
A Protocol Structure for
High-speed Communication over

Broadband ISDN
Zygrn un t Haas

he transmission speed in communication networks has increased over the past
decade from kilobits per second lines to hundreds of megabits per second; i.e., T five orders of magnitude.’ The processing speed of commercial Central Process-

ing Units (CPUs) that can be employed as communications processors has changed only
two to three orders of magnitude. This discrepancy in speed translates to “bottlenecks”
in the communications process, because the software that supports some of the high-
level functionality of the communication process is now several orders of magnitude
slower than the transmission media. In other words, when the lines operated at 9.6 kb/s,
the multilayer conventional protocols implemented in software were fast enough to match
the speed of the lines. However, when the lines operate at hundreds of megabits per sec-
ond, the mismatch in speed is so large that the advantage of high-speed lines is buried
in the large processing overhead of high-level protocols, leading to long delay and low
throughput. This change has shifted the bottleneck from the transmission to the soft-
ware processing at the endpoints.2

Another trend that has influenced the design of communi-
cation networks is the potential of hardware implementation,
i.e., Very Large Scale Integration (VLSI). It is much easier and
cheaper today to implement large and fast communications
hardware on a single silicon chip. However, this opportunity
cannot be fully exploited with current protocols, which were
developed for software implementation. The purpose of this
article is to investigate the various possibilities of improving
the performance of communications protocols and interfaces
so that the slow-software-fast-transmission bottleneck can be
alleviated, and to propose a new protocol architecture that is
suitable for future high-performance communication.

The general trend of computing environments to move to-
ward distributed and parallel processing systems is, and will
be, largely responsible for the demand for increased perform-
ance. For example, a parallel processing system implemented
on the fine-grain level requires delays on the order of microsec-
onds. In a distributed processing system, large files may be re-
quired to be transferred between machines with very low laten-
cy. Thus, for the parallel and distributed processing environ-
ment, both the very low delay and large throughput are crucial.
(Another bandwidth-demanding application that can be iden-
tified today is video. Video applications will become more and
more important with trafic integration in packet-switched
networks.)

Unfortunately, the impact of the overhead introduced by
the Operating Systems (OSs) on the communication process
strongly affects the application-to-application communication
performance. The major sources of this overhead are [1-41:

‘The ideas presented in this article may apply to end-to-end commu-
nication speeds far beyond Broadband Integrated Services Digital Net-
work (BISDN) or even what is achievable today. In this vein, the article
was presented at INFOCOM ’90.

’We note that some of the processing overhead can be reduced by in-
creasing the packet data unit size, so that the processing overhead is
amortized over more data. However, this is not a universal solution,
mainly because some of the overhead is byte-rather than packet-based.
Moreover, for interactive traffic, only a small percentage of packets are
of maximal length.

9 Scheduling
Multiple data transfer from/to the user3
Overhead of entities management-timers, buffers, and
connection states
Overhead associated with division of the protocol process-
ing into processes, including interprocess communication
Interrupts

9 Context switching
The reason for large OS overhead is the structure of the

communication process in general and the implementation of
network interfaces in particular. In other words, the CPU per-
forms such an important role in the communication process
that, as a consequence, there are too many interrupts, too many
context switches, and too large a scheduling overhead. Net-
work interfaces were invented to offload the CPU from the
communication process. Unfortunately, they do only a partial
job; interfaces are still being built that interrupt the processor
for each received packet, leading to multiple context switches
and scheduler invocations. (Another solution is to structure
the process in a different way: to eliminate the scheduler calls
by the interrupts and resolve the scheduling of the process that
completed the communication at the “regular” scheduler invo-
cations.) Some new proposals for interface architecture [2]
considerably reduce the overhead associated with the OS.
These proposals structure the communication process in much
the same way that Direct Memory Access (DMA) is imple-
mented; the CPU initiates a communication event, but has lit-
tle to do in the actual information exchange process. The con-
siderable reduction in the OS overhead that results from the
new structuring of the communication process will probably
have a crucial impact on the feasibility of providing multi-
megabit-per-second bandwidth directly to the user (see “The
Structure of the Network Interface” below for our ideas on a
new interface structure).

The communication goal in the parallel and distributed sys-
tem environment is to provide communication in which

31t has been already emphasized several times in the literature (for
example, [I] [2] that the number of data copies between buffers (i.e.,
the per octet overhead) has a crucial effect on the performance of a pro-
tocol.

64 January 199 1 - IEEE Network Magazine
0890-8044/9 1 /0001-0064 $0 1 .OO ’ 199 1 IEEE

throughput is restricted only by the source capacity of the
transmitter or the sink ability of the receiver. Also, the commu-
nication delay should be minimized. As stated, OSs are today
the bottleneck of the communication process. However, once
the OS bottlenecks are resolved, the performance required
from communication systems will be so high that a new ap-
proach will be needed to the architecture of communication
protocols and to network interface design to support high per-
formance (high throughput and low delay). This argument an-
swers the basic question of whether the current protocols are
adequate for future high-speed high-speed networks. Local im-
provements in the protocol design might be adequate for cur-
rent OS-limited systems; this will not be the case for future sys-
tems requiring throughput of hundreds of megabits per second
directly to the user.

Along these lines, we propose an architecture that is an al-
ternative to the existing layered architectures. The novel fea-
ture of the proposed architecture is the reduction in the vertical
layering; services that correspond to the definitions of layers 4
to 6 in the International Organization for Standardization/
Open Systems Interconnection Reference Model (ISO/OSl
RM) are combined into a single layer that is horizontally
~tructured.~ This approach lends itself more naturally to paral-
lel implementation. Moreover, the delay of a set of processes
implemented in parallel is determined by the delay of the long-
est process, not by the sum of all the process delays, as is the
case in a sequential implementation. In the same way, the total
throughput need not be limited by the lowest-capacity process,
but can be increased by concurrently performing the function
on several devices. Thus, a protocol structure that lends itself
to parallel implementation has the potential to provide high
performance matched to the requirements of the new genera-
tion of improved OSs.

The Challenge
The challenge is to propose a single5 higher-layer6 protocol

that successfully provides communication over diverse net-
works: data rates ranging from kilobits per second to gigabits
per second and network diameters from Local Areas Networks
(LANs) to Wide Area Networks (WANSs). Also, the diverse re-
quirements of many different applications need to be support-
ed: connection-oriented and connectionless service, stream-
like traffic and bursty traffic, reliable transport and best-effort
delivery (error control and flow control), different data sizes,
different delay and throughput requirements, etc. The re-
quired throughput is on the order of hundreds of megabits per
second application-to-application (with a tendency toward gi-
gabits per second, and the delay is on the order of hundreds of
microseconds.’ The intent is to propose a protocol structure

4Reduction in the number of layers was previously proposed. As dis-
cussed below, structing of the protocol into horizontally, conditionally
independent functions is the novel feature of the proposed architec-
ture.

5The reason for insisting on a single protocol is more than aesthetic.
Much of the processing overhead (context switching, for example) can
be avoided if a single implementation is used. Moreover, this approach
may reduce compatibility problems.

that can support a very wide range of applications8 and traffic
types. Thus, some selectivity means in the protocol design is es-
sential.

Let us discuss the above a little bit further. Assuming a very
reliable subnetwork, the error recovery procedures can be sim-
plified so that when there are no errors, very little overhead is
incurred. However, this low overhead comes at the expense of
having a large penalty in the event of an error. On the other
hand, in networks with a high Bit Error Rate (BER) the recov-
ery procedure for both the error and no-error cases should be
minimized. This is what “success-o~iented”~ protocols mean:
to minimize the overhead for successful delivery cases at the
expense of a larger penalty for unsuccessful delivery at-
tempts.

The reason for insisting on optimizing the performancelo
over such an extensive range of data rates (kilobits per second
to gigabits per second) is that in the future we expect to have an
enormous variety of networks. In other words, one cannot ex-
pect that, with the introduction of multi-megabit-per-second
networks, Ethernets will (at least immediately) disappear.
Even today, the range of communication is very large; 300 bts
modems are still being used.

Thus, in order to optimize the performance of the protocol
for all diverse networks and applications, the protocol must
consist of a set of versatile protocols that can be readily
switched between. This is what we refer to in this work as “se-
lective functionality protocols.”

The work is organized in the following way. The next sec-
tion outlines possible approaches to improving protocol per-
formance. The section after that presents our horizontal proto-
col approach, while the selective functionality feature is
described in the following section. A new approach to network
interfaces is discussed briefly; then, a basic design example of
the horizontally structured architecture is shown. The last sec-
tion concludes the work.

The Possible Approaches
There are several possible solutions to overcome the slow-

One: Improve the performance of current high-layer proto-
col implementations [5] [6]
Two: Design new high-layer protocols based on the current
philosophy; i.e., software-based, layered structure [3] [7] [8]
Three: Hardware implementation of high-layer protocols

Four: Reduction of high-layer protocols overhead (i.e.,

software-fast-transmission problem:

191

“lite” protocols)’

8We are tempted to say “all” applications. However, future applica-
tions may introduce new requirements that may not necessarily be sup-
ported by the current design.

9This term refers to protocols that exploit the characteristics of reli-
able networks. Such networks, typically composed of fiber links and
digital switches, have a very low error rate, deliver packets in order,
and rarely drop packets.

OHere, “performance” refers to throughput, delay, and transmis-
sion efficiency.

6Above the network layer.

’Of course, because of the propagation delay, such a low delay re-
quirement has little advantage for a WAN, and is necessary only in a
LANIMAN environment. However, because of the requirement that
the protocol design be independent of the actual subnetwork being
used, the stringent performance requirements need to apply to any
communication.

I We note that a “lite” (i.e., lightweight) protocol is created by ad-
justing the number of states and the amount of control information
that is passed between the protocol states in such a way, on one hand,
to maximize the protocol functionality (to reduce the overhead of the
software-based application layer) and, on the other hand, to minimize
the overhead caused by the low-level implementation of the protocol
states (for example, number of chips for hardware implementation or
number of page faults for software implementation).

January 1991 - IEEE Network Magazine 65

ommunlcatlo

Fig. 1. HOPS.

Five: New design philosophy that structures the high-layer
protocols differently [4]
Six: Migration of high-layer functionality to lower layers, in
particular to the physical layer, when the functionality can
be performed with lower overhead by the lower layer (for
example, networks that perform some high-layer functions
by trading the physical bandwidth, such as end-to-end flow
control done at the physical layer in Blazenet [lo])
The approaches were arranged according to how much they

diverge from the conventional protocol design philosophy. Of
course, there can be any combination of the above six ap-
proaches.

Note that there exists yet another approach: reduction of
lower-layer functionality. (For example, [1 11 proposes to solve
the link-by-link flow control problem by dropping excessive
packets and correcting the packet loss at the higher level-
transport-through retransmissions. We consider this ap-
proach, which is the opposite of the sixth approach, to be in
general unable to solve the high-speed communication prob-
lem, since pushing the problems to higher layers introduces, in
fact, larger delays (the implementation of higher layers is typi-
cally software-based, and thus slower). Also, in this specific
case of the flow control example, the long timeout associated
with detecting the dropped packets (which i s done on an end-
to-end basis) increases the overall delay. (We note, however,
that pushing some of the functionality to higher layers simpli-
fies the network design, since at the lower layers there is more
traffic aggregation, and the total number of packets per second
is larger, leading to more complex processing within the net-
work. Thus, in some cases this approach may be appropri-
ate.)

Every one of the six approaches outlined can potentially im-
prove the protocol performance. However, major improve-
ment in performance can be obtained by combining a few of
the above approaches. For instance, even though changes in
the current version of Transmission Control Protocol/Internet
Protocol (TCP/IP) that reduce overhead might increase the
protocol throughput to several hundred megabits per second,
hardware implementation of the improved version will carry
the improvement even further. Consequently, we believe that
the correct answer to the question of how to implement high-
speed protocols is an intelligent integration of several ap-
proaches.

In the next section, we consider a combination of the third,
fouth, fifth, and (in a limited sense) the sixth approaches. The
proposed architecture is based on the layers: the Network Ac-
cess Control (NAC) layer, the Communication Interface (CI)
layer, and the Application (A) layer. The NAC layer consists of
all the services defined in and below the network layer of the

ISO/OSI RM. The CI layer consists of the services defined by
the transport, session, and presentation layers. The A layer cor-
responds to the conventional application layer. (The reason for
the proposed three-layer structure is that the services of the
NAC layer are mostly hardware-based, while the services ofthe
A layer are software-implemented. Thus, the CI layer repre-
sents the boundary between the software and hardware. There-
fore, in our view the model of the communication protocol ar-
chitecture can consist of the three layers, where the NAC is
hardware-based, the A is software, and the CI is a mixture of
software and hardware. It is our belief that to achieve high-
speed communication, the structure of CI must lend itself easi-
ly (i.e., little overhead) toward parallel hardware implementa-
tion and, as shown in the next section, the proposed three-layer
structure provides a basis for such a parallel implementa-
tion.

Horizontally Oriented Protocol
for High-speed Communication

We propose here an alternative structure to the existing
communication architectures. The central observation is that
protocols based on extensively layered architecture posses an
inherent disadvantage for high-speed communication. While
the layering is beneficial for educational purposes, strict adher-
ence to layering in implementation decreases the throughput
and increases the communication delay. There are several rea-
sons for this reduction in performance, among them (see also
[4]) the replication of functions in different layers, perform-
ance of unnecessary functions, overhead of control messages,
and inability to parallelize protocol processing.

The architecture presented here employs an approach quite
different than that used in the extensively layered models; i.e.,
the proposed architecture has a horizontal structure, as op-
posed to the vertical structure of multilayered architectures.
We refer to our architecture as Horizontally Oriented Protocol
Structure (HOPS).

The main idea behind HOPS is the division of the protocol
into functions instead of layers. The functions, in general, are
mutually independent in the sense that the execution of one
function can be performed without knowing the results of the
execution of another. (Thus, intercommunication between the
functions is substantially reduced.) For example, flow control
and decryption are independent functions. If the dependence
between two or more functions is such that the execution of
one depends on the result of another, the function can still be
conditionally executed. For example, packet resequencing is to
be executed only if error control detects no errors. Thus,
resequencing can be conditionally executed in parallel with
error control, and at the end a (binary) decision is made on
whether to accept or ignore the resequencing results.

Because of the independence between the functions, they
can be executed in parallel, thus reducing the latency of the
protocol and improving throughput.

Figure 1 shows the structure of HOPS. In this figure, the
correspondence in services between HOPS and ISO/OSI RM is
also shown. Thus, the CI of HOPS implements in hardware the
services defined by layers 4 to 6. Further, in Figure 1 the de-
tailed structure of the CI is shown. The figure also shows a pos-
sible ATM-based NAC implementation. The meaning of hard-
ware implementation is not necessarily that HOPS is fully cast
into silicon, but that specific hardware exists to perform the
functions rather than relying on the host software. Thus, HOPS
can be implemented as a collection of custom-designed hard-
ware and general-purpose processors.

CI receives the raw information (unprocessed packets) from
the NAC layer, which can be ATM-based. The central layer in
HOPS is the CI. CI is divided into parallel, independent or

66 January 1991 - IEEE Network Magazine

f-- Options: V

Fig. 2. HOPS packet format.

conditionally independent, functions. Before the results of the
functions are passed to the Application layer, they are evaluat-
ed in the Connector. The Connector executes the conditional
dependency among the functions, and passes the processed in-
formation to the Application layer.

HOPS is expected to lead to high-performance implementa-
tions for several reasons. First, because of the horizontal struc-
ture of functions, the delay of a packet processing is deter-
mined by the slowest function rather than the sum of all delays.
This is achieved in HOPS by the independence of functions.
Thus, a function need not wait for a result of another function
before its execution can begin. Second, the throughput can eas-
ily be improved by increasing the number of units of capacity-
limited functions. Such an increase is rather natural in parallel-
structured CI. Third, because of the compression of layers,
much of the replication and overhead are eliminated (e.g.,
buffering on different layers). Fourth, the horizontal structure
lends itself to parallel implementation on separate, possibly
customized, hardware. The parallel implementation by itself
has the potential of lowering the processing delay and increas-
ing the processing throughput. Also, the overhead associated
with switching between the execution of functions is grossly
eliminated, as are the communication messages between the
processes. Finally, the selective functionality feature (dis-
cussed in the next section) can eliminate unnecessary function
processing.

We also believe that in order to achieve the limit of per-
formance, one should implement the HOPS-structured proto-
cols in custom-designed hardware [9].

It should be noted that HOPS, as well as other solutions
based on the fourth, fifth, and sixth approaches described earli-
er, are not compatible with the ISO/OSI model and, in fact, vi-
olate the model’s boundaries.

HOPS as a Selective
Functionality Protocol

Because HOPS is intended to support communication over
diverse networks and for diverse applications, a single protocol
cannot provide optimum performance. For example,
retransmission policy depends on the quality of the network:
selective retransmission is better for networks with large aver-
age BER, while go-back-n may be beneficial in a very reliable
environment. Moreover, the requirements for a protocol may
change with time and space; for example, increasing conges-
tion may change retransmission policy, or the required error
control mechanism may differ from subnetwork to
subnetwork. Consequently, what we propose is a “protocol
with a menu,” whereby a user will request some combination
of functions needed to achieve some particular level of per-
formance. For instance, the function “retransmission” may be
designed to receive the following values: selective, go-back-n,
go-and-wait, none, any, etc. The Network Interface (NI) has to

decide on the particular retransmission policy required. If the
NI has some knowledge about the subnetworks the packet is
going to travel on, then the NI can make an intelligent decision
on the required policy. The NI can change its decision with
time, if it learns that the conditions have changed or that its
previous decision was incorrect.

The function values are communicated throughout the net-
work by means of the special option field in the packet format,
as shown in Figure 2. Note that the packet format shown in Fig-
ure 2 is the only packet format required by HOPS for the whole
CI layer; i.e., the packetization overhead present in
multilayered protocols is severly reduced in our approach. The
values are decoded separately, in parallel, and “on the fly” at
the packet arrival time.

There is another very important advantage of the selective
functionality feature: possible compatibility with current pro-
tocols. It cannot be expected that there will be an immediate
transfer from the rooted architectures and protocols. Thus,
protocols like Transport Protocol No. 4/Connectionless Net-
work Protocol (TPWCLNP) will continue to exist, and it is of
paramount importance that the current and new high-speed-
oriented protocols interwork. The selective functionality ap-
proach enables one to compose any protocol from the extended
menu. Thus, for example, communication between a TP4/
CLNP site and a HOPS site can easily be achieved by an adap-
tation layer (to be abolished with time) providing simple trans-
lation of the TP4/CLNP packets to the HOPS format. Since by
virtue of the selective functionality feature, HOPS is a superset
of all the TP4KLNP functionalities, such a translation is pos-
sible.

Initial considerations of the HOPS architecture suggest that
delay and throughput will be determined by the slowest
capacity-limited functions. However, as opposed to conven-
tional protocols, these limits are not fixed, and they change
with the particular functionalities required by the network/
application pair. Moreover, since networks are dynamic enti-
ties, the required correction mechanisms may be adaptively
adjusted by the end-to-end HOPS functionalities. Thus, trans-
mission over a highly reliable network may skip most of the
overhead associated with resequencing. Furthermore, custom-
designed implementation may increase the performance of the
limiting functions.

The Structure of the Network Interface
The NI is the hardware that interconnects the network and

the host by receiving the packets addressed to the host and
transmitting the host output traffic over the network (see Fig-

Fig. 3. Network interface.

January 1991 - IEEE Network Magazine 67

e
e
e

Fig. 4. Proposed communication model.

ure 3). The NI proposed in this work also performs the high-
layer protocols. Thus, the NI is the actual hardware that imple-
ments the CI of HOPS.

The goal of the NI is to oMoad the protocol processing from
the CPU. For example, in the Network Adapter Board (NAB)
[2], the CPU initiates information exchange but does not par-
ticipate in the actual transfer of data. The NAB does substan-
tially reduce the host load, thus increasing the interface
bandwidth. We want to push this idea even further, and elimi-
nate even more of the CPU’s involvement in the communica-
tion process. In other words, we intend to:

Eliminate CPU involvement in processing the transport
functions
Eliminate CPU involvement in processing the presentation
functions
Reduce CPU involvement in processing the session func-
tions
Reduce the overhead associated with the communication
between the NI and the OS (e.g., interrupts and
scheduler)
Eliminate the buffering and copying of information from
OS space into user space.
The elimination of CPU involvement in .processing the

transport and presentation functions is done by fully perform-
ing these functions within the CI layer by the NI, as explained
earlier.

The reduction of CPU involvement in processing the ses-
sion functions is a bit tricky, since obviously some processing
must be done by the OS. For example, opening a new session
usually involves space allocation to the user. This is done by
the OS. However, most of the bookkeeping and some process-
ing can be done by the NI; for example, negotiation of parame-
ter values and management of the dialogue once the connec-
tion is established.

The reduction in communication between the NI and OS is
performed in several ways. First, the NI keeps a pointer to the
user space, so that it can write the received data directly to the
user buffers. This eliminates interrupts when data is received.
(This also eliminates the overhead associated with copying the
data from OS space into user space.) Second, the NI has access
to the scheduler and monitor tables, directly adjusting the table
upon reception of data. When the scheduler is invoked, it
checks on the status of the pending communication processes
by referring to the NI-accessible table. Finally, the scheduler it-
self can be implemented as a different module.

Some remarks are called for here. First, it may be necessary
to keep the user buffers aligned on the word boundary. Second,
either paging is inhibited (it may make sense when the data to

be communicated is small, or when the machine is dedicated to
a single job) or the NI must be informed of paging (so that it
does not write into space that does not belong to the destina-
tion user). If paging occurs, the OS needs to provide a buffer as-
signed to the user. (This might be a disadvantage, since once
the user is running again, the data need to be transferred be-
tween the OS and user spaces.) Another approach is to use
communication buffers located in common space that belongs
to the OS (more specifically to the NI) and the user process.
The NI writes the received data into these buffers, which can
be directly (i.e., without copying) accessed by the user. Third,
there must be a very intimate relationship between the OS and
the NI; the NI must have access to OS tables. The NI access to
the OS data structures may be system-dependent. Finally, the
resequencing, if needed, can be done directly in the user buff-
ers. The NI leaves “holes” in the buffer for unarrived packets,
and indicates arrival of the last in-sequence data.

The communication model associated with this work is
based on the assumption that as little work as possible should
be done by the CPU in the communication process. Thus, for
example, when a process running on a workstation requires a
file, the process initiates a request. The request is executed by
the local NI, bringing the file into the process space with some
diagnostic information in a special register. The NI serves as
an agent on behalf of the process. (This is accomplished, as
shown in Figure 4, by the direct connection between the NI and
the memory). The NI is responsible for opening a connection
(if necessary), performing the parameter negotiation, checking
the validity of the incoming data, retransmitting (if necessary),
performing special functions like encryptioddecryption and
format translation, and closing the connection (if necessary).
The CPU is not involved in any stage of the communication
process, and in fact, the CPU sees a file fetch as a simple read
operation. (In this sense, there is some limited similarity to
Memnet [121.)

Consequently, in the transmission process, the CPU passes
data and control information to the NI, but has no hand in the
actual execution of the information exchange. (The CPU can,
however, receive a code indicating whether the other side actu-
ally received the data). On the receiving side, the processing de-
pends on the type of data received. If the data is:

Request for new connection: The NI sets the required infor-
mation in the Table Of Flows (TOF),12 and will interrupt
the CPU only if some other action is required to be per-
formed. For example, when a new session open request ar-
rives, the request will generate a new entry in the TOF; how-
ever, the,CPU will be interrupted to allocate space for the
new session.
New connection-oriented packet: The packet is placed di-
rectly in the process space, without CPU intervention. If
necessary, control information is set in the NI for future
process incarnation.
New request-response: l 3 This is managed directly by the NI
by interpreting the request and directing it to the service. If
the service is not recognized, the CPU might be interrupt-
ed.

-New datagram packet: This is the same as a request-
response packet.

12The TOF is a data structure maintained in the NI to keep track of
the existing connections.

131n the transactional communication model [7], a request sent to a
server and the server response are both performed in the
connectionless mode.

68 January 1991 - IEEE Network Magazine

Fig. 5. General structure of HOPS,

Example of HOPS
Design Implementation

In this section, we provide an example to illustrate how the
HOPS architecture can be implemented. The implementation
presented here includes the receiver side only. Also, it is some-
what simplified in the sense that not all the data structures are
formally defined.

The following functions are incorporated into the design:
Error control
Retransmissions
Connection option
Sequencing
Flow control
Addressing
Presentation
Session management
Congestion control
The structure of the design, presented in Figure 5 , shows the

flow of information between the various blocks that imple-
ment functions. The parallel structure is emphasized. In what
follows, each function is described by its attributes: values that
the function can receive, functionality performed, what input
is received by the function, and what output is produced.

Error Control
Values: error-control, detection, n-correction, m-detection, and
n-correction. ’

I4An n-correction algorithm is capable of correcting n errors in a
packet and an rn-detection and n-correction algorithm is capable ofcor-
recting n errors and detecting m errors.

Functionality:
Checks the computed and packet Cyclic Redundancy
Checks (CRCs).
If error-control = = detection, then forward the data to the
output only if CRCs match. Otherwise, reject the data.
If error-control= = n-correction, then attempt data correc-
tion and forward the data to the output if successful.
If error-control = = m-detection and n-correction, ,then if
number-of-errors 5 n attempt data correction, if n <
number-oferrors I m reject the packet and notify applica-
tion.

Input: Options (error-control), CRC, and data.

Output: Data (if successful operation).

Note: Error control is done “on the fly” before the packet is in-
serted into the input shift register (see Figure 5).

Retransmissions
Values: selective, go-back-n, none, and any.

Functionality:
Keeps track of data flows
If timer expires, issues retransmission request according to
value

Input: Options (retransmission-policy).

Output: Control packets in the reverse direction with
retransmit requests.

Connection- Option
Values: datagram, connection, and request-response.

Functionality:
Keeps track of the data flows by recording each flow in the
TOF

Input: Options (connection-option).

Output: TOF entries.

Sequencing
Values: yes and no.

Functionality:
Provides sequencing in the user memory-based buffer

Input: Options (sequencing, sequence-nr, or time-stump) and
address.

Output: Address offset.

Flow Control
Values: window, permits, on-ofi none, window-size, and
window-value.

Functionality:
Keeps track of user buffer size per flow, and performs the re-

Keeps track of window value for window-controlled flows
quired flow control scheme

Input: Options (flow-control, window-size, window-value).

Output: Flow-control information to the transmitter.

January 1991 - IEEE Network Magazine 69

Addressing
Values: none.

Functionality:
Resolve the address/port/process

Input: Address.

Output: Memory address.

Note: It is assumed that multicasting is provided by the NAC
layer.

Presentation
Values: various presentation standards and encryption algo-
rithm.

Functionality:
Data translation according to the presentation standard

Input: Options (presentation and encryption algorithm), data.

Output: Data (after presentation operation).

Session Management
Values: various session-related values (bandwidth, timers,
etc).

Functionality:
Bandwidth allocation
Management of session parameters

Congestion Control
Functionality:

Evaluate parameters for congestion control operation [51

Conclusions and Summary
In this work, we have presented a rationale for the need to

improve the performance of high-level protocols. In particular,
changes in the design of network interfaces are expected to in-
crease the feasible throughput available to the application to
hundreds of megabits per second. Corresponding improve-
ment in the architecture of operating systems promises to re-
duce and eliminate the current OS overheads.

The current structure of communication protocol suites,
based on vertically layered architectures, posseses an inherent
bottleneck due to the layering process. Functions are in some
cases unnecessarily replicated in different layers, unnecessarily
performed in some circumstances, and add an unnecessary
interprocess communication burden to protocol execution.
Moreover, the major disadvantage of the layering process is
the relative difficulty in parallel implementation of the layered
structure. Parallelism offers the potential of increased protocol
processing rates, reduced processing latency, and reduced pro-
cessing overhead.

We have presented an alternative approach to the existing
architectural models, named Horizontally Oriented Protocol
Structure. The architecture is based on three layers: Network
Access Control, Communication Interface, and Application.
The Communication Interface is the heart of the architecture,
and is based on independent functions that can be performed

in parallel. Thus, the architecture presented here lends itself
naturally to parallel implementation. A design example of the
Communication Interface was presented.

In the future, there will probably exist many distinct net-
work types that will provide communication to different types
of applications. In such a reality, it is beneficial to have a proto-
col versatile enough to easily and adaptively adjust itself to the
kind of performance demanded by the network-application re-
quirements. The selective functionality protocols introduced
in this work offer such behavior.

Finally, the new network interface philosophy, which will
offload even more of the burden of communication processing
from the OS, was briefly discussed.

It is our belief and hope that the ideas presented here will
contribute to the progress in developing communication net-
works, which resemble an extension of a computer bus, and
components, which are capable of providing very high
bandwidth (on the order of hundreds of megabits per second)
directly to the user. Moreover, such networks can provide a ve-
hicle for today's and tomorrow's implementations of ISDN. If
this vision becomes reality, the communication process will
cease to be the limiting factor in the latency of a process execu-
tion.

References
S. Heatly and D. Stokesberry, 'Analysis of Transport Measurements
Over a Local Area Network,' I€€€ Commun. Mag., June 1989.
H. Kanakia and D. R. Cheriton, "The VMP Network Adapter Board
(NAB) : H igh-Per fo rmance N e t w o r k C o m m u n i c a t i o n f o r
Multiprocessors,' Proc. SIGCOMM '88, Stanford, CA, Aug. 16-19,
1988.
K. Sabnani, M. H. Nguyen, and C. D. Tsao, 'High-speed Network Pro-
tocols," 6th /€€€ lnt% Workshop on Microelectronics and Photonics in
Commun., New Seabury, M A June 6-9, 1989.
A. Tantawy, H. Meleis, M. El Zarki, and G. Rajendran, "Towards a
High-speed MAN Architecture," ICC, Boston, MA, June 11-14,
1989.
V. Jacobson, "Congestion Avoidance and Control," Proc. SIGCOMM
'88, Stanford, CA, Aug. 16-19, 1988.
D. D. Clark, J. Romkey, and H. Salwen, -An Analysis of TCP Process-
ing Overhead," Proc. 13th Conf. on Local Comp. Networks, Minneapo-
lis, MN, Oct. 10-12, 1988.
D. R. Cheriton and C. L. Williamson, 'VMTP as the Transport Layer for
High-Performance Distributed Systems,' IEEE Commun. Mag., vol.
27, no. 6, June 1989.
D. D. Clark, M. L. Lambert, and L. Zhang, "NETBLT: A High Throughput
Transport Protocol," Proc. SIGCOMM '87and Commun. Rev., vol. 17,
no. 5,' 1987.
G. Chesson, 'XTP/PE Overview," Proc. of 13th Conf on Local Comp.
Networks, Minneapolis, MN, Oct. 1988.
2. Haas and D. R. Cheriton, 'Blazenet: A Packet-Switched Wide-Area
Network with Photonic Data Path,- I€€€ Trans. on Commun.. June
1990.
M. El Zarki and N. F. Maxemchuk, "Routing and Flow Control in High-
Speed Wide Area Networks,- Proc. I€€€, Jan. 1990.
G . S. Delp, A . S. Sethi, and D. J. Farber, "An Analysis of Memnet: An
Experiment in High-speed Shared-Memory Local Networking,' Proc.
SIGCOMM '88, Stanford, CA, Aug. 16-19, 1988.

Biography
Zygmunt Haas received his B.Sc. in electrical engineering from Technion

in 1979 and M.Sc. in electrical engineering from Tel Aviv University in 1985,
both summa cum laude. From 1979 till 1985, he worked for the government of
Israel. In 1988, he received his Ph. D. from Stanford University, and subse-
quently joined AT&T Bell Laboratories in Holmdel, New Jersey, where he is
now a Member of Technical Staff in the Network Systems Research Depart-
ment. His interests include high-speed communication, high-speed protocols,
lightwave networks, and traffic integration.

70 January 199 1 - IEEE Network Magazine

