DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 52, 2000

The Design and Performance of Mobile TCP

for Wireless Networks

Zygmunt J. Haas and Abhijit Warkhedi

{haas, warkhedi } @ee.cornell.edu

School of Electrical Engineering, Cornell University

Abstract — Wireless environments are characterized by lossy links and
intermittent connectivity. In the past, considerable research has been conducted to
improve the end-to-end performance of TCP over wireless networks. The focus of our
research is on improving the end-to-end performance, while minimizing processing
load of transport protocols on power-limited mobile devices. In this paper, we present
the design and implementation of a transport protocol, called MTCP, for wireless
networks. The primary goals of MTCP are as follows: a) alleviate the effects of
wireless losses on end-to-end performance, b) minimize processing overhead on
mobile devices, and ¢) allow seamless integration of mobile applications into existing
internetworks. Our approach is based on the split-connection model, where the end-
to-end connection between a mobile and a stationary host is partitioned into two
connections: the connection between the mobile host and the mobile-gateway (or the
basestation), and the connection between the mobile-gateway and the fixed host. The
division allows us to develop MTCP, which is an optimized protocol emulating TCP
functionality on the wireless link. The protocol is designed to be lightweight, in order
to minimize and eliminate the unnecessary overhead placed on mobile devices. Our
experimerts with MTCP on different testbeds indicate a substantial improvement 1n
throughpﬁi over the “regular” TCP under varied unreliable operational conditions of
the wireless link. In addition, the results show that MTCP is much more efficient in

utilizing CPU resources than TCP.
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1. Introduction

The vision behind mobile computing [1, 2] is to support ubiquitous
access to various forms of information such as data, voice and (possibly) video.
Integration of mobile devices into the existing internetwork consisting of
stationary hosts has played a critical role in bringing the state-of-the-art a step
closer to realizing this vision. At the same time, continued use of legacy
technology in conjunction with wireless networks has given rise to certain
problems due to the special characteristics of the wireless link and the

requirements of the portable power-limited mobile devices.

One problem is the inability of existing end-to-end protocols such as
TCP [3, 4] to effectively cope with highly unreliable wireless links. TCP is
specifically designed to perform well in networks where losses occur mostly due
to congestion problems. As a consequence, TCP fundamentally assumes that all
packet losses in the network are caused due to congestion-related problems. This
assumption, however, is incompatible with the properties of a wireless link where
losses are due to handoffs and transmission errors caused by noise, interference,

and channel fading.

A TCP sender identifies losses either by the arrival of three duplicate
acknowledgments or by the absence of an acknowledgment within a timeout
period. Upon identifying a loss, the TCP sender invokes various congestion
control and avoidance mechanisms such as reducing the congestion window size
and/or backing off the retransmission timer [3, 4]. These measures, however,
cause an unnecessary reduction in the overall end-to-end throughput in networks
consisting of links where packet losses are not due to congestion [S]. Several
schemes have been proposed in an effort to alleviate the effects of non-

congestion-related losses on TCP performance in wireless or similar high loss
links [6, 7, 8].

Another problem posed by the existing communication protocols is the
processing requirements placed on the mobile devices. As portable machines

shrink in their physical parameters (weight and size), their computing and power
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capabilities are also reduced, especially due to the reduced capacity of the power
storage devices. Thus, to maintain a constant level of performance of mobile
applications, there is a need to reduce the processing load of communication
protocols on mobile devices [9]. The focus of our research is to devise a new
transport protocol that improves the end-to-end performance of TCP, while
reducing the processing requirements on the mobile host. We base our approach
on the split-connection model, where the transport-layer connection between a
mobile and corresponding stationary host is partitioned into two connections: the
connection between the mobile host and the mobile-gateway (also referred to as
basestation), and the connection between the mobile-gateway and the
corresponding host. The first connection is called the wireless segment, while the
second portion is the wired segment. The division, by itself, 1s not a new 1dea and
was already employed by the Indirect TCP (I-TCP) [10]. However, the
contribution of this study is the design of a lightweight transport protocol, called
MTCP, on the wireless segment that not only improves end-to-end performance,
but also reduces the processing load on the mobile device, as well as the
communication overhead on the wireless segment. Most of our protocol
enhancement stems from the important fact that the connection between the
mobile host and the mobile-gateway is a point-to-point link and that all the
packets arrive in order. Consequently, as we will see in this paper, many
functions can be either simplified or totally eliminated in the wireless segment of
the transport-layer connection, leading to a lean protocol code on the mobile

machine [9].

Following the split connection model employed by I-TCP, we divide the
end-to-end logical connection into the MTCP connection communicating over
the wireless segment and the “regular TCP” connection communicating over the
wired segment. A transport-layer gateway, called the Redirector, 1s implemented
on the mobile-gateway to seamlessly integrate both of these connection segments

in such a way that the indirection is transparent to the mobile and the

corresponding stationary hosts. This paper will primarily focus on the design and
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Figure 1: Wireless Network Model

implementation of the MTCP protocol and not on the details of the Redirector, as

it has been well studied as part of the research on I-TCP [6].

In addition to designing the MTCP protocol, we present the results of
experiments on our testbed under varied unreliable conditions. We evaluate the
performance of our protocol using performance metrics such as throughput and
CPU-usage. Our measurements, taken at different bit-error rates and raw data

rates, indicate a substantial improvement in performance over Indirect TCP and
end-to-end TCP.

The rest of this paper is organized as follows. Section 2 briefly describes
and compares some previously proposed solutions to the problem of reliable
transport protocols over wireless links. Section 3 presents the design of our
MTCP protocol. In Section 4, we discuss some details of our protocol
implementation. Section 5 presents the results and analysis of several
experiments. A discussion on miscellaneous issues is included in section 6. We

discuss our future plans in section 7 and conclude with a summary in section 8.

2. Related Work

Figure 1 shows a typical network model for wireless networks. There are
fundamentally two different approaches to improving TCP performance in such
networks. The first approach attempts to hide non-congestion-related losses from
the TCP sender. The intuition behind this approach is that these losses are local

to the wireless link and that the problem should be solved locally. The second
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approach explicitly notifies the TCP sender of non-congestion-related losses.
This allows the TCP sender to differentiate between congestive and non-
congestive losses and thereby to react accordingly. In general, we can broadly
classify the above two approaches into three categories: a) link-layer scheme, b)
split connection scheme, and c) end-to-end scheme. The link-layer and split
connection methods belong to the first approach where the problem is solved
locally, whereas the end-to-end scheme follows the second approach of explicitly
notifying non-congestive losses back to the TCP source [11]. In the following,

we provide a more in-depth look at these schemes.

2.1 Link-Layer Schemes

The goal of link-layer schemes is to perform link-layer retransmission on
the wireless or similar lossy links. By doing so, most packet losses can be
recovered and therefore shielded from the TCP sender. Two main classes of
techniques are usually applied by these schemes: automatic retransmission
requests (ARQ) and error correction, such as Forward Error Correction (FEC).
The main advantage of this approach is that it fits well into the layered structure
of network protocols. In addition, the link-layer approach operates
independently of higher-layer protocols and does not maintain any per-
connection state. The main concern, however, is that most of the link-layer
mechanisms compete with reliable transport protocols, such as TCP, in order to
recover from losses. This interaction can lead to degraded performance of
higher-layer protocols. Furthermore, most link-layer schemes are poor in
shielding the TCP sender on the fixed host from wireless losses, since the
schemes do not attempt to either deliver retransmitted packets in-order or
suppress duplicate acknowledgments sent by TCP on the mobile host [11]. This
makes link-layer schemes especially ineffective in dealing with handoffs. The
other concern is the additional processing burden that these schemes place on
the mobile devices, which are already power and computing limited.
Specifically, the ARQ mechanisms may use timeouts to perform

retransmissions, while timeouts are also utilized at the transport layer. Link-

layer schemes that use FEC to detect and recover from errors, duplicate the
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etfort, since TCP already uses checksums to detect errors. These unnecessary
processing demands can impose substantial burden on a mobile device
depending on the capabilities of the device and the number of network

applications running on it.

The TCP-aware link-layer solutions, such as the Snoop protocol [7],
attempt to solve some of the issues just described. The Snoop protocol
introduces a module, called the snoop agent, at the basestation. The agent
monitors every packet that passes through each TCP connection and maintains a
cache of TCP segments sent across the link that have not yet been acknowledged
by the receiver. The state maintained at the Snoop agent for each connection is
soft, and is not necessary for correctness. Snoop detects losses in the same way
as TCP, 1.e., by the arrival of several duplicate TCP acknowledgments or due to
a local timeout. Upon detection of a packet loss, the Snoop module retransmits
the lost packet from the local cache and suppresses any duplicate
acknowledgments heading towards the TCP sender. The key feature of the
Snoop protocol is that link-layer retransmissions are TCP-aware. Specifically,
the Snoop protocol leverages off TCP acknowledgments arriving from the
mobile host in order to detect packet losses. The duplicate acknowledgments are
suppressed to shield the TCP sender from non—congestive—loéses. Furthermore,
Snoop uses timeout values that are smaller than TCP timeouts, so that it has an
opportunity to recover from losses before TCP times out and invokes congestion
avoidance mechanisms. The combination of these techniques reduces the
overhead incurred due to link-layer retransmissions and also reduces the
competing effects between the ARQ schemes of the transport and the link

layers.

One disadvantage of the Snoop protocol is that, like other link-layer
protocols, it could also suffer from not being able to completely shield the
sender from wireless losses [11]. This can occur if the Snoop module fails to
recover from packet losses before TCP times out. The problem can be
minimized by using a finer timeout value at the Snoop module, however at the

cost of incurring more processing load on the basestation. The second
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disadvantage is that the protocol violates the layering principle of protocol
design due to its use of TCP acknowledgment for link-layer recovery. The third
possible disadvantage of the Snoop approach is that it requires a shight
modification in the TCP implementation of the mobile host, so that congestion
and non-congestion losses can be differentiated. Specifically, the Snoop module
is equipped to send negative acknowledgment (NACKS) to the TCP sender on
the mobile host when missing packets are detected. As will be seen later, we will
show that modification of the existing TCP implementations on mobile hosts 1s
not a stumbling block in seamlessly integrating applications that use the TCP

protocol, and therefore, not a major issue.

2.2 Split Connection Schemes

Split connection schemes split the end-to-end connection into two
connections — one TCP connection between the sender and the basestation and
another between the basestation and the receiver. The protocol on the wireless
segment does not necessarily have to be TCP; it can be any other reliable
transport protocol. The idea behind this approach is to separate loss recovery
over the wireless segment from that across the entire end-to-end connection.
This separation allows a reliable transport protocol on the wireless segment to
quickly recover from packet losses, thereby shielding the TCP sender from the
wireless link. Indirect TCP is an example of the split connection approach that
uses “regular” TCP for its connection over the wireless segment. Experiments
indicate that the choice of TCP on the wireless segment results in several
performance problems. The TCP sender on the wireless segment still interprets
all wireless losses as congestion problems and invokes various congestion
control mechanisms leading to a sub-optimal performance. Another problem i1s
that every packet incurs the additional overhead of traversing the transport layer

twice at the basestation in order to hop over to the next connection. The probiem

can be solved by an efficient kernel implementation that avoids extra copies of

packet buffers [11].
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B I e T N N i AN B0 S o e ook oo oD S oo o R S ——

Link-Layer 1.  Fits well into layering structure, 1. Competes with TCP and

(LL) 2.  Poor at shielding the sender from non- duplicates some effort.
congestion losses. 2.  Requires smaller timeout values:
3. Does not require connection state to be places more burden on mobiles.
maintained at the basestation. 3. Cannot solve the problem
associated with handoffs.
Link-Layer- 1.  More effective at shielding the sender 1.  Violates layering principles.
TCP Aware from non-congestion losses than LL. 2.  Possibly requires TCP on the
2.  Depending on the implementation may not mobile to be modified.
impose extra load on the mobile. 3. Requires extra link-layer
3.  Only requires soft connection state to be | messages for recovery.

maintained at the basestation.
De-couples the error control on wireline

segment from that of the wireless segment.
2. Allows development of a lightweight
protocol on the wireless segment.

Split-
Connection

Requires connection state to be
maintained at the basestation.
2.  May incur more processing load
at the basestation.
3. Acknowledgments are not end-
to-end.
. Slow to recover from losses.
2.  Requires TCP implementations
on fixed hosts to be modified.

Explicit Loss Notification (ELN) can help
sender to distinguish between congestive
and non-congestive losses.

L

Table 1: Comparison of the different approaches

One problem, particularly in the implementation of I-TCP, is that the
end-to-end semantics of the TCP protocol are not preserved [11]. Proponents of
the I-TCP approach, however, argue that most applications that use TCP also
have some kind of support for application layer acknowledgment and error
recovery. Such acknowledgments are often required, because TCP does not
provide any notification to the sending application when the data is actually
delivered to the peer application [6]. The other problem that is widely stated in
the context of the split-connection scheme is that it requires substantial amount

of state to be maintained at the basestation making handoff procedures complex

and slow [11].

2.3 End-to-End Schemes

The two schemes discussed so far attempt to recover from non-
congestion losses locally, thus shielding the TCP sender from the wireless link.
On the other hand, most effective end-to-end solutions add an explicit loss
notification (ELN) feature to TCP acknowledgments. When a packet is dropped

on the wireless link, subsequent cumulative acknowledgments corresponding to
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the lost packet are marked by an agent on the basestation to indicate the
occurrence of a non-congestion-related loss. The TCP sender uses this
information to decide whether to invoke congestion control mechanisms Or not.
One problem with this approach is that end-to-end protocols are usually slow to
recover from losses on the wireless link, since it takes more time for the TCP
sender to detect problems [11]. The situation is exasperated m WAN
environment, where the round-trip delays are much greater than in a LAN. The
biggest problem with the end-to-end approach is the need to modify the existing
TCP implementations on the fixed hosts, making the solution impractical for

wide scale deployment.

2.4 Selective Acknowledgments

Typically, losses in the wireless environment consist of burst packet
errors. The standard TCP protocol, which uses cumulative acknowledgments,
does not provide the sender with sufficient information to recover from multiple
packet losses. A selective acknowledgment (SACK) technique, called SMART
Retransmission [12], contains the cumulative acknowledgment and the sequence
number of the packet that caused the acknowledgment to be sent. The sender can
use this information to construct a bitmap of the packets that have correctly
reached the receiver. When the sender detects a gap in the bitmap, the
corresponding packets are retransmitted without considering the possibility that
the acknowledgments may be reordered or may simply be dropped. Researchers
have studied SMART selective acknowledgment technique in conjunction with
the above approaches (link-layer, split-connection and end-to-end) and compared
them with each other [11]. The next section presents the performance results and

the evaluation of these schemes.

2.5 Evaluation of Related Work

Table 1 summarizes the advantages and disadvantages associated with

the different approaches. Various protocols in combination with SMART have

been extensively studied and compared by a group of researchers in [11]. Here,




94 ZYGMUNT J. HAAS AND ABHIJIT WARKHEDI

- e e o e e e oo e oo R e, s T gt g B B
T ;EEE{:“E- :l:-'rl'_'._.'?-'rt:-;...:- ‘{E':_"i ?j.': :ﬁ“ﬂi". ............... A ?ﬁ:ﬁ"f :I:E. ...... oy "l"::"" 35:;,:_:&?{:?%?#‘2%-5 "E:.:?;,"rr'{,gﬁf::._._._.ﬁ. ':'.'-‘:‘.’:;.'"r'l.'-ji-sﬁ'

? o
o A L e e o :;'5_,;;
Sa ] B L
o

T e e o e o e s A i s G e 2
e __.:-*‘?H"'ﬁf'-::'-, i g Sk SO TR AR e P R R
o e R e NS L ] gD BB RE AL a0 E3ER] e

lllllllll Pkl = ‘:" ‘:.| ; .'} v PR | * .. e 'I = ! ot r v - T L o j oo " "'. X 1':':':
St e A, (i L o e e, AT, Y P e - Al e W W T, Aoe g S o e e S W W r 0 it j:"é-.-.;.:
: SRR e I e hiiboclioodt . Hodine ! Rttt oo tondioa “‘#ﬁbﬂr‘.‘-:-J".F".-:-:::-:-:-:1:d!;‘.-'.-#ﬁ-‘-‘.f{-:-I-:-:-:-:-:-I-:-:-:-:-:'-:-:ﬁa:-:-:ciﬁ.‘.-' AT WE BB Lok D

B e e e e e T T, B o g

o G e el g e ey K -
BiRAE R g EEReER e 5 ¥
ot AT TR Al , s - =
e A R i e LA ]

ror e O I S 0., i el s A e e e A S rorr o : o

B e S e s i e e e e i .&.;::4:-

E2E-ELNRXMT End-to-end Standard TCP + ELN + retransmit on first
duplicate ack.

E2E-SMART Standard TCP + SMART selective acks
SPLIT Standard TCP on both segments

i b 28

SPLIT-SMART Standard TCP + SMART on wireless
segment

LL Simple link-layer protocol
LL-TCP-AWARE
LL-SMART-TCP-AWARE Snoop protocol + SMART

Table 2: Summary of various protocols

LL E2E-SMART SPLIT- LL-TCP- LL-TCP-

SMART AWARE AWARE-
SMART

Figure 2: Performance of various protocols at
bit-error rate of 1 error/65536 bytes1

14

o

i,

& :
»

Throughput (Mbps)

bt
N

< |_|T.S o

o
o

0 —— . —

16 32 64 128 256
average bit-error rate (1 error every x Kbytes)

Figure 3: Comparison of throughput at various error rates,
ranging from 1 error every 16 KB to 1 every 256 KB’

"These results are obtained from [11].
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we briefly present some important elements of their findings. Their experimental

testbed consisted of IBM ThinkPad laptops and Pentium-based PCs running
BSD/OS 2.1 from BSDI. The machines were interconnected using 10Mbps
Ethernet and AT&T Wavelan with a raw signaling bandwidth of 2Mbps. The

peak throughput for TCP bulk transfers under ideal (no loss) conditions was

1.5Mbps in the local area testbed. Errors were generated on the lossy link using

an exponentially distributed bit-error model and packet corruption was achieved

by changing the TCP checksum. All measurements were taken on bulk transfers

from TCP sender on the stationary host to the receiver on the mobile host using

data packet size of 1400 bytes. Table 2 [11] enumerates some of the protocols

that were evaluated. These are the protocols that we mainly focus on here.

The following observations can be made from the results in Figures 2 and 3:

a.

SMART selective acknowledgments greatly improve the performance of
each category of protocols. For example, the difference in throughput
between SPLIT and SPLIT-SMART is very large, as is the difference in the
case of the end-to-end protocols. Selective acknowledgments provide a
mechanism to quickly recover from multiple packet losses and thereby

reduce the occurrence of a timeout.

The SMART technique alone, however, does not perform very well under
high loss rates. Both the LL-TCP-AWARE and the LL-SMART-TCP-
AWARE protocols outperform SPLIT-SMART and E2E-SMART 1 heavy
loss conditions. The key reason 1s that the TCP-aware link-layer protocols
shield the TCP sender from wireless losses. Unlike the link-layer protocols,
the SPLIT-SMART and the E2E-SMART protocols invoke congestion
control mechanism upon experiencing a packet loss. In addition, as the
congestion window size remains small, it significantly reduces the possibility

for the TCP sender to fast retransmit lost packets.

Although, E2E performs slightly better than SPLIT under the LAN

environment, results (not shown here) also indicate that SPLIT outperforms
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EZE in the WAN environment [11]. This implies that local loss recovery is

quicker and more effective than end-to-end recovery.

Minor performance differences between split-connection and other schemes
under low loss condition indicates that the extra processing load on the

basestation due to the connection split is negligible.

The LL protocol is not very effective in shielding the TCP sender from
wireless losses. When a loss occurs, the LL protocol performs a local
retransmission. However, enough packets from the TCP sender are typically
in transit to create more than 3 duplicate acks. Since the LL protocol does not
suppress any duplicates, they propagate to the sender and trigger a fast

retransmission and the associated congestion control mechanisms [11]. As

expected, the LL-TCP-AWARE protocol performs better than the LL

protocol.

Mobile TCP (MTCP)

Based on the experience and the results of previously studied

approaches, we conclude that the characteristics of an ideal solution must include

the following:

local recovery from wireless losses

capable of completely shielding the TCP sender from wireless (non-congestion) losses
use of some form of selective acknowledgment scheme to recover quickly from losses
no requirement for re-linking of applications

minimization of processing load on mobile hosts

effective in supporting mobility, i.e. handoffs

Our approach in achieving many of these goals is to design Mobile TCP

(MTCP), a lightweight transport protocol, for the wireless segment based on the

split-connection model. The Mobile TCP protocol is based on our previous work

In this area, as described in [9]). The key idea influencing our protocol design is

the fact that Mobile-TCP operates over a single point-to-point connection. Thus,

in many aspects, the design of MTCP resembles that of a link layer protocol [9].
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Application |-----——----c-—memmermcc e Application
Socket Interface Socket Interface
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m(}bile host mobile gateway ﬁXEd hOSt

Figure 4: Mobile-TCP Protocol Stack

Furthermore, indirection provides the property that all packets arrive in order and
all losses are non-congestion-related on the wireless segment. As a consequence,
the design of MTCP can be greatly simplified and optimized, resulting in a

significant reduction in the communication load over the wireless link.
The features of our MTCP implementation are as follows:

e eclimination of the IP layer

e header compression

e no congestion control mechanisms and timer backoffs

e static window-based flow control

e selective acknowledgments optimized for burst packet losses
e explicit retransmission requests

e fast recovery from retransmission losses

Now, we proceed with the detailed description of the Mobile-TCP design. The

next few sections deal with the design of connection control, flow control and

error control mechanisms of the protocol.
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3.1 Connection Control

Connection control is concerned with setting up and tearing down
connections. Under TCP, a host can initiate a connection with another host
(called an active open) or can listen for and accept connections from other host
(called a passive open). In the split-connection model, the mobile-gateway (MG)
acts as an intermediary, which establishes independent connections with the
mobile host (MH) and with the fixed host (FH). When the MH executes an active
open, it communicates to the mobile-gateway the identity of the destination, as
well as a set of parameters that will govern the operation of the connection
between the MH and the mobile-gateway. The mobile-gateway then proceeds
with setting up the connection with the fixed host using the destination IP address
and port number specified by the mobile host. Similarly, when a MH executes a
passive open, it informs the mobile-gateway that it is prepared to accept
connections. This allows the mobile-gateway to accept or reject connection
requests from FHs without communicating a priori with the MH. Similar
technique is used at the mobile-gateway for connections initiated by the fixed

hosts. Since the Mobile-TCP architecture, as shown in figure 4, completely
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eliminates the IP layer from the protocol stack, it subsumes the IP addressing

functionality into its own packet headers.

In addition to eliminating some IP header information, we reduce the
amount of wirelessly transmitted data by employing a technique similar to the
Van Jacobson’s header compression [13]. Since all the packets from the mobile
host travel through the mobile-gateway, there is no need to communicate the full
source and destination IP addresses (including the port numbers) in every packet.
Instead, at the connection establishment stage, a connection ID (CID) 1s assigned
for each direction and is used in subsequent exchanges of data over the wireless
segment [9]. (CIDmy represents the CID from MH to MG and CIDyg 1s the CID
in the reverse direction). The connection control and user data packet formats are
shown in figures 5a and 5b. Note that the first bit is used to distinguish between
the two formats. The MTCP protocol uses a three-way handshake similar to TCP
to establish connections and exchange unique connection identifiers between the
mobile host and the mobile-gateway. The bindings between CIDs and IP
addresses (including port numbers) are cached at both ends of the connection.
When sending a packet from the mobile to the network, the destination IP
address is translated into the corresponding CIDyy at the mobile host. At the
mobile-gateway, the CIDyy 1S expanded back into the destination IP address,
which is used on the wireline segment of the connection. Similar operation is
performed in the reverse direction. In practice, the Redirector, which sits above
the transport-layer and is responsible for “routing™ data from the source to the
destination, only has to maintain a table of bindings between the MTCP and the
TCP socket descriptors.

We follow similar implementation strategies as in I-TCP [6] to
seamlessly establish an indirect connection such that full compatibility is ensured
with the existing TCP/IP stack on the fixed host. The problem in case of I-TCP,
however, is that it requires applications on the mobile host to use new socket
calls for the purpose of connection establishment. We argue that this 1s

unnecessary in our case, since this functionality 1s transparently embedded 1nto

the MTCP protocol. Later, we will address the issue of application re-linking on
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the mobile host. We direct our focus now on issues that have the most significant

impact on the overall performance of the protocol.

3.2 Flow Control

As stated earlier, congestion control mechanisms in TCP affect the
throughput by constricting the window size of the sender when losses are
detected. Since all losses on the wireless segment of the connection are non-
congestion-related, a better approach to flow control design is to de-couple it
from error control strategies. In MTCP, flow control is achieved by a static
sliding window protocol. This scheme is identical to the one used by TCP [4],
except that congestion control mechanisms are not implemented. As a
consequence, the sender window size is entirely controlled by the receiving end
and the maximum size of the window is limited by the size of the MTCP receive
buffer. An optimal buffer size should be selected to be at least as large as the
bandwidth-delay product. A buffer size that is smaller than the bandwidth-delay
product can cause the wireless link to be underutilized, while larger than optimal
size can result in greater buffering requirements on the link-layer protocol
drivers. In traditional networks, greater than optimal window sizes can also lead
to severe congestion and traffic problems resulting in the loss of packets.
However, this does not pose a problem in a point-to-point configuration, such as
the one we are addressing here. In fact, in our experience, reasonably large
window sizes significantly improve the chances of quickly detecting packet
losses and allow for fast recovery, rather than relying on retransmission timeouts.
Nevertheless, due to the various factors involved in choosing the receive buffer
size, which are not necessarily in the realm of transport protocols, we have made
it a configurable parameter, as is done in TCP. We would like to look at the issue

of dynamically choosing the optimal buffer size in our future research

3.3 Error Control

TCP implements error control functions in the sender as well as the

recerver. Specifically, the TCP receiver’s main objective is to perform error
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detection by the means of checksums and holes in received sequence numbers.
When the receiver detects an error, it signals the sender of the loss using a
duplicate acknowledgment. In turn, the sender identifies losses either by the
arrival of three duplicate acknowledgments or by the absence of an
acknowledgment within an estimated timeout period. Upon identifying a loss, the
TCP sender invokes various congestion control mechanisms and then transmits
the first unacknowledged packet followed by a number of outstanding (pending
transmission) packets that are allowed by the window size. In essence, TCP takes
a conservative approach to loss recovery by assuming that only a single packet 1s
lost. The technique is well suited for networks that experience light congestion,

but too slow to recover in environments with heavy losses.

MTCP adopts a strategy similar to TCP for error control with the
exception of few key differences that make it far more robust in recovering from

heavy loss conditions. These differences can be stated as the following:

1) Explicit retransmission request (RRQ) — Upon detecting an out of order
packet, the receiver immediately requests the sender to quickly retransmit the
lost packet(s) as opposed to waiting for three duplicate acknowledgments.
This is a direct consequence of the fact that all packets on the wireless
segment arrive in order, which is guaranteed by the split-connection model.

An out of order packet thereby automatically signifies a loss on the wireless

link.

2) Selective acknowledgments (SACKs) optimized for burst losses — MTCP
adopts a technique for selective acknowledgment that is shghtly different
from the SMART scheme. Recall that in SMART every acknowledgment
packet contains the sequence number of the packet that triggered the
acknowledgment to be sent. This enables the sender to construct a bitmap of
lost packets. The approach, however, has two problems: 1) it is complex to
implement, and ii) lost acknowledgments cause the sender to overestimate
the magnitude of the loss. Instead, every MTCP acknowledgment contains a

negative acknowledgment number, which conveys the size of the burst
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Figure 6a: MTCP SACK Figure 6b: SMART SACK

loss in bytes to the sender. Since this information is repeated 1n every
acknowledgment, the MTCP sender obtains an accurate knowledge of burst
losses even when some acknowledgment are lost. Figure 6 compares between
the MTCP approach to SACKs versus the SMART technique. Figure 6a
shows that the receiver requests three times the retransmission (RRQ) of
packets 2 and 3. Two of these requests are corrupted or lost. Upon receiving
the third request, the sender retransmits packets 2 and 3. On the other hand,
SMART technique interprets the third retransmission request (ack 2, recv 6)
as an indication of the loss of packets 2, 3, 4 and 5, causing it to retransmit in
excess. Our scheme is comparatively much easier to implement than SMART
and equally effective, if not more, in burst loss conditions. The limitation of
the MTCP technique is that it cannot guess multiple sparse (non-burst)
losses. We argue that most losses in wireless links are burst losses and
therefore our technique is sufficient to handle this situation. Furthermore,
intuition tells us that the MTCP window size is large enou gh (1.e. unrestricted
by congestion control) to trigger fast retransmissions in most multiple sparse
loss cases. Our performance results show that this scheme is indeed quite

effective in combating losses.
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Figure 7a: Problem Figure 7b: Solution

3) Fast recovery from retransmission losses — Since losses are very common on
the wireless segment, MTCP tries to take every step to quickly recover from
errors. The same applies to packets lost during retransmission. When an
MTCP sender receives a request for retransmission of a packet that was just
retransmitted, the sender is unable to resolve whether the request is for the
retransmitted packet or for the previously failed transmission. The situation 1s
best illustrated in figure 7a. The key to differentiating between the two
requests is for the sender to somehow know that the request was in response
to the retransmission. In figure 7a, the retransmission requests (RRQs)
triggered by packets 5 and 6 are indistinguishable from the RRQ triggered by
packet 7. Ideally, the sender should respond with the retransmission of packet
3. when it gets the RRQ due to packet 7 and ignore the rest. However, the
request packet does not contain adequate information for the sender to
differentiate between the requests. One obvious possible solution 1s to use
SMART-style sequence number of the received packet in the RRQ packet.
We have opted for a more compact solution that can be achieved with just 2
bits (included in the CodeBits vs. an extra 16-bit field in the MTCP header).
In our solution, every packet carries a retransmission-cycle number (RC) and
every acknowledgment in the opposite direction contains a retransmission-

cycle reply (RCR). When a receiver responds to the sender, 1t simply copies

the previously received RC bit to the RCR bit ofx the acknowledgment packet.
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Upon receiving a retransmission request, the sender checks to see if the RCR
bit is equal to its present retransmission-cycle (PRC). If there is a match, the
PRC b1t 1s toggled and requested packets are retransmitted with the new
cycle number. Otherwise, the retransmission request is simply ignored by the
sender. This action prevents the sender from responding to duplicate
retransmission requests. Figure 7b shows that with this scheme, the sender
can now distinguish between the RRQs triggered by packets 5, 6 and the
RRQ triggered by packet 7; Note that the technique works even for multiple

retransmissions.

4. Implementation Details

We have implemented the MTCP protocol under the Microsoft Windows
95/NT platform. As the TCP source code for Windows was not available to us,
we have designed and developed the entire MTCP protocol from scratch. The
protocol 1s 1mplemented as an intermediate protocol driver in the kernel mode
and communicates with NDIS-compliant link-layer drivers [14] to send and
receive packets on the network card. Thus, we achieve complete elimination of
the IP layer from the processing path of the transport protocol. An important
consequence of this is that buffer management is greatly simplified and
optimized in MTCP. Furthermore, our implementation requires only a single

memcpy per send or receive operation (apart from possible copies in the link-

layer driver).

Most TCP implementations, such as BSD, employ two types of timers:
fast timer (200ms) and slow timer (500ms) [4]. The TCP delayed
acknowledgments are processed on fast timeouts and TCP retransmissions on
slow timeouts. We would like timeout granularities to be on the order of the
round-trip-time (RTT). However, in order to limit the overhead of processing
timer interrupts, the MTCP protocol utilizes a single timer that goes off every
200ms to process both delayed acknowledgments and retransmissions.
Interestingly, our experiments indicate that timeout values on the Microsoft TCP

(MSTCP) implementation are more accurate than on the BSD implementation.
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We have seen timeout values in the range of 200-500ms on MSTCP, while most

timeouts on BSD are typically multiples of 500ms.

MTCP follows the standard BSD implementation to estimate the
smoothed round trip time. Consequently, retransmission timeout interval in
MTCP is computed as the sum of the smoothed RTT and four times its mean

deviation [4].

5. Experimental Results

We performed various experiments to compare between the performance
of MTCP, Indirect TCP and end-to-end TCP under wireless communication
conditions. In the following sections, we present our experimental setup and

discuss our results using various criteria for performance evaluation.

5.1 Experimental Setup

Our experimental testbed, shown in Figure 8, consists of Pentium-based
personal computers running Windows 95 and Linux operating systems. The
Win95 machine in the center of the figure is configured to act as a basestation
using WinRoute software to route packets to and from the mobile host. As
indicated in the figure, the basestation and the mobile host are connected to each
other using either 10Mbps Ethernet or Proxim RANGELAN, a wireless LAN
with a raw signaling bandwidth of 1.6Mbps. We chose to test the protocols under

two different conditions to observe the effects of MTCP optimizations at

different data rates. The peak throughput for TCP bulk transfers 1s measured to
be approximately 8Mbps on the 10Mbps Ethernet and 0.70Mbps on the 1.6Mbps
RANGELAN [15].
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Figure 8: Network Configuration
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Figure 9: Burst-error model for lossy link

We simulate errors on the lossy link using a Markov chain burst-error
model, shown in Figure 9. This model attempts to incorporate the fading effects
experienced by the wireless channel. Specifically, the beginning of a fade
corresponds to the transition from the Good state to the Bad state. Once in the
bad state, the model continues to drop bits at a higher probability causing a burst
loss of bits. Finally, the end of fade is marked by the transition from the Bad
state to the Good state. The model is designed to be independent of the
transmission rate of the channel, i.e. every bit is subject to the same drop
probabilities regardless of its length in time. The properties of the burst-error

model can be summarized by the following equations:

P
[eq.1] Expected BER = b
P Pg

[eq. 2] Expected Burst Size in Bits = i-

Pg

leq. 3] Expected Burst Size in Packets =1 + —l--

B
pg

.4] PER =Bp +1
leq. 4] AER pg

where B is the average packet size in bits
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Regardless of the error-model, a packet intruder driver modifies the checksum of
outgoing packets in order to induce packet errors. The intruder specifies the
burst-error parameters (py, pg) and the size of the outgoing packet in bits to the
Markov state machine shown in Figure 9, which thereby determines whether the
packet will be corrupted or not. Losses are generated in both directions of the
wireless link, so acknowledgments are dropped as well. For our simulations, the
probability ps is chosen between the range of 1E-7 and 120E-7 and p; 1s fixed at
100E-6. This provides an approximate burst size of 10000 bits (or 1250 bytes)
which corresponds to an expected burst loss length of 1.83 packets assuming that
the packet size is 1514 bytes. The maximum packet size supported by our
protocols and the physical media 1s 1500 bytes (excluding 14 bytes of the data
link header). The maximum receive buffer size is set to 16 Kbytes for all the

protocols.

5.2 Performance and Comparisons

We compared the performance of MTCP with Indirect TCP and end-to-
end TCP using metrics such as normalized throughput, mean inter-butfer arrival
time, mean CPU usage and mean energy consumption. Our experimental results
indicate that MTCP performs significantly better than TCP depending on the
packet error rate and the data rate of the link. In order to compare the results
obtained for each protocol at different data rates, we based our evaluation of the
performance on normalized throughput. We define normalized throughput as the
percentage of the maximum throughput that 1s achieved under 1deal (i.e., no loss)
conditions. Figure 10 shows the performance of MTCP, I-TCP and end-to-end
TCP for bulk transfer from the fixed host to the mobile host in Wireless (Fig.
10a) and Ethernet configurations (Fig. 10b). The resuits are shown for packet
error rates ranging from 0.2% to 20% on a logarithmic scale. Note that the packet
error rates shown in the figures correspond to errors occurring in the sender to
receiver direction only. Since packets in the reverse direction only contain
acknowledgments, the error rate in this direction is very small in comparison.

The results indicate that MTCP is able to sustain a greater normalized throughput
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Figure 10a: Normalized Throughput vs. Packet
error-rate for the wireless configuration.
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Figure 10b: Normalized Throughput vs. Packet
error-rate for the ethernet configuration.

than both I-TCP and end-to-end TCP as packet error rates increase. The
improvement is primarily due to: a) the elimination of congestion control
mechanisms at the sender, b) the receiver-initiated retransmission requests
(RRQs) that cause the sender to immediately retransmit lost packets, and c) the
selective acknowledgment scheme for burst losses. The three techniques in
combination improve the likelihood of fast re-transmitting lost packet(s), and
thus reduce the possibility of an MTCP coarse timeout. The I-TCP performs

worse than MTCP, since it continues to invoke congestion control mechanisms
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Figure 11: Protocol sequence trace at approximately 5%
packet error rate in the wireless configuration.

upon packet loss on the wireless segment, causing an unnecessary reduction in
the overall throughput. However, improved performance of I-TCP over end-to-
end TCP can be attributed to local loss recovery, which reduces the time to
recover from errors and also to the protocol differences that may exist between
the Linux and the Windows implementation of the TCP/IP stack. Figure 11
graphically illustrates the progress of the data transfer from fixed host’s
standpoint in the Wireless configuration at approximately 5% packet error rate. It
is apparent from this figure that both I-TCP and end-to-end TCP stall much more
often in the presence of errors than MTCP and therefore, take longer time to

complete the data transfer.

Figure 12a compares the results obtained for normalized throughput on
Wireless and Ethernet configurations at various packet error rates. It can be
clearly seen from the results that the protocols perform better in the Wireless
configuration than in the Ethernet configuration by maintaining a higher
normalized throughput as packet error rate increases. This can be explained by
the fraction of the total transmission time spent idling in timeouts. As the
transmission time decreases, the overhead due to coarse timeouts increases, thus
resulting in lower normalized throughput in the Ethernet scenario. Since the

packet error rate itself is dependent on the data rate of the connection, we also
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compare the performance of the protocols at different outage ratios. The outage
ratio, which is independent of the data rate, can be defined as the percentage of
the time spent in the BAD state. The average length of an outage is kept constant
at 10,000 Wireless-bit times, equivalent to the length of 10,000 Wireless bits in
time. Since the ethernet data rate is 11 times faster than the Wireless data rate,
the outage time corresponds to 110,000 Ethernet bits. The results of our
experiments, shown in Figure 12b, indicate that the performance of the protocols
in the Ethernet and the Wireless cases is closer than in Figure 12a. This can be

attributed to the fact that the packet error rate decreases as the data rate increases.
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On an average, an outage causes a loss of 10,000 Wireless bits and 110,000
Ethernet bits, which roughly corresponds to 2 packets and 11 packets in Wireless
and Ethernet cases, respectively (assuming the packets size is 12,000 bits).Note
that 2 packets are much more likely to be lost in the Wireless case than 1 packet
because most outages will tend to overlap into the successive packet.
Consequently, the ratio of the number of packets lost to the number of bits lost 1n
the Wireless case is 2:10000, while it is only 1:10000 in the Ethernet case. Thus,
the packet error rate in the Wireless case 1s approximately twice as much as in

the Ethernet case at a particular outage ratio, which explains the results shown in

Figure 12b.

We also studied the impact of different packet loss rates on the real-time
constraints of an application. Due to the difficulty in computing the end-to-end
delay accurately, as clocks on two machines need to be precisely synchronized,
we introduce a metric known as inter-buffer arrival time. The inter-buffer arrival
time can be defined as the time elapsed between the reception of two successive
socket buffers at the application layer. Since our network topology consists of
fived connection routes, we can assume that the end-to-end delay without the
presence of errors is fairly constant. It can be deduced that the additional end-to-
end delay experienced in presence of errors 1s manifested in the extra inter-buffer
arrival time seen at the application layer. Thus, inter-buffer arrival time can
provide an insight into the changes 1n the end-to-end delay as well as the waiting
time seen by the application in receiving data. In our simulation, the socket
buffer size was chosen to be 1460 bytes. This particular choice of socket buffer
size is important, since it is equal to the maximum data that can be sent In a
single TCP packet. We can infer that the inter-buffer arrival time roughly
corresponds to the inter-packet arrival time of packets arriving in order, since
each buffer is placed in a separate packet. Figures 13a and 13b show the mean
and the standard deviation of the inter-buffer arrival time measured over the
lifetime of the connection at various packet error rates. We can see that MTCP
performs better than I-TCP and end-to-end TCP in keeping a relatively low mter-

buffer arrival time at higher packet loss rates. Interestingly, the standard
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Figure 13b: Standard deviation of Inter-buffer Arrival Time vs.
Packet Error Rate (Wireless Configuration)

deviation of the inter-buffer arrival time is also much lower in MTCP at higher
packet loss rates, indicating that applications would be subject to less jitter and
lower waiting time in receiving data. This is especially important for real-time

applications, which are constrained by certain end-to-end delay and delay jitter

requirements.
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bidirectional transfer (Kbytes/sec

Table 3: Throughput & CPU Usage for Bidirectional transfer
under Ideal Conditions (for the ethernet configuration).

We now present various experimental results, which suggest an
improvement in the utilization of the CPU resources by MTCP. As shown 1n
Table 3, our experiments reported 12.3% difference in maximum throughput
achieved by MTCP over I-TCP in the bi-directional data transfer tests for the
Ethernet configuration. We claim that the bi-directional test is a more reliable
indicator of processing limitations of a protocol, since it is not subject to various
optimizations, as in the case of bulk-transfers. Specifically, factors such as the
implementation of the Nagle’s algorithm [16] and the timing of delayed
acknowledgments can cause a significant impact on the throughput of
unidirectional transfers. Higher throughput of MTCP under ideal conditions of
the bi-directional tests suggests an improvement in the efficiency of protocol
processing. Furthermore, the lower CPU usage by MTCP, as shown 1n Table 3,
supports the implicatioh that our protocol, in fact, reduces processing load on the
end systems. We believe that majority of the contribution to this effect 1s due to
the elimination of the IP layer. Removal of the IP layer from the TCP/IP stack
provides benefits such as reducing protocol processing load, simplifying buffer
management, decreasing the protocol header size, and possibly, reducing the
number of memory copies. We also evaluated the impact of various packet error
rates on the usage of CPU resources by each protocol according to the following
metrics: Mean CPU Usage and CPU-Duration. Mean CPU Usage 1s simply the
average % of the CPU used by the simple test application and the protocol during
the lifetime of the connection. We subtract the background CPU usage (usage
when no applications are running) from every CPU usage measurement in order
to compute a more accurate estimate of the percentage of the CPU utihzed in

actually transferring the data. CPU-Duration approximates the area under the

CPU usage curve as it varies over the duration of the connection. This measure is
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estimated by taking the product of the average CPU usage and the time duration
of the connection. The CPU-Duration signifies the total energy consumed by the
application in order to transfer a certain number of bytes. The results of our
experiments are shown in Figure 14a and 14b. In Figure 14a, we can observe that
the CPU usage tends to reduce as the packet error rates increases and also that
MTCP tends to maintain a higher utilization of the CPU than other protocols at
higher packet error rates. This is explained due to the fact that there are more

coarse timeouts in the case of I-TCP and end-to-end TCP, resulting in a less
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frequent use of the CPU. On the other hand, since MTCP times out less often, it
completes the data transfer quicker than the other two protocols, thus offsetting
the higher CPU usage. This is illustrated in Figure 14b, which shows that MTCP
consumes less energy than I-TCP and TCP in order to transfer data over the
network. These differences are more pronounced at higher packet error rates
where timeouts are more frequent in I-TCP and TCP than in MTCP and
unnecessary energy expended on tasks such as handling protocol timers 1s

greater, while no data transfer takes place.

6. Other Issues

6.1 Application Re-linking

One of the criticisms of the split connection approach, and specifically
Indirect TCP, is that applications running on the mobile host have to be re-linked
with the I-TCP library in order to use special socket calls for the setup of the
indirect connection [11]. Our approach in solving this issue is to subsume the
mechanisms used to create an indirect connection into the MTCP protocol,
making the connection establishment process completely transparent to the
standard socket calls. Furthermore, the MTCP protocol driver can be designed to
replace TCP drivers in the kernel mode, while interfacing with standard socket
calls of the network operating system. These techniques can be used to

seamlessly integrate any application into the rest of the Internet.

6.2 Handoff Support

In a typical wireless network, mobile hosts connect to the fixed network
through mobile-gateways, also known as Point of Attachments (POAs), which
act as routers between the wireless subnet and the rest of the network. As a
mobile host roams, it may leave the coverage area of the current POA. To

maintain connectivity, a handoff process is invoked such that the mobile host

reconnects itself to a new POA. Typically, the handoff process causes the
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network layer to re-route all the packets to the new mobile-gateway via the old

mobile-gateway [17].

The split-connection approach performs handoffs by migrating the state
of all the indirect connections to the new mobile-gateway, while ensuring that the
entire process is transparent to the connection endpoints on the mobile host and
the fixed host. The details of the techniques involved in transferring the state are
addressed in I-TCP [6]. We follow a similar strategy here, with the exception that
a new Connection ID has to be reestablished for each socket connection on the
mobile host. Specifically, as the Connection ID used on the old mobile-gateway
might be in use on the new mobile-gateway, a new control packet is sent to the
mobile host with the new value of the mobile-gateway’s Connection ID on each

connection [9].

The most commonly sited problem for Indirect-TCP is that it takes a
longer time to complete the handoff process [11]. The main reason for this
handoff latency is due to the complexity involved in migrating the state of all
indirect connections associated with the mobile host. The state of a connection
consists of the state of all TCP variables and also the data present in the TCP
send and receive buffers at the time of the handoff. In order to reduce the handoff
latency, we propose a scheme for setting up indirect connection, which optimizes
the common case. Our scheme can be applied to Wireless Local Area Network
(WLAN) technologies, such as those provided by Proxim or Wavelan. Figure 15
shows a typical WLAN configuration. In such configurations, mobile hosts
connect to the wired network via devices known as Access Points (APs). An
Access Point serves as a bridge between the Wireless Local Area Network and
the Wired Local Area Network. Mobile hosts within the coverage area of the
“nearest” AP can communicate with hosts on the wired network through the AP,
which essentially acts as a basestation. When a mobile host moves into the
coverage area of another AP with a stronger signal, it performs a handoff by
registering itself with the new AP. Consequently, the new AP forwards all
packets destined to the physical address (MAC address) of the handed off mobile

host [15]. The main difference between a basestation and an Access Point is that
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Figure 15: A Typical Wireless Local Area Network (WLAN)

the basestation is a router, while the Access Point is a bridge. Our scheme 1n the
context of the present WLAN technologies is to split the end-to-end connection
at the gateway and communicate with the mobile host over the AP using MTCP,
as shown in Figure 16. This is possible since many WLAN technologies use
Ethernet IEEE802.3 packet formats. The benefit of this scheme is that no transter
of state is required when mobile devices handoff within the same local area
network, as handoffs are done on the MAC layer. In addition, we also get the
benefit of using a streamlined protocol, such as MTCP, over the segment
between the gateway and the mobile host. MTCP is particularly suitable for this
segment, since the segment does not require any routing facilities in the protocol .
and, therefore, can be considered as a single hop link from the perspective of the
transport layer. The packets that are lost during the handoff process can quickly
be recovered, since these losses are handled separately by MTCP on the last
segment. Essentially, losses occurring due to handoffs can be treated identical to
the losses occurring on the wireless segment due to effects as iterference and

fading.

We propose the following technique for setting up the split connection in

the WLAN configurations. Every mobile host registers itself with the MTCP-
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Figure 16: Split Connection using MTCP in WLAN

enabled gateway, which maintains a list of mobile devices in its local area
network. The gateway acts like a transport-layer proxy, performing the function
of setting up indirect MTCP connections on behalf of the registered mobile hosts
and redirecting data from the wired segment to the “wireless” segment (the hop
between the gateway and the mobile host) or vice versa. When a mobile host
hands-off to an AP on another local area network, it un-registers itself from the
previous gateway and registers itself with the new gateway. All packets destined
to the mobile host are re-routed through the new gateway using Mobile-IP and
the split connection-state is transferred from the old gateway to the new gateway
. much as in I-TCP. Note that the states of the split connections associated with a
mobile still need to be transferred for an inter-local-area handoff. However, we
argue that our scheme optimizes the common case of handoffs occurring within a

LAN by eliminating much of the complexity.

/. Future Work

We are currently incorporating asymmetric protocol design techniques
into MTCP to further offload processing from the mobile device. In an

asymmetrically designed protocol, peer functions are implemented through
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algorithms and procedures that are of substantially different complexity, with the
lower complexity used on the mobile device [9]. We are also working on

improving the efficiency and accuracy of our timer implementation.

In this paper, a simple burst error model was used to study the behavior
of TCP and MTCP under specific situations. We are looking into other error-

models, which characterize a wider range of wireless link operational conditions.

One of the important advantages of the split approach is that it enables
the development of lightweight transport protocols, such as MTCP. However, the
advantages come at the cost of maintaining significant amount of state at the
basestation, making handoffs relatively slow [11]. In this paper, we proposed one
scheme for optimizing the split connection model in a Wireless Local Area
Network configuration. We are currently investigating techniques in which the
split-connection approach, and specifically MTCP, can be designed to reduce
latency involving transfer of state from one basestation to another for the general

Casc.

Finally, it is an interesting research area to investigate how TCP can be
efficiently adapted into networks with multiple wireless hops, such as Mobile
Ad-hoc Networks, or into hybrid networks consisting of a mixture of wireless

and wired links.

8. Summary and Concluding Remarks

In this paper, we have presented the design of a lightweight transport
protocol (MTCP) that improves the end-to-end performance of TCP in networks
with wireless links and also reduces processing requirements on mobile devices.
The protocol is based on the split-connection model, where the connection
between the mobile host and the fixed host is partitioned into the wireless
segment and the wired segment. The key idea behind MTCP is in the recognition
that the wireless segment is, in fact, a single-hop connection. This allows

elimination of some transport-layer functions and simplification of other
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tunctions, leading to a reduced communication load on the wireless segment and

the mobile device.

The design of MTCP also incorporates various methods to efficiently
recover from wireless losses. These techniques are simple to implement and our
performance results indicate that they are very effective in sustaining good
performance even under heavy packet losses. Our experiments have also
highlighted the benefits of removing congestion control mechanisms from the
wireless transport protocol. The elimination of such mechanisms enhances the
effectiveness of the selective acknowledgment methods employed by MTCP. We
have studied the behavior of MTCP and TCP at different data rates and different
packet losses and our results indicate substantial impfovements of MTCP over
TCP in terms of the processing requirements and the overall throughput. It is
important to point out that many of the techniques employed in MTCP, such as
the elimination of the IP layer, enhancements in the error recovery mechanisms

and handoff optimizations, can be applied to other approaches as well.

Finally, we have shown that MTCP can be designed to hide the process
of establishing indirect connection from standard socket calls, such that
applications do not need to be relinked. This addressed our goal of seamlessly

Integrating mobile applications into the Internet.
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