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Abstract. Multicasting is an efficient means of one to many communication and is typically implemented by creating a multicasting
tree. Because of the severe battery power and transmission bandwidth limitations in ad hoc networks, multicast routing can significantly
improve the performance of this type of network. However, due to the frequent and hard-to-predict topological changes of ad hoc networks,
maintenance of a multicasting tree to ensure its availability could be a difficult task. We borrow from the concept of Alternate Path routing,
which has been studied for providing QOS routing, effective congestion control, security, and route failure protection, to propose a scheme
in which a set of multicasting trees is continuously maintained. In our scheme, a tree is used until it fails, at which time it is replaced by
an alternative tree in the set, so that the time between failure of a tree and resumption of multicast routing is minimal. In this paper, we
introduce the basic scheme, termed ITAMAR, which is a framework for efficient multicasting in ad hoc networks. We present a number
of heuristics that could be used in ITAMAR to compute a set of alternate trees. The heuristics are then compared in terms of transmission
cost, improvement in the average time between multicast failures and the probability of usefulness. Simulations show significant gains over
a wide range of network operational conditions. In particular, we show that using alternate trees has the potential of improving mean time
between interruption by 100–600% in a 50 node network (for most multicast group sizes) with small increase in the tree cost and the route
discovery overhead. We show that by renewing the backup tree set, probability of interruptions can be kept at a minimum at all times and
that allowing some overlap among trees in the backup set increases the mean time between interruptions.
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1. Introduction

An ad hoc network consists of a collection of mobile routers,
which are interconnected via wireless links and are free to
move about arbitrarily. This technology has its roots in
DARPA packet radio networks [12]. Research on multi hop
packet-switching radio networks started in the 1970s, with its
initial motivation for military applications. Their attractive-
ness was (and continues to be) based on the ease and speed
of deployment in hard-to-access environments [11]. In recent
years, interest in ad hoc networks has grown with improve-
ments in laptop computer technology, including greater com-
putational power, longer battery life and decreased weight.
Advent of ubiquitous computing and the proliferation of
portable computing devices have further increased the impor-
tance of efficient routing in mobile networks.

One of the most pressing needs for enhanced communi-
cation protocols come from multi point applications, which
involve the one-to-many communication model (i.e., mul-
ticasting operation). Such applications cover a very wide
spectrum, including software distribution, replicated database
update, command and control systems, audio/video confer-
encing, and distributed interactive simulation.

Multicasting is an efficient communication tool for use
in multi-point applications. Many of the proposed multicast
routing protocols, both for the Internet and for ad hoc net-
works, construct trees over which information is transmitted.
Using trees is evidently more efficient than the brute force
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approach of sending the same information from the source
individually to each of the receivers. Another benefit of using
trees is that routing decisions at the intermediate nodes be-
come very simple: a router in a multicast tree that receives
a multicast packet over an “in-tree” interface forwards the
packet over the rest of its “in-tree” interfaces.

Multicast routing algorithms in the Internet [22] can be
classified into three broad categories: (1) Shortest Path Tree
algorithms [2], (2) Minimum Cost Tree algorithms [6,28] and
(3) Constrained Tree algorithms [13,14]. In general, the two
fundamental approaches used in designing multicast routing
are: to minimize the distance (or cost) from the sender to
each receiver individually (shortest path tree algorithms) and
to minimize the overall (total) cost of the multicast tree. Prac-
tical considerations lead to a third category of algorithms,
which try to optimize both constraints using some metric
(minimum cost trees with constrained delays). Majority of
multicast routing protocols in the Internet are based on short-
est path trees, because of their ease of implementation. Also,
they provide minimum delay from sender to receiver, which is
desirable for most real-life multicast applications. However,
in some more recent protocols, like PIM [8] and CBT [1], an
attempt is made to minimize the state stored in the routers.

Multicasting in ad hoc networks is more challenging than
in the Internet, because of the need to optimize the use of sev-
eral resources simultaneously. Firstly, nodes in ad hoc net-
works are battery-power limited. Furthermore, data travels
over the air and wireless resources are scarce. Secondly, there
is no centralized access point or existing infrastructure (like
in the cellular network) to keep track of the node mobility.
Thirdly, the status of communication links between routers is
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a function of their positions, transmission power levels, etc.
The mobility of routers and randomness of other connectiv-
ity factors lead to a network with a potentially unpredictable
and rapidly changing topology. This means that, by the time
reasonable amount of information about the topology of the
network is collected and a tree is computed, it may be only
useful for a very short duration, if at all.

Work on multicast routing in ad hoc networks gained
momentum in the mid 90s. Some early approaches to pro-
vide multicast support in ad hoc networks consisted of
adapting the existing Internet multicasting protocols; for ex-
ample, the Shared Tree Wireless Network Multicast [5] pro-
tocol. Other protocols have been designed specifically for
ad hoc networks; for example, ODMRP [17], AMRIS [30],
CAMP [10], and others [3,4,15,18,25–27,29,31]. ODMRP is
a mesh based, on-demand protocol that uses soft state ap-
proach for maintenance of the message transmission struc-
ture. It exploits robustness of mesh structure to frequent route
failure and gains stability at the expense of bandwidth. The
Core Assisted Mesh Protocol (CAMP) attempts to remedy
this excessive overhead, while still using a mesh by construct-
ing a core for route discovery. AMRIS constructs a shared
delivery tree rooted at a node, with ID-numbers increasing as
they radiate from the source. Local route recovery is made
possible due to this property of ID numbers, hence reducing
the route recovery time and confining route recovery traffic to
the region of link failures.

One common characteristic of most of these approaches is
that they react to a link failure; i.e., they act after a link has
already failed, causing a significant delay in route recovery.
In our work, we have explored the possibility of using a set
of precalculated alternate trees using the information (about
network topology) acquired to calculate the first tree. When
a link breaks, another tree, which does not include that link,
can be immediately utilized. This often leads to significantly
reduced delay, whenever a viable backup tree is available at
the time of failure of the current tree. In particular, and pos-
sibly most importantly, it allows communication of real-time
traffic. This approach is inspired by Alternate Path Routing
(APR), which has been used in the Internet to alleviate con-
gestion and to improve QOS. Incidentally, performance gain
that can be obtained from use of APR in ad hoc networks for
unicast routing has been investigated recently [24].

When the network is reasonably stable, like the Internet,
the gain in efficiency due to multicasting (when compared to
flooding) more than offsets the cost of route discovery and
maintenance. However, as the average velocity of nodes in-
creases, so does the cost of route discovery and maintenance.
This means that for any mobility pattern, there is an aver-
age velocity of nodes beyond which multicasting is no longer
efficient when compared to flooding. This velocity is much
higher for our scheme, when compared to other tree-based
schemes, because our use of the backup trees. We optimize
the cost of the multicast tree along with minimizing the mu-
tual correlation of failure times of each pair of trees under the
constraints of partial knowledge of the network.

2. Goals and essential ideas

The goal of this work is to improve multicasting performance
in ad hoc networks through efficient use of the available
knowledge of the network. The basic idea is that if we are
able to compute multiple backup multicast trees with mini-
mal overlap, we could use them one after another to reduce
the number of service interruptions. This would also improve
the mean time between route discovery cycles for a given in-
terruption rate and hence reduce the control overhead and the
rate of data loss. At the same time, we want to keep the cost
of transmission low (see section 5 for a definition of cost).
The mobility of ad hoc networks requires that we use very lit-
tle time for tree computation and hence it is important for the
algorithms to be of low complexity.

2.1. Dependence of a set of trees

This method of using one tree after another will be effective if
the trees to be used as backup last for a significant amount of
time after the previous trees fail. This means that the failure
times of the trees should be independent of one another. If
we assume that nodes move independently of one another,
then having no common nodes (and hence no common edges)
would make the trees fail independently of one another.

However, in the case of ad hoc networks, where the aver-
age degree of a node is not high, we expect not to find com-
pletely independent trees in many cases. Hence the schemes
we develop should concentrate on minimizing the dependence
between the failure times. The dependence of a pair of trees is
defined as the correlation of the failure times of the two trees.
Given a pair of trees, their dependence relies on the structure
of each of the trees, apart from the number of common nodes
and edges.

Dependence of a pair of trees is a complicated function
of the mobility pattern of the nodes. Hence a practical way
to compute independent enough trees would be to discourage
common edges and nodes among the trees. Intuition suggests
that having a common edge is much worse (causes more de-
pendence in a pair of trees) than having a common node. It is
important to understand how much dependence is caused by
a common node, when compared to a common edge. This is
done here by a probabilistic analysis to find the correlation of
the failure times of two edges sharing a common node. For
the sake of this analysis, we use the following assumptions
about the network in question:

• nodes are distributed uniformly over the area of the net-
work;

• direction of motion of each node is uniformly distributed
across all angles, is independent of other nodes, and does
not change after initial selection; and

• the velocity is distributed uniformly between 0 and an up-
per limit (say V ) and does not change after initial selec-
tion.

The details of the analysis are given in appendix. The fol-
lowing are the main conclusions of the analysis:
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• If all the nodes move with the same constant velocity, as
we would expect when most users are walking or driving
along roads or highways, having a common node does not
cause any dependence between two trees.

• If the nodes’ velocity is uniformly distributed over
[0, 15 m/s]1 and the range of transmission is 76.5 m,2 we
find that the correlation between the failure times of two
adjacent links is 0.172. Hence, under this kind of mo-
bility pattern, it is important to minimize common nodes
between trees in addition to minimizing common edges, in
order to keep the failure times as independent as possible.

2.2. Dependence vs. the lifetime of the trees’ set

As stated before, the goal is to compute trees in such a manner
as to maximize the time until the last tree fails. The total
time for which a system lasts depends on the individual failure
times of the trees used and their independence. If a tree has
greater number of links, it is likely to fail faster. On the other
hand, if trees have to be maximally independent, they might
be less efficient and contain more links, as compared with the
case in which some overlap is allowed. Hence the trees that
we compute should not be so independent, as to make them
fail very fast and hence reduce the total system time. This is
an important tradeoff and is discussed in section 6.4.

2.3. Mechanism to replace trees

Once we compute a set of backup trees and start multicasting,
we need to replenish the backup tree set in such a way as to
maintain some quality of service, i.e., to maintain the proba-
bility of interruptions below some threshold. This means that
we need to compute new trees by the time the probability of
failure of the current set of trees rises above a given thresh-
old. If the sender has an estimate of the time when this will
happen, it could initiate the route discovery process at such a
time, T , as to allow for the route discovery and tree computa-
tion to be completed in time. In what follows, we propose one
way to estimate T given the mobility pattern of the nodes.

It is possible to estimate the probability of interruption oc-
curring before given time or after failure of the first n trees,
if we have knowledge of the mobility pattern of the nodes.
This estimation is illustrated (via simulations) in section 6.5.
If the estimation for probability is too high, the scheme will
resemble a link state multicast protocol, incurring extraneous
cost, while if it is too low it, will be too reactive, leading to
interruption of the multicasting service.

Let average time for route discovery be TRD and let the
average time for computing the set of n trees for a multicast
group size m be Tm,n. Let Fn,m(p) be the time, since failure
of first n trees, at which probability that all remaining trees
will fail increases above p (finding this function is illustrated
in section 6.5). LetPT be the threshold below which we desire
to keep probability of failure at all times.

1 Roughly, the speed of 35 mph.
2 Roughly, the range of a wireless LAN interface.

Initially, set the estimate of T = F0,m(PT) − TRD − Tm,n.
At the time when nth tree fails, update estimate of T =
Fn,m(PT) − TRD − Tm,n.

At time T after the most recent tree failure (or previous
route discovery, if no tree has failed since then), another cycle
of route discovery should be started. If at the time of failure of
the nth tree, T is estimated to be negative, new route discov-
ery cycle should be started immediately. Thus the probability
of interruption to multicast communication is not allowed to
rise above PT, hence maintaining desired level of quality of
service.

2.4. Incorporating ITAMAR into existing routing protocols

ITAMAR is a way of computing a set of trees, such that they
are independent. Hence it can be easily used on top of a suit-
able unicast layer, which provides route discovery. For exam-
ple, consider the Dynamic Source Routing (DSR) protocol, a
unicast protocol for ad hoc networks. In this protocol, in re-
sponse to a single route discovery as well as through routing
information from other packets overheard, a node may learn
and cache multiple routes to any destination. This way, when
one of the paths fails, the sender uses another cached route.
Knowledge of network obtained from route discovery can be
increased by using Diversity Injection [23]. Also, once the
sender discovers paths to all receivers, one of the algorithms
we propose can be used to compute and maintain several mul-
ticast backup trees. As a matter of fact, the mechanism re-
quired to switch between trees in the event of link failure is
already available in DSR.

3. Network model

The ad hoc network is represented via a graph (V ,E), where
V is the set of nodes and E is the set of edges. The network
is assumed to be two dimensional and the mobile hosts are
represented by nodes of the graph. An edge between any two
nodes is present whenever the two nodes are able to commu-
nicate directly with one another. Such nodes are sometimes
referred to as neighbors. The total number of edges in the
graph is denoted by L, i.e., L = ‖E‖ and the sender node
is denoted by O (signifying that the node is the origin of the
data). V 1 (V 1 ⊆ V ) is the set of nodes in the multicast re-
ceiver group.

We assume that O has some knowledge of the graph topol-
ogy from route discovery. E2 is the set of all edges in the
graph that exist according to O’s current view of the network,
and thus (V 2, E2) are the nodes and edges that belong to all
these paths. The goal of this study is to find methods of com-
puting a set of trees T 1, T 2, T 3, . . . from O to V 1 in this
graph G = (V 2, E2), while minimizing the dependence of
their failure times. As is usually the case with multicast trees,
T 1 and T 2 are directed (though the links of the graph are as-
sumed to be bi-directional); i.e., associated with each link i

there is a node Oi at which the link begins, and a node Di at
which it ends – the origin and the destination of the link.
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In the schemes described below, the set of all edges in the
graph along with a quantity called cost of each edge is called
the cost function of the graph. We extensively use Dijkstra
SPF algorithm, which takes the cost function and incidence
matrix of the graph as input and computes the shortest path
tree from a given source to the given set of receivers.

4. Schemes for computing maximally independent trees

As explained before, the goal of this study is to develop
schemes to efficiently compute a set of trees, whose failure
times are minimally correlated. Under the assumption that
mobility of a node is independent of other nodes, this condi-
tion translates to the trees having minimum number of com-
mon nodes and edges; with common edges being more unde-
sirable than common nodes (from analysis in appendix).

There are two ways of using the backup tree set in the event
of a link failure: (1) replace the whole tree being used cur-
rently by a backup tree, if available, or (2) determine which
of the receivers are disconnected because of this link failure
and replace or augment the paths to those nodes by backup
paths.

4.1. Computing backup trees

Three ways of finding sets of disjoint multicasting trees from
a sender to a group of receivers have been studied in our work.
The trees to be found are referred to as T 1, T 2, and so on. T 1
is intended to be used at the start and the others are to be used
as backup.

4.1.1. Matroid Intersection Algorithm (MIA)
The Matroid Intersection Algorithm (MIA) [7,9,16] can be
used to find two maximally independent spanning trees on
any given graph (i.e., spanning trees with minimum possible
number of common edges), such that total cost of the two
spanning trees is minimized. The two obtained spanning trees
are called J1 and J2. Given a sender, call it the source node,
and a set of receivers, two multicasting trees T 1 and T 2 are
obtained on graphs J1 and J2, respectively, using the Dijkstra
SPF algorithm.

Matroids and Spanning Trees. Let E be a finite set and I be
a family of subsets of E, called independent sets. A subset
system M = (E, I) (the finite set E together with the col-
lection I of subsets of E) is called a matroid if the following
axioms are satisfied:

1. ∅ ∈ I .

2. If J ′ ⊆ J ∈ I , then J ′ ∈ I .

3. For every A ⊆ E, every maximal independent subset of A
has the same cardinality.

Example 1. Let E be the set of all edges in a graph G and
let I be the family of subsets of E satisfying the condition

Figure 1. Example of a simple graph.

that none of them contains a circuit of the graph. Hence in-
dependent subsets of this graph are all subsets of trees in this
graph.

Example 2. Let E be the set of all edges in graphs G and G′
(figure 1), where G′ is a copy of G (edge e′

1 is a copy of e1,
and so on). Two matroids, which can be defined on this set,
are:

1. M1 = (E, I1), where an “independent” set is a union of
subsets of trees of G and G′. For example, an indepen-
dent set in the collection I1 could be {e1, e2, e3, e4, e

′
5, e

′
6,

e′
7, e

′
2} and a set which would not belong to I2 would be

{e1, e2, e7, e
′
8} since it has a circuit in it.

2. M2 = (E, I2), where an “independent” set is one which
does not have both copies of any of the edges. An example
of an independent set in I2 would be {e1, e

′
3, e

′
7} and a set

which would not belong to I2 would be {e1, e
′
3, e

′
1} since it

contains both copies of e1.

Hence if a subset of E belongs to both matroids defined
above, it will have to be a union of 2 trees, one in G and the
other in G′. Moreover, the copy of an edge that belongs to the
tree in G should not belong to the tree in G′. This observa-
tion indicates that when two edge disjoint trees are possible
in a graph G, the set belonging to both the collections I1 and
I2 and having the maximum possible cardinality will be the
union of two disjoint spanning trees. Hence the problem of
finding two independent forests in the graph can be thought
of as finding a maximum cardinality common independent set
of the two matroids defined above.

The Matroid Intersection Algorithm (MIA). In this algo-
rithm, we start off with a set J which belongs to both I1
and I2, say the empty set (refer to example 2 above for the
definition of I1 and I2).

Then we repeatedly increase the size of J with the help
of an auxiliary directed graph G = G(M1,M2, J,w1, w2)

constructed using some rules. The variable w1 and w2 deter-
mine the weight splitting. These are obtained from the weight
splitting variables of the previous step in the algorithm, using
the rules of the algorithm and initially starting with w1 = w

and w2 = 0.
G has a node set E ∪ {r, s} and arcs:

• es for every e ∈ E \ J such that J ∪ {e} ∈ I1;
• re for every e ∈ E \ J such that J ∪ {e} ∈ I2;
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• ef for every e ∈ E \ J, f ∈ J such that J ∪ {e} /∈ I1,

(J ∪ {e}) \ {f } ∈ I1;
• f e for every e ∈ E \ J, f ∈ J such that J ∪ {e} /∈ I2,

(J ∪ {e}) \ {f } ∈ I2.

The costs of arcs of G, puv , are defined by (ci0 denotes
max{wi

e: e /∈ J, J ∪ {e} ∈ Ii}):
• pes = w1

0 − w1
e for each M1 arc es with e /∈ J ;

• pes = w2
0 − w2

e for each M2 arc re with e /∈ J ;

• pes = −w1
e + w1

f for each M1 arc ef with e /∈ J and
f ∈ J ;

• pes = −w2
e + w2

f for each M2 arc ef with e /∈ J and
f ∈ J .

If there exists an (r, s) dipath in G, then J is not maximum;
in fact, if r, e1, f1, . . . , em, fm, em+1, s is the node sequence
of a chordless (r, s)-dipath, then J�{e1, f1, . . . , em, fm,

em+1} ∈ I1 ∩ I2. If there exists no (r, s) dipath in G, then
J is maximum (see [7] for a proof). J�{e1, f1, . . . , em, fm,

em+1} is defined as J ∪ {e1}\{f1}\ · · · \{fm} ∪ {em+1}.

Weighted Matroid Intersection Algorithm.

Set k = 0;
Set Jk = 0;
Let w1 = w,w2 = 0;
While Jk is neither M1-basis nor an M2-basis

{
Construct G(M1,M2, Jk,w1, w2);
Find least weight directed path from r to v

in G of cost dv for each v

For all v ∈ E, let σv = min(dv, ds) and
replace w1

v by w1
v − σv , w2

v by w2
v − σv

Construct G(M1,M2, Jk,w1, w2);
If there is an (r, s)-dipath in G

{
Find a least weight (r, s) dipath P having

as few arcs as possible;
Augment Jk on P to obtain Jk+1
Replace k by k + 1
}

else
{Choose J = Jp and stop}

}

In the above algorithm, Dijkstra’s SPF algorithm could be
used to find the minimum weight paths.

Maximal vs. maximum. When it is not possible to have two
completely edge-disjoint spanning trees, the above algorithm
gives two trees edge disjoint trees with maximal cardinality
(These might not be spanning trees, as adding any more edges
might require overlap between the two trees.) Hence now to
complete each tree, we arrange the links in the other tree in
ascending order of their costs and keep adding links to the first
tree (omitting the ones that would form circuits) until the first

tree is complete and vice versa. Note that multicast trees gen-
erated in this way may not have minimum possible number of
common edges, though the spanning trees do have this prop-
erty. Also, note that this scheme can be used only to obtain
one backup tree, because the problem of finding intersection
of 3 matroids is NP-hard [21].

Example. Consider the graph G in figure 1. The problem is
to find two disjoint spanning trees. Firstly we need to verify
that this is possible. This is easily done by trying different
combinations of 4 edges each; we need four edges to form a
tree for a graph with 4 nodes. One example would be the two
following trees: {e1, e3, e5, e7} and {e2, e4, e6, e8}.

The effectiveness of arriving at a pair of disjoint trees us-
ing the Matroid Intersection Algorithm can be seen by going
through the process for this simple graph. Suppose we start
by building just a tree T1 first and then removing links of T1
from the set of edges and then trying to build another tree T2.
We would get the following two sets (figure 3):

T1 = {e1, e2, e3, e4},
T2 = {e5, e6, e7}.

Adding e′
8 to T2 will create a circuit and hence is not ac-

ceptable. Now we would like to move some edges from T1 to
T2 and add some new ones to T1, so that it still remains a tree.

Constructing an auxiliary digraphG (see figure 2) helps us
to find the edges which are to be removed and those which are
to be added. In the terminology used above:

• E = {e1, . . . , e8, e
′
1, . . . , e

′
8}.

• Current J = {e1, e2, e3, e4, e
′
5, e

′
6, e

′
7}.

• G has the node set E ∪ {r, s}. e ∈ S \ J and f ∈ J . Its
edges are:

Figure 2. Non-maximal trees obtained by simple enumeration (non-
maximal J ).

Figure 3. A portion of the sample auxiliary digraph.
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– from rule 1, edges of the form es: e′
1s, e

′
2s, e

′
3s since

e′
1, e

′
2 and e′

3 combined with T2 form a tree; i.e.,
J ∪ {e} ∈ I1;

– from rule 2, edges of the form re: re′
8, re8; J ∪{e} ∈ I2;

– from rule 3, edges of the form ef :

e5e4, e5e1, e5e2, e6e1, e6e3, e6e4, e7e1, e7e2,

e8e2, e8e3, e
′
4e

′
5, e

′
4e

′
7, e

′
8e

′
5, e

′
8e

′
6;

J ∪ {e} /∈ I1, (J ∪ {e}) \ {f } ∈ I1;
– from rule 4, edges of the form fe:

e1e
′
1, e2e

′
2, e3e

′
3, e4e

′
4, e

′
5e5, e

′
6e6, e

′
7e7;

J ∪ {e} /∈ I2, (J ∪ {e}) \ {f } ∈ I2.

Now we need to find an (r, s) dipath in this graph. One
of the paths is P = {r, e′

8, e
′
5, e5, e1, e

′
1}. Doing J�P we

obtain the new J as {e2, e3, e4, e5, e
′
6, e

′
7, e

′
1, e

′
8}, which is a

set of two disjoint spanning trees (figure 4) and hence we are
done. (As mentioned before J�{e1, f1, . . . , em, fm, em+1} is
defined as J ∪ {e1}\{f1}\ · · · \{fm} ∪ {em+1}.)

4.1.2. Shortest Path Heuristic (SPTH)
As described in section 3, the set of all edges in the graph
along with a quantity called cost of each edge is called the
cost function of the graph. The Dijkstra SPF algorithm takes
the cost function and incidence matrix of the graph as inputs
and computes the shortest path tree from a given source to the
given set of receivers.

In the Shortest Path Heuristic (SPTH) scheme, the first
tree, T 1, is obtained using the Dijkstra SPF algorithm; i.e., T 1
is the shortest path tree from the source to the set of receivers.
The cost function of the graph is modified after computing
the first tree in the following manner: the costs associated
with edges which are present in T 1 are now increased by an
amount called the Link_ Weight and the costs associated with
edges which share a common node with T 1 are now increased
by an amount called the Node_Weight. T 2 is computed using
the original incidence matrix of the graph and this new costs.
Since Dijkstra SPF algorithm tries to use edges of the low-
est cost, this way of modifying the costs discourages use of
the edges already used in T 1 or the edges with a common
node with T 1 (the extent of the discouragement depends on
the values of the parameters Link_Weight and Node_Weight).
Computation of subsequent backup trees is carried out in a

Figure 4. Calculated spanning trees (maximal J ).

manner similar to the computation of the second tree, by dis-
couraging the use of links and nodes already used in previous
trees by further modification of costs. Hence use of nodes
present in both trees is discouraged more than nodes used in
just one of them.

Shortest Path Heuristic (SPTH) Algorithm.

T 1 = Dijkstra_Algorithm(G,Cost, Source,Receivers)
Initialize Cost1 to be equal to Cost for all edges in G

For each edge i in T 1
{Cost1i = Costi + Link_Weight}

For each node in T 1
{
For each link in G which is incident on this
node in T 1

{Cost1i = Costi + Node_Weight}
}

T 2 = Dijkstra_Algorithm(G,Cost1, Source,Receivers)

4.1.3. Low Cost Heuristic (LCH)
The Low Cost Heuristic (LCH) algorithm is designed to re-
duce the total number of transmissions in the multicast trees.
The idea is that a single channel wireless network is a broad-
cast medium, i.e., when a node transmits a packet, all of its
neighboring nodes can receive it. Hence to minimize re-
sources used, we should reduce the total number of trans-
missions required to send data over the multicast tree. To
achieve this objective, in Low Cost Heuristic each of the trees
are constructed path by path. Computation of a tree given an
initial cost function is done in the following way: A path to
a node is computed, the cost function is modified, a path to
next node is computed and added to the partial tree already
constructed, and so on. The modification of cost function in
between computing paths to each receiver is done in such a
way as to encourage use of minimum number of additional
transmissions; i.e., if a link already carries the multicast data,
its transmission cost is decreased to a very small value. There
will be several links outside the current partial tree with this
property, because of the broadcast nature of ad hoc networks.

The cost function taken at the beginning of computation of
second tree is a modified version of the original cost function
of the tree. This is done in order to discourage use of links and
nodes already used in prior trees; for details of modification
look at description in Shortest Path Heuristic. Computation of
subsequent backup trees is carried out by discouraging use of
links and nodes already used in previous trees by modification
of the cost function.

Low Cost Heuristic Algorithm.

Initialize Cost′ to Cost
For each receiver j

{
Pj = Dijkstra_Algorithm(G,Cost′, Source, j)
For each edge in P1 ⊕ · · · ⊕ Pj

{Cost′i = 0}
For each node in P1 ⊕ · · · ⊕ Pj
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{
For each link in G which is incident on
this node in P1 ⊕ · · · ⊕ Pj

{Cost′i = ε}
}

}
T 1 = P1 ⊕ P2 ⊕ · · · ⊕ PN

Initialize Cost1 to Cost
For each edge i in T 1

{Cost1i = Costi + Link_Weight}
For each node in T 1

{
For each link in G which is incident on this
node in T 1

{c1i = ci + Node_Weight}
}

Initialize Cost′ to Cost1
For each receiver j

{
P ′
j = Dijkstra_Algorithm(G,Cost′, Source, j)

For each edge in P ′
1 ⊕ · · · ⊕ P ′

j

{Cost1i = 0}
For each node in P ′

1 ⊕ · · · ⊕ P ′
j

{
For each link in G which is incident on
this node in P ′

1 ⊕ · · · ⊕ P ′
j

{c1i = ε}
}

}
T 2 = P ′

1 ⊕ P ′
2 ⊕ · · · ⊕ P ′

N

4.2. Computing backup paths

The Independent Path Algorithm (IPA) computes trees such
that paths to each receiver in these trees are disjoint, while
allowing paths to different receivers to overlap within trees.
A lot of work has been done on utilizing path independent
trees (trees in which paths to each receiver are independent of
one another) in the context of Alternate Path Routing. Using
the Independent Path Algorithm we investigate the usefulness
of this concept in ad hoc network multicasting.

The problem with using trees as backup is that even if just
one link in the tree fails, we need to replace the whole tree by
another, when most of the first tree may, in fact, be still intact.
Instead, in the Independent Path Algorithm, we start off with
a tree and then for each receiver, have a set of backup paths,
which are maximally disjoint from one another and from the
path to the receiver in the first tree.

The first tree can be computed using either Dijkstra SPF
algorithm or using the Low Cost Heuristic (if cost is critical).
For each receiver, a path independent of the original path to
the node in the first tree is computed by modifying the cost
function (as is done in the Shortest Path Heuristic) in order to
discourage use of already used nodes and edges.

This method differs from the backup tree methods not only
in that it replaces only the damaged part of the tree (local
repair), but also in that the backup path to any given receiver

can overlap with the rest of the first tree (apart from what
is being used to transmit data to that receiver). It is more
likely to find paths independent from a given path rather than
one independent from a given tree. As in the previous two
methods, computation of subsequent backup trees is carried
out (similar to what is done in the case of the second tree)
by discouraging the use of links and nodes already used in
previous trees through modifying the cost function.

Independent Path Algorithm.

T 1 = Dijkstra_Algorithm(G,Cost, Source,Receivers)
Initialize Cost1 to equal Cost
For receiver node k

{
For link i in path (in T 1) node k

{Cost1i = Costi + Link_Weight}
For each node in path (in T 1) node k

{
For each link in G which is incident on
this node in T 1

{c1i = ci + Node_Weight}
}
Backup Path to k is

Dijkstra_Algorithm(G,Cost1, Source, k)
}

5. Performance comparison critera

5.1. Cost

A number, Cost ci , is associated with each link i in the graph.
As in traditional networks, it could be chosen to be inversely
proportional to the link capacity, proportional to the current
load on the link, the delay of the link, etc, or some combina-
tion of these parameters. Hence it changes with the changes
in the network, such as congestion. For example, the Cost of a
failed link is infinite. The choice depends on what one would
like to minimize while communicating information in a given
multicast group.

The Cost of a tree is defined as the sum of Costs of all the
links in the tree. The Cost of a set of trees is defined as the
sum of Costs of all the trees in the set.

For a given multicast group size, the average Cost of a
scheme is the weighted average of the Cost of all the trees be-
ing computed, weighted by the average amount of time each
of the trees is being used; i.e., it is

Average_Cost =
∑n

i=1 Costtreei · Ttreei∑n
i=1 Ttreei

.

5.2. Dcost

The idea behind defining Dcost is that in a single channel
wireless network, the MAC layer is naturally of broadcast
type. In other words, when a node transmits, all its neigh-
bors are able to listen to it. Hence the cost of transmission of
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information to all neighbors from one node is the same as the
cost of transmission to the most “expensive” neighbor.

To find Dcost, we divide up the tree graph T into many
trees T j with the following property: if an edge i belongs
to T j for some j , all edges in T with the same origin node
as i (denoted by Oi) also belong to T j and all other edges
that belong to T j have the origin node Oi . With each T j , we
associate a number dcj which is {max ci : i ∈ T j }. The Dcost
of the tree T is then defined as

∑
j dcj . The Dcost of a set of

trees is defined as the sum of all Dcosts of the trees in the set.
Just as in the case of the Cost, the average Dcost of a

scheme is the weighted average of the Dcost of all the trees
being computed, weighted by the average amount of time
each of the trees is being used; i.e., it is

Average_Dcost =
∑n

i=1 Dcosttreei · Ttreei∑n
i=1 Ttreei

.

5.3. Time of failure or mean time between interruptions

The time of failure of a tree is the minimum time by which at
least one of the links of the tree fails and the time of failure of
the system is the minimum time at which all paths to at least
one of the multicast receivers fail in the first and in all the
backup trees.

We use the terms system time and the mean time between
interruptions, interchangeably, since an interruption occurs
whenever there is a failure of all the trees triggering re-
computation of trees.

5.4. Probability of usefulness

The probability that any of the trees will be used is defined
as the probability of usefulness. It is that fraction of the total
number of trials for which failure time of the system is greater
than failure time of the first tree.

5.5. Increase in mean time between interruptions

The increase in mean time between interruptions due to
backup is Tsystem − Ttree1. Here Tsystem is the time of fail-
ure of the system and Ttree1 is the time of failure of the first
tree.

6. Simulation results and discussion

6.1. The simulation environment

N nodes are uniformly distributed over a square area of size
L meters by L meters. Each node can exchange information
with any other node within R meters of itself. At time 0, with
probability 0.5 they pick a destination point (which is also
uniformly distributed in the area) and start moving in that di-
rection with velocity V (m/s) and with probability 0.5 they
wait in their positions for a random amount of time (uniformly
distributed over [0, 5 sec]) before choosing a destination. Af-
ter reaching their destination point, they stop with probability

0.5 in their positions for a random amount of time (uniformly
distributed over [0, 5 sec]), choose another destination point
and start moving in the new direction with probability 0.5.

The nodes were allowed to move according to the above
mobility model until the multicast tree and all backups had
failed and the failure times of various schemes were recorded.
The data presented here are averaged over 500 different trees
(each under 25 realizations of the mobility pattern) for each
multicast group size. In all the graphs in this section, SPTH
refers to the Shortest Path Tree Heuristic, LCH refers to the
Low Cost Heuristic, IPA refers to the Independent Path Algo-
rithm, and MIA refers to the Matroid Intersection Algorithm.

6.2. Results for one backup tree

Simulation results in this section are for a 50 node network in
a square area of size 700 m by 700 m with nodes moving at
40 m/s and with the transmission range of 140 m.

Figure 5 shows that the average Cost of trees used is not
very different for the various schemes. However, from fig-
ure 6 we see that the average number of transmissions re-

Figure 5. Average Cost (one backup tree).

Figure 6. Average Dcost (one backup tree).
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quired per packet, the Dcost, is significantly higher for the
Matroid Intersection Algorithm, while the Dcost curves for
other three schemes are relatively bunched together. This is
because of the fact that the Matroid Intersection Algorithm,
in the process of making the two spanning trees edge dis-
joint, causes links incident on any given node to be distrib-
uted among the two spanning trees. Hence, there is a smaller
number of links incident on any given node in each of these
spanning trees, when compared to the whole network. Be-
cause of this, each multicast tree (which is computed on these
spanning trees as described in section 4.1.1) has smaller num-
ber of outgoing links to choose from at each node and hence
has greater number of transmissions.

If we were using just one tree, we would expect that the
mean time between interruptions be reduced with an increase
in multicast group size. This is so, since increase in multi-
cast group size increases the size of the tree and hence in-
creases the probability that at least one of the links fails by
any given time. However, while using backups, the total time
for which the system lasts may increase with an increase in
multicast group size due to the increase in probability of use-
fulness. This is because even though the first tree fails faster,
the backup trees are available more often, hence increasing
the total time, on an average, for which the the set of trees
lasts. The effect of these two factors can be seen in fig-
ures 7 and 8. From these figures, we can rank the schemes
based on the increase in the mean time between interrup-
tions, because of the backup trees, in the following order IPA,
MIA, LCH and SPTH, with the IPA scheme performing best.
The two trees in LCH are expected to have greater indepen-
dence than the SPTH, because by encouraging several links
from one node to be included in the first tree, we make the
tree occupy a smaller “area”, hence leaving greater space for
the other tree to be formed without having to overlap with the
first one.

MIA ensures that the trees are almost edge disjoint, by
computing the two trees simultaneously, while the SPTH and
LCH compute the first tree before the second one and hence
losing out on the possibility of combined optimization. IPA

Figure 7. Time of failure of the system (one backup tree).

lasts much longer than other schemes, especially for larger
multicast groups, because of the fact that it includes local re-
pair. Firstly, since independence means that the two paths
to each receiver are independent of one another, the average
dependence does not increase much with the size of the multi-
cast group like the other schemes. Secondly, since we do local
repair, if one part of first tree and one part of second tree have
failed, the system can still be working by some combination
of the two trees, hence increasing the system time.

Probability of usefulness decreases with an increase in de-
pendence between the two trees. For the tree based algo-
rithms, dependence between the two trees increases with in-
crease in multicast group size, because each tree occupies
more “area”. On the other hand, as the size of a tree increases,
its failure time decreases. For this reason, given that first tree
fails, it is very likely that the rest of the network is still intact
and hence the second tree is intact with higher probability.
These opposing factors can be seen at play in figure 9 espe-
cially for the SPTH curve. Despite the above argument, the
LCH curve does not change much, because the two factors
balance each other out. In the case of MIA, the two trees

Figure 8. Increase in mean time between interruptions (one backup tree).

Figure 9. Probability of usefulness (one backup tree).
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Table 1
Increase in mean time between interruptions due to nth backup tree.

Number of SPTH LCH IPA
backup trees

1 0.100 s 0.142 s 0.297 s
2 0.058 s 0.081 s 0.105 s
3 0.056 s 0.079 s 0.132 s

are almost edge disjoint, irrespective of the size of the group
and hence only the second factor dominates. Same is the case
with IPA, because, as described in the previous paragraph, its
dependence does not increase much with group size.

Results for two and three backup trees follow the same
trends for various parameters as in the one tree backup case,
but with greater improvements in terms of probability and
mean time between interruptions, in terms of probability of
usefulness, and in terms of higher Cost and Dcost of the trees.

6.3. Improvements as a function of number of backups

This section presents the performance of the algorithms as a
function of the number of backup trees computed. Table 1
contains the increase in mean time between interruptions (av-
eraged over multicast group sizes) as a function of the number
of backups for various schemes. We see that the IPA results
in greater increase in mean time between interruptions than
the other two schemes irrespectively of the number of backup
trees used. Surprisingly, we also observe that, for IPA, the im-
provement in time due to third backup tree is greater than the
improvement due to second backup tree. This is also true for
LCH and SPTH for low multicast group sizes, where depen-
dence between two trees is still low.

To understand how this might be possible, consider 4 in-
dependent, identically distributed random variables in time:
T b1, T b2, T b3, T b4. They could for examples of the time
of failure of 4 paths from a sender to a receiver, say P1, P2,
P3 and P4. Let the cumulative distribution function (cdf) of
T bi be F(t). Then, the cdf of time by which two paths fail is
F 2(t) (P {max(T b1, T b2) � t} = P {T b1 � t, T b2 � t} =
P {T b1 � t} · P {T b2 � t} = F(t) · F(t)) and so on. Hence
mean time of failure with i backup trees is:

∫
t

t
d(F (t))

dt

d(F i+1(t))

dt
dt .

Hence, if Ii denotes the improvement due to ith backup,
the improvement due to the third backup minus the improve-
ment due to second backup is:

I3 − I2 =
∫
t

t
d(F (t))

dt

(
2F(t) + 4F 3(t) − 6F 2(t)

)
dt .

Of the terms in the integral t , dt , and d(F (t)/dt are all pos-
itive, while 2F(t) + 4F 3(t) − 6F 2(t) is positive for F(t) ∈
[0, 0.5] and negative for F(t) ∈ [0.5, 1]. Hence it is possible
for the improvement due to third backup to be better than im-
provement due to second backup. In fact, I3 − I2 is positive

Table 2
Increase in probability of usefulness due to nth backup tree.

Number of SPTH LCH IPA
backup trees

1 0.37 0.54 0.77
2 0.07 0.12 0.12
3 0.03 0.05 0.03

for the cdf for failure time of a single link calculated theoret-
ically in appendix.

From table 2, we observe that the increase in probability
of usefulness decreases with an increase in number of backup
trees. This is an expected result, because with an increase
in n, the probability that at least one first n−1 backup trees is
available along with the nth backup tree at the time of failure
of first tree increases.

6.4. Tradeoff between dependence of a pair of trees and
mean time between interruptions

This section illustrates that maximum independence among
the trees does not maximize mean time between interruptions
(explanation has been provided in section 2.2). Results in this
section are based on the Independent Path Algorithm and a
30-node network with node degree of 6 and one backup tree.
The Link_Weight and Node_Weight parameters (defined in
section 4), which regulate the amount of dependence, were set
equal to each other and varied over the range [1, 30]. The ef-
fect on the number of common edges, Dcost of trees, and the
mean time between interruptions is shown in figures 10–12.
We see that an increase in Link_Weight/Node_Weight in-
creases the average Dcost of trees monotonically and de-
creases the number of common edges (and hence dependence)
monotonically. However, we see that the mean time between
interruptions increases first, until Link_Weight/Node_Weight
value of 2, and then decreases slightly to reach a saturation
level shown by the circles. This illustrates the tradeoff be-
tween dependence of a pair of trees and the total time for
which at least one of them lasts (section 2.2). Hence the

Figure 10. Ratio of number of common edges to average of the number of
edges in the two trees.
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Figure 11. Average Dcost of trees as a function of Link_Weight.

Figure 12. Mean time between interruption as a function of Link_Weight.

ITAMAR framework performs best when some dependence
is allowed among the set of trees, by choosing a relatively
moderate value for the Link_Weight and the Node_Weight pa-
rameters in tree computation algorithms.

6.5. Replacing trees

Results in this section are for a 30-node network with node
degree of 6. The curves shown are for multicast group size
of 1, 5, 10, 15, 20, 25, and 29. To implement the scheme,
the time by which route discovery has to be redone in or-
der to maintain a low probability of interruptions has to be
determined. Figure 13 shows the probability of interruption
occurring after any given time t measured from most recent
route discovery cycle (F0,m referred to in section 2.3). For
example, if we want the probability of interruption to be be-
low 30% at all times, initial estimate of the time by which
we have to redo the route discovery is 0.07 seconds for group
size 1 and 0.17 seconds for group size 29 (figure 13). Fig-
ures 14 and 15 show the probability of interruption occurring
after any given time, measured from the failure time of Tree 1
and Tree 2, respectively. For the threshold of 30% for proba-

Figure 13. Probability that the multicast tree set has not failed by time t since
route discovery.

Figure 14. Probability that the multicast tree set has not failed by time t since
failure of first tree.

Figure 15. Probability that the multicast tree set has not failed by time t since
failure of second tree.
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Figure 16. Percentage increase in mean time between interruptions as a func-
tion of speed.

bility of interruption, updated estimate of the time by which to
redo route discovery at the time of failure of first tree might be
greater than 0 for many multicast group sizes, i.e., we might
be able to wait some more time before starting route discovery
(since several curves are below 30% near t = 0). However,
at the time of failure of the second tree, we will have to start
route discovery immediately, if we have not already done so,
since probability of interruption is above 30% for t = 0, for
all multicast group sizes (figure 15).

6.6. Sensitivity analysis

6.6.1. The effect of speed of nodes
Simulations for this set of results were done on a 30-node
network with a node range of 76.5 m and node degree 6. To
study the effect of the speed, the speed of mobiles was set at
values 1.8 m/s (walking speed), 18 m/s (speed of a car), and
40 m/s (high speed). The results showed a small decrease in
probability of usefulness with increase in speed. However, the
percentage increase in the mean time between interruptions
was almost the same for all three speeds (figure 16).

6.6.2. The effect of node degree
Simulations for this set of results were done on a 30-node
network with a node range of 76.5 m and speed of 18 m/s.
Average node degree of the network was set at 4, 6, and 8. We
saw a decrease in the average Cost of trees, which is expected,
since an increase in node degree means that there are more
outgoing links from each node and hence Dcost will be lower.
Also, since there are more links in the network but the same
number of nodes, greater degree of independence is possible
between nodes and hence we saw an increase in percentage
increase in mean time between interruptions (figure 17).

6.6.3. The effect of the network size
The number of nodes in the network was set to 30, 40, and
50 nodes. The node degree was maintained at 6, the range of
nodes at 140 m, and the speed at 40 m/s. We found that the av-
erage Cost of trees increases with the number of nodes (since

Figure 17. Percentage increase in mean time between interruptions as a func-
tion of node degree.

Figure 18. Percentage increase in mean time between interruptions as a func-
tion of total number of nodes in the network.

average number of links between any two nodes increases),
while the average Dcost decreases. However, the probabil-
ity of usefulness does not change much, while the percentage
of the increase in mean time between interruptions increases
with the number of nodes (figure 18).

7. Conclusions

Several heuristic schemes for constructing multiple “indepen-
dent” trees were developed, simulated, and their performance
figures were compared in various network conditions. We
found that the Independent Path Algorithm gives much bet-
ter performance than the other schemes, with a very small
increase in transmission cost of the multicast trees. We have
shown through simulations that in a typical ad hoc network
it is possible to have working backup infrastructure with high
probability, without much extra expense in terms of the cost of
the trees, the computation complexity, or data collection over-
head. Existence of an optimal level of independence that al-
lows for maximum mean time between interruptions has been
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illustrated through simulation. The probability of backup be-
ing useful is 0.9 for just 2 backup trees computed with no
extra control overhead and mean time between interruptions
is increased by 100–600% (for most multicast group sizes)
through the use of 3 backup trees in a 50-node network. The
simulation results also indicate that, contrary to intuition, the
improvement obtained due to additional trees does not always
decrease with an increase in number of backup trees. Sensi-
tivity analysis for the Independent Path Algorithm indicates
performance gains over a wide range of network conditions,
with performance gains increasing with an increase in size
of the network and in node degree, while remaining constant
with an increase in speed. Timely update of the backup tree
set can keep the probability of interruption below a desired
value. One way of estimating the time to update the backup
tree set has been proposed and illustrated for a 30-node net-
work.

Appendix. Dependence of adjacent links

In this appendix, the dependence between two edges of a
graph with a common node is analyzed probabilistically un-
der the following (standard) assumptions about spatial distri-
bution of nodes and their mobility patterns:

• nodes are distributed uniformly over the area of the net-
work;

• direction of motion of each node is uniformly distributed
in all directions, is independent of other nodes and does
not change after initial selection; and

• the nodal velocity is distributed uniformly between 0 and
an upper limit (say V ) and does not change after initial
selection.

Notation and conventions used in the following analysis
are as follows: r is the range of transmission of each node;
n0, n1, and n2 are the three nodes in question; r1 and r2 are
distances between n0 and n1, and between n0 and n2, respec-
tively, at time t = 0. All angles are measured in the coun-
terclockwise direction from the x-axis. The x and y axes
are defined along the line joining n0 with n1 and the line join-
ing n0 with n2, respectively. F1 is a coordinate frame of ref-
erence fixed to the earth, while F2 is a coordinate frame of
reference fixed to n0 and hence moves with respect to F1 with
the same velocity as n0. The V ′

i is the speed of ni in F1, θ is
the angle of y-axis, θ ′

0, θ ′
1, and θ ′

2 + θ are angles of velocity
of n0, n1, and n2, respectively, in F1. The Vi is the speed of
ni in F2, θ0, θ1, and θ2 + θ are angles of velocity of n0, n1,
and n2, respectively, in F2. Finally, T b1 and T b2 are times
at which transmission between n0 and n1, and transmission
between n0 and n2, respectively, fails.

The basic random variables and their distributions (derived
from the assumptions stated above) are:

1. V ′
0, V ′

1, V ′
2 – assumed to be uniformly distributed over the

interval [0, V ].

Figure 19. Two edges with a common node.

2. θ ′
0, θ ′

1, θ ′
2 and θ – assumed to be uniformly distributed over

the interval [0, 2π).

3. r1 and r2 with values in the interval [0, r] with
P(r1 � x) = x2/r2. (This is because we want the prob-
ability that a node is in a region to be proportional to the
area of that region.)

Writing horizontal and vertical components of V1 and of
V2 (figure 19), we obtain the expressions for V1, V2, θ1, and
θ2 in terms of the basic random variables:

V1x = V ′
1 cos θ ′

1 − V ′
0 cos θ ′

0,

V1y = V ′
1 sin θ ′

1 − V ′
0 sin θ ′

0,

V1 =
√
V 2

1x + V 2
1y

=
√
V ′2

1 + V ′2
0 − 2V ′

0V
′
1 cos(θ ′

1 − θ ′
0),

θ1 = tan−1
(
V1y

V1x

)

= tan−1
(
V ′

1 sin θ ′
1 − V ′

0 sin θ ′
0

V ′
1 cos θ ′

1 − V ′
0 cos θ ′

0

)
,

V2 =
√
V 2

2x + V 2
2y

=
√
V ′2

2 + V ′2
0 − 2V ′

0V
′
2 cos

(
θ ′

2 − θ ′
0 + θ

)
,

θ2 = tan−1
(
V2y

V2x

)

= tan−1
(
V ′

2 sin θ ′
2 − V ′

0 sin(θ ′
0 − θ)

V ′
2 cos θ ′

2 − V ′
0 cos(θ ′

0 − θ)

)
.

It can be seen from the expression for V2 and θ2 above
that θ ′

0 always appears along with θ and that irrespective of
the value of θ ′

0, (θ ′
0 − θ ) is uniform over [0, 2π). Hence

we conclude that V2 and θ2 are independent of the random
variable θ ′

0. The only common random variable between
V1, θ1 and V2, θ2 is V ′

0. From this we deduce that if all
the nodes are moving at the same constant velocity, as we
would expect when most users are walking or driving along
a defined trail, having a common node does not cause any
dependence between the two trees. Also, we can rewrite the
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expression for V2 and θ2 in the following way without affect-
ing our calculations in any way (where θ is a random variable
uniformly distributed over [0, 2π)):

V2 =
√
V ′2

2 + V ′2
0 − 2V ′

0V
′
2 cos(θ ′

2 − θ),

θ2 = tan−1
(
V ′

2 sin θ ′
2 − V ′

0 sin θ

V ′
2 cos θ ′

2 − V ′
0 cos θ

)
.

Finding expressions for the random variables T b1 and T b2

in terms of the basic random variables is done by calculating
the time taken for the distance between two nodes to increase
beyond the transmission range r:

T b1 = 1

V1

(√
r2 − r2

1 sin2 θ1 − r1 cos θ1

)
,

T b2 = 1

V2

(√
r2 − r2

2 sin2 θ2 − r2 cos θ2

)
.

We assume that the basic random variables listed above
are an independent set. Since V ′

0 is the only random vari-
able common to the expressions between V1, θ1 and V2, θ2

we conclude that it is the random variable causing dependence
between T b1 and T b2. Now we have all the necessary expres-
sions to compute Pr(T b1 � t/V ′

0), for a given value of V ′
0. If

we hold V ′
1 and θ ′

1−θ ′
0 constant, V1 remains constant and only

θ1 changes. Observe that value of θ ′
0 completely determines

that of θ ′
1 and that θ1 starts at some value (depending on V ′

1
and θ ′

1 − θ ′
0), call it θ1_initial, for θ ′

0 = 0 and increases linearly
with θ ′

0. Hence the range and distribution of θ1 ((0, 2π) and
uniform) is independent of V ′

1 and θ ′
1 −θ ′

0 and hence indepen-
dent of V1.

Figure 20 shows variation of T b1 with θ1 and r1 for
fixed V1. It can be seen from the graph that given r1, the
probability that T b1 � t is the angle θe at which the curve
corresponding to r1 crosses the line T b1 = t . A simple cal-
culation dictates that:

θe = cos−1
(

1 − (r1 + V1t)
2 − r2

2V1tr1

)

Figure 20. T b as a function of θ1 for different values of r1.

and the probability that T b1 � t is found using the following
expression:

Pr

(
T b1 � t

V 1

)
=

∫
x

θe

π
P(r1 = x) dx.

Considering all the different cases: (a) the line T b1 = t

cuts the curve corresponding to r1, (b) the line T b1 = t passes
above the curve corresponding to r1 and (c) the line T b1 = t

passes below the curve corresponding to r1 we obtain the fol-
lowing expression:

Pr

(
T b1 � t

V1

)
=




INT, V1 <
r

t
;

(V1t − r)2

r2 + INT,
r

t
< V1 <

2r

t
;

1, V1 >
2r

t
,

where

INT = 2

πr2

∫ r

|r−V1t |
r ′ cos−1

(
1 − (r ′ + V1t)

2 − r2

2V1tr ′

)
dr ′.

Now to find CDF of V1 for a fixed V ′
0. Defining α to be

V ′
1/V

′
0 and φ to be θ ′

1 − θ ′
0, we can rewrite

V1 = V ′
0

√
α2 + 1 − 2α cosφ.

In the above equation, φ is uniformly distributed over
(0, 2π) and α is uniformly distributed over (V /V ′

0). Defin-
ing α1 to be V1/V

′
0, we see that for given α, the value of α1

lies between |α − 1| and α + 1 (figure 21). Also, α1 increases
monotonically with φ for a given α.

We can see that given α1 = x, the φ at which√
α2 + 1 − 2α cosφ equals x is

φmax = cos−1
(

1 + α2 − x2

2α

)
.

Figure 21. Minimum and maximum values of α1 as a function of α.
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Figure 22. Difference between the actual joint CDF of failure times of two
adjacent links and the joint CDF expected if they were independent.

Hence the expression for Pr(α1 � x) is found to be

Pr(α1 � x) = H(x − 1)

1 + V/V ′
0

+
∫ G

|α−1|
1

π
φmax,

where H(x) is the Heaviside step function, fZ(x) is the PDF
function of random variable Z, and G = min(1 + α, V/V ′

0),

Pr

(
T b1 � t

V ′
0

)
=

∫
x

Pr

(
T b1 � t

V1
= x

)
fV1(x) dx,

Pr(T b1 � t) =
∫
x

Pr

(
T b1 � t

V ′
0

)
fV0(x) dx,

Pr(T b1 � t1 ∩ T b1 � t2)

=
∫
x

Pr

(
T b1 � t1

V ′
0

)
P

(
T b2 � t2

V ′
0

)
fV0(x) dx.

Figure 22 contains the plot of difference between
Pr(A � t1 ∩ B � t1) and Pr(A � t1)Pr(B � t1) as a function
of t1 and t2 and assuming r = 76.5 m and V = 15 m/s. We
see that there is non-zero dependence between the two links
sharing a node. For the mobility pattern assumed, we find
that the correlation between the two random variable T b1 and
T b2 is 0.172. From this analysis we conclude that when ve-
locity of nodes is a random variable, common nodes induce
dependence between the two trees.
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