed WmaxM(1+G/β )/N , which is 
independent of  A and γ. So, the upper bound in (T2.2) 

becomes more restrictive than the upper bound in (T2.1) 
beyond some finite values of A or γ, and thus λe and λm are 
O(1) with respect to A and γ. Similar behavior is also 
observable in the half-duplex restricted case; for example, if 
the set of sensor nodes and the set of destination nodes are 
disjoint and 1H = ,10 then beyond some finite values of A or 
γ, the network domain provides sufficient space and 
attenuation so that at any given time, there is a placement of 
the nodes for which M simultaneously successful 
transmissions can be established between M of the N 
sensors and the M destinations. However, no more 
transmissions can be scheduled, since there are no 
remaining inactive destination nodes, and thus λe and λm 
cannot exceed Wmax M/N, which can be observed from (22). 
In general, there is a region of (A,γ ) pairs for which the 
dominant upper bound on λe and λm is WmaxUγ /( HN ). 
From (T2.1) and (T2.2), it can observed that this region is 
contained within the region bounded by the A axis, the γ 
axis, and the set of (A,γ) pairs for which 
Uγ = (1 / )M H G β+ . Since Uγ is an increasing function of A 
and γ, this region will expand as M (and thus N, since 
                                                                    
9 The O(G/β ) result assumes that Wmax is not dependent on G/β. However, 
in some practical systems, Wmax is inversely proportional to G/β, as we will 
see in section 7. 
10 Note that this is the least possible value of H , and is achieved when 
each sensor node transmits the information that it generates directly to its 
destination node. 

Figure 3 – Upper  bound  on  the  simultaneous  transmission  capacity  of 
                  the network domain as a function of the area of the network 
                 domain and the path loss exponent 
 

Lack of attenuation is 
equivalent to lack of space 
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M≤N) increases. This shows that the limitation of λe and λm 
due to shortage of space and attenuation is more 
pronounced when M (and thus N) is large compared to Uγ . 
Additionally, we have shown that Uγ is Θ(Amin{γ /2 ,1}) when 
γ ≠ 2, Θ(A / log(A) ) when γ = 2, and also Θ(γ 2). These 
observations support the claim that for large M (and thus N) 
there is a region of (A,γ ) pairs where additional space and 
additional attenuation provide considerable increase in λe 
and λm, where the behavior of λe and λm resembles the 
asymptotic behavior of Uγ , and beyond this region the 
behavior λe and λm changes into Θ(1) with respect to A and 
γ. 

Next, we demonstrate the above results through an 
example. Consider the half-duplex restricted case. For this 
case, we have shown that λe and λm cannot exceed the right-
hand side of (22). Now, we normalize this quantity with 
respect to Wmax, and we denote the resulting expression by 
ΛU. In Figure 4, ΛU is plotted as a function of A and γ. The 
other parameters for this example are: G=β=10, N=250, 
M=N /2, and H =1. This figure illustrates the variation in 
the growth trend of ΛU as a function of A for various values 
of γ. Also, it demonstrates the presence of a region of (A,γ ) 
pairs where the limitation of λe and λm is due to shortage of 
space and attenuation. For the (A,γ ) pairs outside of this 
region, shortage of inactive destination nodes becomes the 
dominant limitation, and thus WmaxM/N becomes the 
dominant upper bound on λe and λm (this can also be 
observed from (22)). 

In Figure 5, parameter values are the same except that N 
is now an independent variable (so is M, since M=N /2 in 
this example) and γ = 3. The light green region consists of 
the (A,N ) pairs where the limitation of λe and λm is due to 
shortage of space. For the (A,N) pairs outside of this region, 
namely inside the darker blue region, shortage of inactive 
destination nodes is the dominant limitation, and thus 
WmaxM/N is the dominant upper bound on λe and λm. The 
figure also demonstrates that if the area of the network 
domain is kept constant and the number of sensor nodes is 
increased, then ΛU decays as Θ(1/N), so that λe and λm 
vanish as N grows large. However, if the area also increases 
with N, we observe that it can be possible to keep ΛU at a 

constant level so that it does not rule out the possibility of 
achieving a non-vanishing per-sensor end-to-end throughput 
as the number of sensor nodes grows large. We will 
elaborate on this result in section 7. 

6. λλλλm AND λλλλm ARE θθθθ(1/N) 

In the previous section, we have shown that λe and λm are 
O(1/N). Next, to prove that they are also Θ(1/N), we will 
show that they are Ω(1/N). We do this by constructing a 
TDMA scheme that assigns each of the sensor nodes a 
separate time slot of constant duration. In such a scheme, 
there are N slots in each cycle and each of the sensor nodes 
transmits directly to its destination in the slot assigned to 
itself, with a transmission power large enough to satisfy the 
signal to noise ratio requirement. Assuming ζ is an upper 
bound on the power of noise in the used communication 
bandwidth, a transmission power of βζ / a(D)  guarantees 
successful reception. 

Although this simple scheme takes no advantage of 
spatial reuse, it allows each of the sensor nodes transmitting 
1 /N  fraction of the time. Thus, assuming that each 
transmission satisfying the signal-to-noise ratio requirement 
can occur with rate W, an node end-to-end throughput of 
W /N  is achievable by all sensor nodes. This shows that λe 
and λm are Ω(1/N). As a result, λe and λm are Θ(1/N). 

7. IMPLICATIONS OF THE RESULTS ON 
SCALABILITY 

In this section, we consider the following scalability 
problem: we are increasing the number of sensor nodes in 
the network indefinitely, and we want to achieve a desired 
per-sensor end-to-end throughput, say λ0. λ0 is not 
achievable if no other parameter is increased as a function 
of N, since due to (T2.1) λe and λm are no more than 
WmaxUγ /( HN ), which is O(1/N). So, one or more of the 
parameters from Wmax, γ, G/β, or A must increase with N 
and N must be increasing according to a function of Uγ , so 
that WmaxUγ /( H N )≥λ0 (note that H  cannot be indefinitely 

   
Fig. 4 – Upper bound on the normalized per sensor end-to-end 
               throughput capacity as a function of the area of the  
               network domain and the path loss exponent 

Fig. 5 – Upper bound on the normalized per sensor end-to-end 
              throughput capacity as a function of the area of the  
              network domain and the number of sensor nodes  
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reduced to compensate for increasing N, because 1H ≥ , as 
every bit of information has to be transmitted for at least 
one hop). This shows that HN  must be O(WmaxUγ ). 

For practical systems, γ is a property of the wireless 
channel and it cannot increase with N. Wmax cannot increase 
indefinitely with N, because of the presence of noise and 
because of the maximum transmission power constraints. 
These limit reliable information transmission to rates that 
do not grow with N. On the other hand, G /β depends on the 
implementation of the communication system and 
increasing it for a given system bandwidth usually requires 
decreasing Wmax. For example, it is shown in [13] that in 
spread spectrum CDMA, for a given system bandwidth, 
symbol transmission rate is inversely proportional to the 
processing gain. Likewise, reducing β requires a 
proportional decrease in the symbol transmission rate to 
satisfy a given bit error rate requirement. Therefore, 
increasing G /β will not compensate for increasing N. So, 
the only way of achieving λ0 would be increasing A as N 
increases. Hence, N must be increasing as a function of A. 
We have shown that Uγ is Θ(Amin{ γ / 2 ,1}) when γ ≠ 2 and 
Θ(A / log(A)) when γ =2. Therefore, unless N is 
O(Amin{γ /2 ,1}) when γ ≠ 2 and O(A / log(A)) when γ = 2, λ0 is 
not achievable. Also, H  must be Θ(1) with respect to N 
due to the following reasoning. We know that H ≥ 1, which 
implies that  H  is Ω(1). To see why H  must be O(1) with 
respect to N, observe that λ0 cannot exceed 2Wmax(1+G/β ) 
/ H  due to (T2.3) and the fact that M≤N. Since increasing 
G /β requires a proportional reduction in Wmax, as is the case 
in spread spectrum CDMA, we find that compensating for 
indefinitely growing H  by increasing G /β  is not possible. 

On the other hand, λ0 is not achievable unless the upper 
bound in (T2.2) is at least as big as λ0. Hence, (T2.2) 
implies that if M is not Ω(N), then λ0 is not achievable, 
because the above argument in the previous paragraph 
shows that Wmax(1+G/β )  cannot grow indefinitely with N.  

The above results can also be stated in terms of the 
sensor density, ρ := N / A. From the above O(·) results, 
dividing N and the asymptotic upper bounds on N by A, we 
obtain the following result: unless ρ is O(Amin{γ / 2 -1,0}) when 
γ ≠ 2 and O(1/log(A)) when γ = 2, λ0 is not achievable. 
In other words, λ0 is not achievable if ρ grows with 
N indefinitely when γ > 2, if ρlog(A) grows with N 
indefinitely when γ = 2, and if ρA1-γ / 2 grows with 
N indefinitely when γ < 2. In any case, λ0 is not achievable 
if ρ grows with N indefinitely. Also, when γ  ≤ 2, unless ρ 
decays down to 0 as N → ∞, λ0 is not achievable. Our 
observations in this and the previous two paragraphs prove 
the following corollary regarding practical systems: 

Corollary: (A necessary condition for the scalability of 
practical systems) A desired per-sensor end-to-end 
throughput is not achievable as N → ∞, unless H  is Θ(1) 
with respect to N, M and A grow with N, such that M is 
Ω(N), and the following equivalent conditions are satisfied: 
• N is O(Amin{γ / 2 , 1}) when γ ≠2 and O(A/ log(A)) when γ = 2, 
• ρ is O(Amin{ γ /2 -1,0}) when γ ≠2 and O(1/ log(A)) when γ =2.

             ■ 
Figure 6 illustrates this corollary. In this figure, 

G=β =10, H = 1, M=N /2 and the curves are obtained by 

plotting the (A,N)  pairs,  for which ΛU = 0.1 and 
γ∈{0,1,2,3}. We know that normalized λe and λm are no 
more than ΛU .  Also, it follows from the definition of ΛU  
that ΛU is a decreasing function of N and an increasing 
function of A when ΛU < M / N = 0.5. Therefore, each of 
these curves separates a region of (A,N) pairs where a 
normalized end-to-end throughput of 0.1 is not 
achievable and another region where it may be achievable 
on average or by all sensor nodes. For example, when γ = 2, 
and (A,N)=(3,400), the normalized end-to-end throughput 
0.1 is not achievable, whereas it may be achievable on 
average or by all sensor nodes for (A,N)=(3,100). The 
corollary tells us that for the sequence of (A,N) pairs 
forming each of the curves in Figure 6, N is Θ(1), Θ(A1/2), 
Θ(A / log(A)), and Θ(A) when γ is 0, 1, 2 and 3, respectively. 
Equivalently, for the sequence of (A,ρ) pairs associated with 
each of these curves, ρ is Θ(1/A), Θ(1/A1/2), Θ(1/log(A)), 
and Θ(1) when γ  is  0, 1, 2 and 3, respectively. 

8. CONCLUSIONS 

In this paper, we have studied the capacity of single-user-
detection based wireless sensor networks through the use  
of a more general network model than the models used in 
the literature. 

Instead of the propagation model used in the previous 
studies, we used the bounded power law decaying 
propagation model, which was proposed in other studies on 
connectivity such as [15] and [16], to obtain more realistic 
results for small transmitter-receiver distances, while 
approximating the conventional model at large distances. 
Using this model, we concluded that Nt

max cannot exceed 
Nt

Q, which11 is independent of N, but depends on A, γ, G, 
and β. The analysis of the upper bound on Nt

Q in Theorem 1 
has revealed that Nt

Q is O(Amin{γ / 2 ,1}) for γ ≠ 2 and is 
O(A/log(A)) for γ = 2. The analysis has also shown that Nt

Q 
is O(γ 2) and O(G/β ). 

                                                                    
11 The difference between our results and the results in [1] and [2], which 
concluded that Nt

max is Θ(N), is due to the bounded nature of our 
propagation model. 

0 1 2 3 4 5 6 7 8 9 10
2

20

50

100

150

200

250

300

350

400

450

500

γ = 3 

γ = 2 

γ = 1 

γ = 0 

N
um

be
r 

of
 n

od
es

Area of network domain (m  )2

Figure 6 – Curves formed by the (A,N) pairs for which ΛU = 0.1. For the 
                   (A,N) pairs above the curves, any normalized throughput 
                   greater than or equal to 0.1 is not achievable 
 

N
um

be
r 

of
 s

e
ns

o
r 

n
od

es
 



Revista da Sociedade Brasileira de Telecomunicações  
 Volume 19, Número 3, Dezembro 2004 

93 

Additionally, since the network model that we have used 
is quite general, our results in this paper do not only hold 
for the network scenarios of [1]-[4], but also hold for 
networks whose nodes move with any mobility pattern or 
are capable of maintaining any number of simultaneous 
transmissions and/or receptions. Hence, we have been able 
to show that the maximum achievable per-sensor end-to-
end throughput is Θ(1/N), even when the mobility pattern of 
the sensor and the destination nodes, the spatial-temporal 
transmission scheduling policy, the temporal variation of 
transmission powers, the sensor-destination pairs, and the 
possibly multi-path routes between the sensors and the 
destinations are optimally chosen. Furthermore, this result 
holds even the communication bandwidth is partitioned into 
sub-channels of smaller bandwidth. 

Moreover, our results are valid for any nonnegative value 
of γ. 12 This allowed us to characterize the behavior of  Nt

Q , 
Nt

max, λe, and λm under low attenuation conditions. In 
particular, it allowed us to show that lack of attenuation and 
lack of space are equivalent, where Nt

max and Nt
Q cannot 

exceed 1+G/β. Also, in these equivalent cases, λe and λm 
cannot exceed Wmax(1+G/β )/( HN ). 

We have also shown that no node can receive more than 
1+G/β simultaneously successful transmissions intended for 
itself. This allowed us to show that Nt

max, λe, and λm are 
O(1) with respect to A and γ for a given N. Together with 
(T2.1) and (T2.2), this also allowed us to justify that the 
limitation of λe and λm due to shortage of space and 
attenuation is more pronounced when M and N are large. 

Finally, we have studied the implications of our results 
on the scalability of wireless sensor networks. We have 
shown that as N becomes large, unless one or more of the 
parameters from Wmax, γ, G/β, or A grows with N, and HN  
is O(WmaxUγ ), a desired per-sensor end-to-end throughput is 
not achievable. Regarding scalability of practical systems, 
we have concluded that M must be Ω(N) and H  must be 
Θ(1) with respect to N. Moreover, we have concluded that 
A is the only remaining parameter whose growth can 
compensate for increasing N. Above all, we have proved 
that as N → ∞, a desired per-sensor end-to-end throughput 
is not achievable, unless A also grows with N, and N is 
O(Amin{γ / 2 ,1}) when γ ≠ 2 and is O(A/log(A)) when γ = 2. 

In summary, in this paper, we analyzed the capacity  
of single-user-detection based wireless sensor networks 
through the use of a more general network model, and we 
determined several necessary conditions for the scalability 
of such networks. This was performed by considering only 
one of the fundamental requirements for scalability, which 
is the requirement of a non-vanishing per-sensor end-to-end 
throughput as the number of sensor nodes grows large. An 
interesting extension of this work would be to determine the 
additional necessary conditions that result from other 
fundamental requirements for scalability, such as bounded 
end-to-end delay, bounded power consumption, bounded 
processing power, and bounded memory consumption at the 
nodes. 

                                                                    
12 Note that the results of the related studies such as [1] and [2] are limited 
to values of γ  that exceed 2. 
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