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An Algorithm for Prediction of Link Lifetime in MANET Based on
Unscented Kalman Filter

Edward Y. Hua and Zygmunt J. Haas, Fellow, IEEE

Abstract—We propose an algorithm to predict the link lifetime
in MANETs by the Unscented Kalman Filter (UKF). The algo-
rithm recursively computes the UKF states, modeled as a non-
linear system, using periodically measured distances as inputs.
The UKF states are then utilized to compute the estimates of the
remaining link lifetime. Evaluation of the proposed algorithm
demonstrates robust performance in computing the MANET
link lifetime for various mobility models and in the presence
of velocity changes.

Index Terms—MANET, link lifetime, residual link lifetime, link
lifetime prediction, mobility modeling, unscented Kalman filter.

I. INTRODUCTION

WE study the problem of link lifetime prediction in
Mobile Ad Hoc Networks (MANETs). Routing in

MANET is based on multihop; thus the ability to estimate
the breakage times of a path’s constituent links would allow
prediction of the failure time of the entire path. This would in
turn allow taking appropriate pro-active measures to safeguard
the on-going data transmissions, so as to minimize the impact
of the frequent link failures in MANET.

Residual (or Remaining) Link Lifetime (RLL) is defined for
an existing link as the time duration from the current time until
the time that the link breaks. A number of published works
have addressed the problem of estimating the RLL of a link by
employing the link’s age (i.e., how long the link has been up)
as the prediction parameter [1][4][6]. In [2], we have proposed
the Mobile-Projected Trajectory algorithm that computes the
RLL by using periodical distance measurements between the
two nodes of a link to estimate the relative trajectory between
the two nodes.

In this letter, we propose a new RLL-prediction algorithm
that employs the Unscented Kalman Filter (UKF) [5]. We
first model the link lifetime as a non-linear dynamic system,
and apply the UKF to recursively compute the system’s
states using as inputs periodical measurements of the distance
between the two link’s nodes. The UKF states are then used
to estimate the RLL. We choose UKF because of its good
predictive performance and its ease of initialization [5]. The
proposed algorithm requires neither the knowledge of the
nodes’ velocities, nor the actual locations of the nodes.

Manuscript received April 27, 2009. The associate editor coordinating the
review of this letter and approving it for publication was C. Douligeris.

E. Y. Hua and Z. J. Haas are with the Wireless Networks Laboratory,
School of Electrical and Computer Engineering, Cornell University, Ithaca
NY 14853, USA (e-mail: eyh5@ece.cornell.eu).

This work was supported by the grants from the NSF numbers ANI-
0329905 and CNS-0626751, and by the AFOSR contract number FA9550-
09-1-0121/Z806001.

Digital Object Identifier 10.1109/LCOMM.2009.090974

Fig. 1. Illustration of RLL prediction by UKF.

II. RLL PREDICTION WITH UKF

A. Two-Node Link Model

We present the proposed algorithm using the following two-
node link model. We adopt the “protocol reception model”
[3], where node’s communication pattern is omni-directional
with a transmission radius of 𝑅. Node 1 moves at constant
velocity, and Node 2 moves into Node 1’s communication
range possibly with velocity changes. Each node periodically
emits an ID signal (beacon) with period Δ𝜏 that can be heard
by the other node when it is within the distance 𝑅 of the
transmitting node. Node 1 uses Node 2’s received beacon
to compute the distance between the two nodes (referred to
here as a “distance measurement”). This computation could
rely on methods such as the Time-of-Arrival or the inherent
ranging capability of UWB transmission. With each distance
measurement, Node 2 invokes the proposed algorithm to
estimate the RLL.

B. Formulation of UKF-based RLL Prediction

Figure 1 illustrates the operations of the proposed algorithm.
As Node 2 enters Node 1’s communication range at time
𝑡0, Node 1 computes the first distance measurement, 𝑑0, and
establishes a Cartesian system by placing Node 2 at the origin
and itself at the coordinates (𝑑0, 0). At each subsequent time
𝑡𝑘 (𝑡𝑘 = Δ𝜏 + 𝑡𝑘−1), k = 1, 2, . . . , Node 1 computes a new
distance measurement, 𝑑𝑘, and invokes the UKF to estimate
the RLL. When a request for the RLL estimate is needed at
time 𝑡𝑟𝑒𝑞, the most recently predicted RLL is reported by Node
1.

The UKF recursively estimates two state variables at each
𝑡𝑘: the slope of the relative movement trajectory, denoted
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Fig. 2. Time diagrams of UKF state variables and RLL.

as 𝛼𝑘, and the x-coordinate of the most current distance
measurement, denoted as 𝑥𝑘 . The UKF can be formulated as
follows: [

𝛼𝑘

𝑥𝑘

]
=

[
1 0
0 1 + Δ𝜏/𝑡𝑘−1

] [
𝛼𝑘−1

𝑥𝑘−1

]
𝑑𝑘 =

√
(𝑅− 𝑥𝑘)

2
+ (𝛼𝑘𝑥𝑘)

2
+ 𝜖𝑘

(1)

where 𝜖𝑘 denotes the distance measurement error at time
𝑡𝑘, which is assumed to be distributed with zero mean and
variance 𝑅𝜖,𝑘. Note that the states of the system are accurately
described without any state noise.

The UKF recursively performs two updates, time update and
measurement update. It propagates the weighted sample mean
of state variables and a posteriori state covariance matrix 𝑃𝑘.
Operational details of the updates are adopted from [5] and
are omitted here due to space constraints.

C. Initialization and RLL Computation of the UKF

We now discuss the initialization of the UKF parameters,
i.e., the values of 𝛼1, 𝑥1, 𝑅𝜖,1, and 𝑃1. Although we assume
that a node has no knowledge of its actual speed, we do
assume that the distribution of the node’s speed is known,
or at least its average value, 𝑉𝑎𝑣𝑔 . As Node 2 can approach
Node 1 with a relative angle between 0 and 𝜋/2, we initialize
the relative angle to 𝜋/4. Thus, 𝛼1 = 𝑡𝑎𝑛(𝜋/4) = 1, and
𝑥1 = 𝑉𝑎𝑣𝑔Δ𝜏 cos(𝜋/4). As the choice of the initial value
𝑃1 in the UKF is not critical [5], we assume no correlation
between the states’ initial values, letting 𝑃1 = 0.05𝐼2×2,
where 𝐼2×2 denotes the 2-by-2 identity matrix.

The value of 𝑅𝜖,𝑘 depends on the distance-measurement
technology and the equipment used for this purpose. Its
statistics could be obtained by gathering the long-term mea-
surements or through other means. We reasonably assume that
all the 𝜖𝑘’s are i.i.d., and that they are independent of the
measurements themselves; i.e., 𝑅𝜖,𝑘 = 𝑅𝜖, for 𝑘 = 0, 1, 2, . . ..

Without loss of generality, let 𝑡0 = 0. At each 𝑡𝑘, the
predicted RLL, denoted as 𝑅𝐿𝐿𝑘, is computed as follows:

𝑅𝐿𝐿𝑘 = (𝑘Δ𝜏)
[
2𝑑0/

[
𝑥𝑘

(
1 + 𝛼2

𝑘

)]− 1
]
, 𝑘 = 1, 2, ... (2)
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Fig. 3. CDF of 𝜂 (constant velocity).

Figure 2 shows an example of the effectiveness of the above
initialization by tracking the state variables and the RLL
for a case of constant velocity. The simulation was set up
with 𝑅 = 50[𝑚], the relative speed (with respect to Node
1) of 4.26[𝑚/𝑠], the relative angle of 317.98∘, and with
Δ𝜏 = 0.1[𝑠𝑒𝑐]. As expected, the estimated states and the
predicted RLL converge fairly quickly to the actual values.

III. PERFORMANCE EVALUATION

We first evaluate the performance of the proposed algorithm
with constant velocity. Each distance measurement contains
a measurement error 𝜖𝑘 ∼ 𝑈(−𝜖𝑑, 𝜖𝑑) with 𝜖𝑑 = 0.3%𝑅,
and 𝑅 = 50[𝑚]. The speed and direction distributions of
both nodes are 𝑉 ∼ 𝑈(1, 10)[𝑚/𝑠] and Φ ∼ 𝑈(0, 2𝜋),
respectively. A predicted-RLL statistic is compared at random
times, 𝑡𝑟𝑒𝑞 , with the actual values of RLL. We define the
RLL prediction inaccuracy, 𝜂, as the ratio of the difference
between the actual and the computed RLL to the actual RLL
[2]. Since no practical predictor can provide a useful estimate
immediately after the link is created and some time is needed
for the UKF to converge (e.g., see Figure 2), we only consider
the cases where 𝑡𝑟𝑒𝑞 ∼ 𝑈(2.0, 𝐹𝐿𝐿)[𝑠𝑒𝑐], where FLL (full
link lifetime) denotes the RLL at the time when the link is
established.

Figure 3 plots the CDF of 𝜂 for the above scenario and
for Δ𝜏 = 0.01[𝑠𝑒𝑐] and 0.1[𝑠𝑒𝑐]. The results show that for
both Δ𝜏 values, more than 80% of all predictions achieve an
inaccuracy of less than 20%. Of course, UKF performs better
with smaller values of Δ𝜏 , since for smaller Δ𝜏 , the UKF is
provided with more measurements (if 𝑡𝑟𝑒𝑞 ∼ 𝑈(Δ𝜏, 𝐹𝐿𝐿),
the CDF of 𝜂 in Figure 3 would level off at approximately
67% and 70% for Δ𝜏 = 0.1[𝑠𝑒𝑐] and 0.01[𝑠𝑒𝑐], respectively).

We next evaluate the algorithm under two mobility models
and with velocity changes. In the Gauss-Markov (G-M)
mobility model [1], a node changes its velocity every time
epoch. The G-M model prevents abrupt changes in the node
movement and allows for time correlation in node velocity.
According to [1], the node velocity at the n-th epoch is:
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Fig. 4. CDF of 𝜂 under the G-M mobility model.

𝑉𝑛 = 𝛼𝑉𝑛−1 + (1− 𝛼)𝑉𝑎𝑣𝑔 +
√
1− 𝛼2𝑉𝑥𝑛−1

Φ𝑛 = 𝛼Φ𝑛−1 + (1− 𝛼)Φ𝑎𝑣𝑔 +
√
1− 𝛼2Φ𝑥𝑛−1

(3)

where 𝛼 (0 ≤ 𝛼 ≤ 1) denotes a time-correlation factor
of velocity change (i.e., an indication of the amount of
velocity change between two consecutive epochs). 𝑉𝑛 and
Φ𝑛 denote the node speed and direction at the n-th epoch,
respectively. 𝑉𝑎𝑣𝑔 and Φ𝑎𝑣𝑔 denote the average node speed
and direction, respectively. and are Gaussian random variables.
For the simulation, 𝑉𝑎𝑣𝑔 = 5.5[𝑚/𝑠], Φ𝑎𝑣𝑔 ∼ 𝑈(0, 2𝜋),
𝛼 = 0.9, 𝑉𝑥𝑛−1 ∼ 𝑁(0, 𝜎2

𝑣), and Φ𝑥𝑛−1 ∼ 𝑁(0, 𝜎2
Φ), where

𝜎𝑉 = 𝑉𝑎𝑣𝑔/3, and 𝜎Φ = 𝜋/6.
Figure 4 plots the CDF of 𝜂, where Node 1 maintains

constant velocity during the link lifetime, and the movement of
Node 2 is governed by the G-M model for different values of
the time epoch - the Node-Velocity Update Interval (NVUI).
We let 𝑁𝑉 𝑈𝐼 = 5, 10, 15, 20[𝑠𝑒𝑐] and Δ𝜏 = 0.1[𝑠𝑒𝑐]. A
longer time epoch leads to less frequent velocity changes,
allowing the algorithm to measure more distances within each
epoch. This, in turn, allows to better estimate the states of the
system, resulting in more accurate prediction.

In the second mobility model that we studied, the Gradual-
Turn (G-T) mobility model, the initial speed and direction of
Node 2 are constant. At some time 𝑡𝑣𝑐, the direction of the
movement of Node 2 is incrementally changed over a time
duration 𝑇𝑣𝑐, at the end of which (i.e., 𝑡𝑣𝑐 + 𝑇𝑣𝑐) the node
resumes constant velocity until the link breaks. This model
induces a smooth turn in the mobile trajectory, which could
be considered more realistic than instantaneous or a piecewise-
linear trajectory changes.

We investigate how the time duration 𝑇𝑣𝑐 affects the al-
gorithm’s performance. Figure 5 plots the CDF of 𝜂 for
𝑡𝑣𝑐 ∼ 𝑈(Δ𝜏, 𝐹𝐿𝐿) and Δ𝜏 = 0.1[𝑠𝑒𝑐]. The change in
direction over 𝑇𝑣𝑐 is distributed as 𝑈(−ΔΦ𝑣𝑐,ΔΦ𝑣𝑐), where
ΔΦ𝑣𝑐 = 30∘ or 45∘, and 𝑇𝑣𝑐 = 1 or 3[𝑠𝑒𝑐]. The figure shows
that a more gradual velocity change (i.e., larger 𝑇𝑣𝑐) improves
the algorithm performance, since it results in smaller variance
in the estimated states at each time step, allowing the UKF to
better propagate its state estimates in time. Of course, a large
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Fig. 5. CDF of 𝜂 under the G-T mobility model.

change in direction (i.e., larger ΔΦ𝑣𝑐) requires longer time
for UKF to converge, resulting in performance degradation. It
is worth noticing that for all the curves in the figure, more
than 70% of all RLL predictions achieve 𝜂 of 20% or less,
demonstrating the robustness of the algorithm performance.

IV. CONCLUSION

The proposed UKF-based prediction algorithm computes
the RLL by periodically measuring distances between two
mobile nodes and recursively updating the UKF state estimates
from which the residual link lifetime is calculated. Without
velocity change, the algorithm robustly tracks the UKF states,
and the state estimates quickly converge to their actual values.
The performance of the algorithm under the G-M mobility
model degrades with the frequency of velocity changes. In the
G-T mobility model, velocity changes that occur over longer
time durations make it easier for the UKF’s state estimates to
converge. With the range of parameters studied in this letter
for the constant-velocity case, more then 80% of the RLL
predictions fall within 20% of their actual values. For the
G-M and G-T mobility models, the same accuracy can be
achieved by 75% (for 𝑁𝑉 𝑈𝐼 = 20[𝑠𝑒𝑐]) and 70% of the
RLL predictions, respectively.
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