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Wireless Sensor Networks

Milen Nikolov and Zygmunt J. Haas, Fellow, IEEE

Abstract— Energy efficient communication is a fundamen-
tal design problem in wireless networks significantly affecting
network performance and the lifetime of wireless sensor net-
works (WSNs). We introduce encoded sensing—an approach for
collaborative encoding and transmission of sensors data—that
drastically reduces communication energy expenditure in WSN.
Encoded sensing exploits the inherent spatial structure in sensed
data to adaptively partition a WSN into groups of sensor nodes,
so that nodes in each group sense highly correlated values.
Each group encodes all individual measurements sensed by its
nodes at time t into a single binary sparse codeword via novel
minimum distance combinatorial encoding local algorithm. When
the codeword’s Hamming weight equals w, a subset of w nodes
in the group cooperatively transmits a single binary symbol
each. Upon receiving the w bits, the sink has enough information
to decode a measurement estimate, which is within a small error
from each of the group nodes’ individual measurements. The
error is bounded and guaranteed to satisfy a priori QoS accuracy
requirements. We compare encoded sensing to non-cooperative
state-of-the-art transmission protocols and demonstrate at least
a factor of two in energy savings, without significant loss of
measurement quality. Encoded sensing achieves at least 80% the
energy savings of theoretically optimal cooperative transmission
distributed beamforming architectures. We show by simulations
and theoretical derivations that as the size of a node group grows
the performance of encoded sensing converges to the optimal
transmission energy efficiency.

Index Terms— Energy efficiency, cooperative transmissions,
distributed beam forming, spatial correlation, reporting, encoded
sensing, compressive sensing, minimum distance combinatorial
encoding.

I. INTRODUCTION

COMMUNICATING data is among the most energy
expensive operations across different applications of

WSN; receiving and transmitting data constitutes more
than 60% of the total energy consumption on networks
of small wireless devices running over popular inter-
faces including Zigbee/IEEE 802.15.4 or IEEE 802.11a/b
(e.g. [1], [2], [3]). Reducing the amount of data transmitted
and/or energy consumed per transmission could lead to sig-
nificantly longer network lifetime and reduced costs of nodes
redeployment, maintenance, and network outages. Accord-
ingly, there is a significant body of technical literature that
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covers different aspects of the topic. As noted in a comprehen-
sive survey on energy efficiency in WSN ([4]), there are three
major types of techniques aiming to decrease network radio
transmissions and save energy in WSN: sampling compression,
data compression, and communication compression.

Sampling compression schemes for WSN exploit inherent
structure of the observed phenomenon to reduce the number of
measurements required for its accurate description. The reduc-
tion of measurements results in reduction of transmitted data
and allows for effective duty-cycling. Examples of sampling
compression include schemes eliminating measurements and
hence transmissions of nodes with highly correlated observa-
tions due to sensors’ spatial proximity ([5], [6]). Elimination of
such correlated nodes’ transmission would not distort (within
a bound) the overall phenomenon estimate at the sink. A more
recent development of sampling compression schemes utilizes
the theory of compressive sensing. Those schemes rely on
the fact that often physical phenomena can be accurately
described by signals possessing sparse representation in a
certain basis. In the context of WSN the signals may have
sparse representation over time at a given sensor node (intra-
signal sparse structure, e.g. [7]–[9]) and/or over space across
the measurements of different sensor nodes at any fixed
time (inter-signal sparse structure, e.g. [10]). In either case,
O(K log(n)) measurements and transmissions received at the
sink are sufficient to reconstruct a set of n phenomenon
realizations comprising K � n non-zero values in a certain
projection.

Data compression for WSN is subtly different: given all
available (potentially redundant) sensors measurements aggre-
gated over some time window, nodes transmit a data set of size
commensurate with the compression entropy of the measure-
ments. Distributed Source Coding (DSC) schemes leverage the
Slepian-Wolf source-coding theorem and allow compression of
correlated sources without communication between the sensor
nodes and without loss of their measurements’ joint entropy.
The latter is advantageous in distributed systems like WSN,
and Cristescu et al. [11] and Yuen et al. [12] analyze the
application of DSC to WSN, showing that each sensor node
in the network transmits optimally less bits the more similar its
measurement is to that of other transmitting reference nodes.
Using such schemes, there is no loss of measurement accuracy.

In parallel to solutions exploiting the redundant structure
of observed phenomena to maximize reduction in measure-
ments/transmissions, communication protocols with the objec-
tive of transmission energy cost minimization have been
investigated as well. For instance, transmission of longer

1558-1748 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



876 IEEE SENSORS JOURNAL, VOL. 18, NO. 2, JANUARY 15, 2018

packets requires longer radio on-time, which inherently
depletes more energy. Furthermore, longer packets are prone
to larger packet error rate, which in turn leads to larger
communication cost due to packet re-transmissions. Reduced
packet size, i.e. communication compression, leads to shorter
radio on-time and lower communication cost ([5]).

Finally, energy reduction schemes that use data compres-
sion, sampling compression, and communication compression
have been supplemented by a fourth orthogonal set of dis-
tributed cooperative transmission solutions, recently becoming
increasingly feasible in the context of WSN. Unlike the three
former compression types, cooperative transmission schemes
do not explicitly rely on reducing the redundancy or number of
transmitted bits. On the contrary, inspired by the gains of spa-
tial diversity realized in MIMO1 systems ([13]), cooperative
communication in the context of WSN utilizes a set of nodes
each equipped with a single antenna and each transmitting
cooperatively (portions of) the same message to a sink. Since
different nodes have different spatial coordinates, the sink
receives multiple instances of the same message that have suf-
fered fading over statistically independent spatial paths, result-
ing in transmission diversity gains first explored in [14]–[16].
The signal gains translate directly into energy savings per
message transmission. Various schemes for optimal selec-
tion of cooperating nodes ([17]); algorithms for cooperative
space-time coding of the transmitted messages ([18]); and
cooperative game theoretic frameworks optimizing network
quality of service per given energy budget ([19]) have provided
further practical and theoretical underpinnings for cooperative
transmission applications in WSN. The theoretical promise of
cooperative transmission exploiting spatial diversity is signif-
icant. For instance, distributed transmit beam forming (BF)
architectures (e.g. [20], [21]) employing n cooperative beam-
forming nodes theoretically result in a fundamentally optimal
factor of n in energy savings, as compared to non-cooperative
transmission.

Combining cooperative transmission gains with sampling
compression, data compression, and communication com-
pression would potentially lead to drastically lower overall
communication energy consumption. However, data− and
sampling−compression techniques operate on minimizing the
transmission of redundant information, while redundancy is at
the core of cooperative transmission’s spatial diversity gains.

Is there a collaborative signaling architecture that can
achieve the gains of cooperative transmission, but without
relying on redundant messages/spatial diversity and remain-
ing compatible with compression schemes? In this work we
answer this question in the affirmative, by introducing the
Encoded Sensing (ES) scheme.

A. The Basic Idea Behind Encoded Sensing

Suppose a WSN measures a natural phenomenon like tem-
perature, soil moisture, humidity, solar radiation, etc., over a
range of values [a, b], e.g. [−30 °C, 50 °C]. Per encoded

1These systems need to be differentiated from distributed multi-user
multiple-input, multiple-output (MU-MIMO) beamforming systems such as
in [22] where a sink transmits to many devices.

Fig. 1. Encoded sensing (ES) simplified schematic - single measurement
transmission: at time t all 14 nodes in the group G sense a value in the same
unique small interval x (in solid red gradient). Only the 4 nodes (circled
in red line) that are “assigned” to the red interval x transmit to the sink;
the rest 10 nodes assigned to different intervals remain silent, resulting in a
sparse codeword cx . The sink decodes cx and recovers the unique interval
x . Since all the node measurements in the group G fall within interval x ,
measurement uncertainty after decoding is bounded by x’s length. Given the
assumed spatial correlation of the 14 nodes in G , only 4 binary symbols are
sufficient to encode 1001 distinct intervals using MDCE. To achieve similar
measurement accuracy a non-cooperative scheme relying on optimal spatial
decorrelation would require transmission of 10 symbols at the same energy
per symbol. This results in ∼2.5 times less energy consumption exploiting
ES coding diversity.

sensing (ES), each node quantizes the range [a, b] in equal
intervals of length ε. Each interval is uniquely labeled and
mapped to an index x = 1, 2, . . . , M (Fig. 1).

As we will discuss in the sequel, ES leverages sampling
compression, data compression, and communication compres-
sion, while introducing a novel collaborative transmission
scheme based on coding diversity, in lieu of spatial diversity
previously exploited in cooperative transmission schemes.

ES exploits data compression and sampling compression by
adaptively partitioning a WSN into groups of sensor nodes,
with highly correlated measurements, so that in each group G
the maximum difference between any two nodes’ measure-
ments cannot be larger than ε. Nodes in G are assigned unique
IDs: 0, 1, . . . , |G| − 1 as shown in Fig. 1. As part of the ES
collaborative transmission scheme, each group G encodes all
individual measurements sensed by its nodes at time t into a
single binary sparse codeword via novel Minimum Distance
Combinatorial Encoding (MDCE) local algorithm, running at
each node. MDCE assigns each interval x to a unique set of
nodes Ax ⊂ G. Given that nodes in G measure values falling
within interval x at time t , each of the nodes in Ax ⊂ G
assigned to x contributes a “1” at a specific location in the
codeword cx ; each of the nodes in G/Ax contributes a “0” at
a specific location in cx as shown in Fig. 1 and according to the
MDCE. The codeword’s Hamming weight equals w. We show
that upon receiving the right set of w binary symbols, the sink
has enough information to decode the measurement estimate
within a small absolute error, less than 2ε away from each
of the group nodes’ individual measurements. Inherently, ES
MDCE-based collaborative transmission employs lossy data
compression by minimizing w as a function of the number of
nodes in a group and ε: as the number of nodes in a group G
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increases, w decreases, thus reducing the amount of required
sent/received bits per measurement, for a fixed ε.

Since only one codeword cx per group is transmitted at
time t to convey WSN’s measurements to the sink node,
the amount of data transmitted is reduced as the number
of groups in the WSN decreases. We show that the number
of groups transmitting measurements per ES is minimized,
resulting in sampling compression similar to [5].

To transmit the codeword cx , the w nodes that have con-
tributed a “1” to cx transmit one binary symbol each, per
transmitted measurement; the remaining nodes remain silent
as shown in Fig. 1. Since only one symbol is transmitted
per node, communication compression in terms of packet
lengths/transmission errors is optimized, too.

ES collaborative transmission is inherently coupled with
compression schemes, and the achieved energy savings com-
pared to state-of-the-art communication architectures relying
only either on compression or on cooperative transmis-
sion are significant. We compare ES energy efficiency and
measurements accuracy to three state-of-the-art WSN com-
munication architectures representative of sampling compres-
sion ([5]), data compression ([11], [12]), and cooperative
transmission ([20], [21]), respectively. We show at least a
factor of 2 in energy savings for ES across all comparisons,
without significant loss of measurement quality. Encoded
sensing achieves at least 80% the energy savings of theo-
retically optimal cooperative transmission distributed beam-
forming architectures. As the size of a node group grows, the
energy savings of ES converge to the optimum theoretically,
and as verified by simulations.

II. SYSTEM MODEL

Suppose a set of N sensor nodes is deployed within an
area A, according to some spatial distribution �. We assume:
• the nodes measure the values of a continuous phenomenon

(temperature, soil moisture, electromagnetic radiation, etc.),
over A;
• time is discretized in slots; a set of active nodes report

measurements to the sink during each timeslot;
• nodes transmit over multiple-access AWGN channel at

the same average power per bit;
• the sink is within the transmission radius r of the nodes;
• nodes are coarse-grained synchronized on timeslot level;
• nodes within transmission radius, may exchange local

information and estimate internode distances either based on
control signal strengths, as in the well-established scheme
in [23], or via GPS if available;
• nodes run a neighbor discovery procedure upon network

deployment, and periodically henceforth, to maintain valid
neighborhood knowledge.

These assumptions are typical in efficient sampling and
distributed data compression schemes for WSN in various
application (e.g., [5], [11], [12]).

Although measurements at different positions in A are
frequently assumed to be i.i.d. in the research literature,
we make the more realistic assumption that measurements
are instead spatially-correlated and dependent on the distance
between sensors (e.g., [5], [10]).

Formally, the statistical description of the measured phe-
nomenon can be captured by a continuous source S giving rise
to a space-time random field s(l, x, y). At time l the random
field is defined as {Sj [l] = s(l, x j , y j ): (x j , y j ) ∈ A} at
spatial position (x j , y j ), The instances Sj [l] are modeled as
joint Gaussian random variables (JGRV). Considering a single
discrete-time interval sample, the time index l can be dropped.
Sj is then characterized by:

E
[
Sj

] = 0, V ar
[
Sj

]
, ρi, j = E

[
Si S j

]
/σ 2

S ,

where ρi, j are the correlation coefficients of the JGRV.2

Phenomenon’s values at different points in A are depen-
dent on one another via correlation coefficients ρi, j , which
represents some function of the distance between the points.
Formally, this function is represented by a parameterized spa-
tial covariance model, which reflects the nature of the specific
phenomenon and determines the correlation coefficient. This
statistical spatial-correlation function could be dictated by the
physics of the phenomenon’s nature (e.g. temperature, soil
moisture, electromagnetic radiation, etc. [24]), or learnt by
sensor nodes via sample training data at different locations in
A ([25]). Thus, we assume that the function is known. For
instance, the covariance model could be Power Exponential,3

since different phenomena monitored by sensor networks are
approximated this way (e.g. [5], [24]):

ρi, j = Kθ (‖i− j‖) = e(−‖i−j‖/θ1)
θ2 (1)

where ||•|| denotes Euclidean distance between sensors i and j
at (xi , yi ) and (x j , y j ), respectively. Figure 2 illustrates a set of
representative realizations of the phenomenon model and node
deployments for different values of the correlation parameters
θ1 and θ2. The parameter θ2 determines how “grainy” is the
observed phenomenon realization: lower values of θ2 lead to
more uneven and “grainier” realizations.

A sensor node j with coordinates (x j , y j ) does not have
direct access to the phenomenon value Sj . Rather, it obtains a
distorted measurement X j of Sj due to inherent sensing varia-
tion W j . The sensing variations can be due to the imprecision
of the sensing equipment, or due to spatial changes in the
observed values sensed by the sensors. W j ’s are assumed to
be i.i.d. Gaussian random variables, such that E[W j ] = 0 and
Var[Sj ] = σ 2

W . Consequently, node j measures X j = Sj+W j .

III. ENCODED SENSING

As per above model, suppose the N nodes in the network are
partitioned into groups of nodes with highly correlated mea-
surements, so that in each group G the maximum difference
between any two nodes’ measurements is less than ε. Each
node in the WSN quantizes the phenomenon range [a, b] in
equal intervals of length ε. Each interval is uniquely labeled,

2We assume memoryless source and (similarly to [5]) do not account
for temporal correlations. ES is readily adjustable to temporal correlations;
i.e., if some readings are more likely than others, the algorithms listed below
can be easily extended to allow for a round-robin assignment of nodes to x
in order to improve the energy balance in a group.

3The following discussion is independent of the specific choice of the
correlation function.
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Fig. 2. Influence of parameters θ1 and θ2 in the correlation model of
eq. (1) on the spatial distribution of phenomenon values. Notice that θ2 affects
significantly the behavior of the phenomenon. Nodes (black points) are placed
uniformly at random. Network density is 2.5 nodes/m2.

and the intervals are mapped to an index x = 1, 2, . . . , M .4

In this section, we describe encoded sensing’s three stages –
encoding, transmission, and decoding – within a single group
of nodes G ⊂ N , for clarity. The algorithms presented in this
section remain unchanged as we extend this setup in section VI
to multiple groups.

Assume the nodes in group G are assigned unique IDs:
0, 1, . . . , |G|−1. Also, assume |G| and the number of intervals
M in [a, b] are known by all the nodes4. At timeslot t ,
each node j in G measures value X j = Sj + W j . Since
by construction of group G the maximum difference between
nodes’ measured values is ε and the length of each interval x
is also ε, X j falls in interval x−1, x , or x+1 for all nodes j
in G. To demonstrate the encoding process, at present, suppose
that for all j in G, the measured X j ’s at timeslot t fall within
x (e.g., all the nodes in G measure exactly the same value);
we address the more general cases in section IV.

A. The Encoding Stage

At timeslot t , upon measuring a value falling in interval x ,
1 ≤ x ≤ M , during the encoding stage, each node in G locally
encodes x into binary codeword cx of length |G| using Algo-
rithm 1. Algorithm 1 is a common decentralized encoding
algorithm run at all nodes with input x and K ∗, and output the
set Ax containing K ∗ integers from 0 to at most |G|−1. Set Ax

determines codeword cx : we let cx(i), 0 ≤ i ≤ |G|−1, denote
the i-th most significant bit in cx , and cx(i) = 1 iff i ∈ Ax .
K ∗ is a system parameter that minimizes both the number

4In section VI, we discuss the practical configuration of the parame-
ters [a, b], ε and accordingly M, for popular WSN mote boards (e.g. TelosB).

Algorithm 1: Assign Interval x to a K ∗- Subset Ax of G
Input: value of binary x in decimal, K∗
Output: Ax = {nK∗, nK ∗−1, . . . , n1}
Algorithm:
1: Ax ← {∅}
2: m ← K ∗
{At each iteration add a node ID to the assignment Ax of
nodes to measurement x}
3: while m ≥ 1 do

4: nm ← maximum integer such that

(
nm

m

)
≤ x

5: x ← x–

(
nm

m

)

6: m ← m − 1
7: Ax ← Ax ∪ nm

of transmitting nodes and transmitted bits per measurement,
while ensuring reliable decoding is feasible. K ∗ is setup as
follows. Note that |Ax | = w(cx ) is the Hamming weight of
codeword cx . Suppose we impose |Ax | = w(cx) = K for all x .
Notice that the number of possible distinct codewords of length
|G| that any algorithm can generate under this constraint
is |G|CK .5 All M possible intervals must be encoded into M
unique codewords so that reliable decoding is feasible. Thus,
we require |G|CK ≥ M . Let

K ∗ = K s.t. |G|CK ≥ M (2)

K ∗ is easily computed numerically at each node for any given
|G| and M . For each distinct input pair (x, K ∗), Algorithm 1
performs basic combination unranking and outputs a distinct
set Ax , ensuring |G|CK∗ ≥ M . Note that if |G| ≥ M then
K ∗ = 1.

Now suppose for any node with ID j in group G we have

D j =
{

1, i f j ∈ Ax

0, otherwi se
(3)

and node j only transmits a binary symbol “1” iff D j = 1.
I.e., the number of transmitting nodes in timeslot t is |Ax | =
w(cx ) = K ∗, and each node transmits a single binary symbol.
Ax contains the IDs of transmitting nodes in group G. In this
case, by construction, K ∗ is the minimum value guaranteeing
reliable decoding is feasible, while minimizing the number of
transmitted binary symbols and nodes as |G| grows. We dub
this simple code combinatorial encoded sensing (ES-C).

As an example of Algorithm 1’s execution, suppose a group
of |G| = 6 nodes measures values all falling within interval
x = 5, where the total number of intervals M = 16. It is easy
to determine that K ∗ = 3 from (2). (By inspection, if K ∗ = 2,
6C2 = 15 < M = 16 and (2) is not satisfied.) All 6 nodes
in G run Algorithm 1 with input pair x = 5 and K ∗ = 3. The
output of Algorithm 1 is the set A5 = {4, 2, 0}. From (3),
we have D5 = 0, D4 = 1, D3 = 0, D2 = 1, D1 = 0,
D0 = 1. Therefore, nodes with IDs 4, 2, and 0 transmit a
binary symbol “1” each. The codeword is c5 = 010101, with
bits c5(4) = c5(2) = c5(0) = 1.

5Binomial coefficients are denoted

(
n
k

)
and nCk throughout the text.
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B. The Transmission Stage

In the above example, given Algorithm 1’s output, code-
word c5, and the corresponding transmission decision proto-
col in (3), the sink receives three binary symbols “1.” The
sink can only infer c5 if it could determine the significance
(i.e., position) of each “1” in c5. Notice however that the
positions of “1”s in c5 above correspond exactly to the IDs of
the transmitting nodes. This is true for any output codeword cx

of Algorithm 1. The sink can recover the cx if nodes’
transmissions indicate nodes’ identities as well.

Node identity information however is often implicit in many
standard physical layer protocols employing variants of spread
spectrum wave signatures embedded in each node’s signal.
That is the only assumption ES makes regarding the physical
layer. For instance, the physical layer of IEEE 802.15.4 utilizes
Direct Sequence Spread Spectrum (DSSS). Similarly, practical
and efficient DSSS architectures for low-powered WSNs have
also been discussed in [26]. Other off-the-shelf physical layer
solutions for WSN utilizing orthogonal spreading sequences
satisfying ES assumptions are described in [27]–[29]. Using a
DSSS physical layer approach, in ES, node j transmits binary
symbol “1” by transmitting j ’s unique spreading sequence.
The waveform received at the sink contains j ’s unique signa-
ture “1 j .” The received waveform is correlated at the sink, for
example, via a bank of matched filters, with the set of available
spreading sequences’ waveform signatures for all nodes in
the WSN. The sink obtains the identity of the transmitting
nodes during this sequence acquisition stage.

In our example above, nodes 4, 2, and 0’s binary symbols
are multiplied by their respective unique spreading sequences
upon transmission during timeslot t . The received waveform
at the sink is the integrated waveform y(t) of signals “14,”
”12” and “10.” After correlating y(t), during the spread
sequence acquisition, the sink obtains the IDs 4, 2, and 0. The
sink recovers the word 051403120110, which corresponds to
c5 = 010101.

Section V describes and analyzes in detail the ES physical
layer properties and its fundamentally optimal communication
energy consumption as the number of nodes in group G
increases.

C. The Decoding Stage

After receiving and correlating nodes’ transmissions accord-
ing to the DSSS physical layer properties, the sink identifies
the nodes j in Ax each of which has transmitted its waveform
“1 j .” Assuming the system operates under DSSS acquisition
capacity, so that w.h.p. there are no errors in transmission,
the sink can decode the codeword cx based on Ax . The
following Theorem 1 ensures that the IDs of the nodes in Ax

available at the sink are sufficient to recover interval x .
Theorem 1: For every number x ∈ N, ∃ a unique set {nm ,

nm−1, . . . , n1}, ni ∈ N and nm > nm−1 > . . . > n1 ≥ 0, such
that for any m ∈ N, where m ≤ nm

x =
(

nm

m

)
+

(
nm−1
m − 1

)
+ . . .+

(
ni

i

)
=

∑m

i=1

(
ni

i

)
(4)

Proof: See [30]. �

Fig. 3. The value v of the phenomenon falls close to one of the endpoints
of interval x . Due to sensing instrumentation imprecision σW , the value is
incorrectly measured to fall in interval x + 1.

Notice that Theorem 1 guarantees existence as well
as uniqueness. Also notice that the set of IDs in
Ax output by Algorithm1 exactly matches the sequence
(nK∗, nK∗−1, . . . , n1) required by Theorem 1, where m = K ∗.
Also by Algorithm 1’s construction nK∗ ≥ K ∗. Therefore

x =
∑m

i=1

(
ni

i

)
(5)

Thus, this is the only value x to which codeword cx can
be decoded. The value x is obtained simply by combination
ranking of Ax .

To conclude our example, after inferring the codeword
c5 = 010101 during the transmission stage and identifying the
transmission nodes’ set as Ax = {4, 2, 0}, the sink maps Ax to
the sequence (n1, n2, n3) = (4, 2, 0). Knowing m = K ∗ = 3,
the sink obtains

x =
∑3

i=1

(
ni

i

)
=

(
4
3

)
+

(
2
2

)
+

(
0
1

)
= 5,

which is the correct interval containing the measurements of
nodes in group G, at timeslot t .

IV. MINIMUM DISTANCE COMBINATORIAL ENCODING

In section III, we assumed that the measurement values
X j ’s during timestep t fall into the interval x for all j in G.
However, by construction of group G, the maximum difference
between nodes’ measured values is ε and the length of each
interval x is also ε, hence X j can fall into interval x − 1,
x , or x + 1 for all nodes j in G, during timeslot t .

Figure 3 illustrates an example scenario where nodes in
group G observe the same value v, but report measurements
falling in adjacent but different intervals due to instrumentation
noise W j with power σW . Any node j in G may observe
value Sj of the phenomenon that is arbitrarily close to either
of interval’s x endpoints. Even small instrumentation noise
may lead to some number k of nodes in G to measuring
values in an adjacent interval to x . Notice that flipping two
bits in a codeword generated by the simple ES-C encoding
above, may render the transmission sent to the sink invalid or,
worse, wrong causing large distortion in the sink’s estimate.
For instance, flipping two bits in c5 = 010101, from the
example above, may result in c0 = 000111.

If a number k of nodes in a group G erroneously measure a
value v ′ falling in interval x ′ and the rest |G|−k nodes sense a
value v falling in the correct adjacent interval x , the challenge
is to find an encoding scheme with the property that the
correct codeword is received at the sink almost surely, given
|x − x ′| = 1.

To address the above challenge, we propose the min-
imum distance combinatorial encoding (MDCE) presented
in the next section. MDCE avoids the above shortcoming
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of ES-C, while preserving ES-C’s code properties w.r.t. to the
code range, codeword length, and Hamming weight.

Suppose x and x ′ are any two intervals within the phenom-
enon’s range of values, such that |x − x ′| = 1. As above,
x and x ′ are assigned to two distinct binary codewords.
However, the assignment/encoding algorithm is different.
We insist that if |x − x ′| = 1, then the Hamming distance
between the codewords assigned to x and x ′ is bounded by
a constant. Since we consider a constant number K ∗ = |Ax |
transmitting nodes out of the |G| nodes in a group, we can
obtain a new valid codeword from any given valid codeword
by flipping at least two bits: one of the bits flips to 0 and the
other bit flips to 1 to preserve the number of active nodes.
(E.g. if only one bit flips to 1, |Ax | would increase by 1;
and if only 1 bit flips to 0, |Ax | would decrease by one.)
More specifically, let HD(cx , cx ′) be the Hamming distance
between the codewords cx and cx ′ assigned to measurements
in intervals x and x ′ respectively. We require that

|x − x ′| = 1⇒ HD(cx , cx ′) = 2 (6)

Notice that similarly to ES-C, we still have |cx | = |cx ′ | =
|G|, w(cx ) = w(cx ′) = |Ax |, and nodes transmit according to
eq. (3).

We first show the benefit of such minimum distance combi-
natorial encoding (MDCE) with the latter property; and then
provide the construction generating MDCE codes.

A. MDCE Probability of Erroneous Codeword

Suppose that the event in Fig. 3 occurs with probability
pe independently at each node. Namely, the phenomenon’s
actual value v at a sensor’s node location is within, but close
to, the boundaries of interval x . Due to instrumentation noise,
the sensor node at that location “erroneously” measures value
in the interval x ′ such that |x − x ′| = 1.

Theorem 2: Let FE be the probability that a MDCE code-
word transmitted by group G is invalid or wrong, then FE → 0
as |G| → ∞.

Proof: See Appendix A. �
Fig. 4 (top) shows the probability that exactly k nodes are in

error by varying numbers of k and |G|; Fig. 4 (bottom) shows
the values of FE for varying numbers of k and |G|, when at
most k nodes are in error. The MDCE code guarantees a valid
and correct codeword is transmitted by group G w.h.p., even
though some nodes in G may measure different values, for
instance, due to instrumentation noise.

B. MDCE Construction

Our MDCE construction starts with the well-known Gray
binary code with the property that the Hamming distance
between two consecutive codewords is one. Suppose we
have a set of M messages to encode and consider a Gray
codebook with words of length n = |G|. Let x = 0. For
each consecutive word c in the Gray codebook, we check if
m = w(c) = |Ax | = K ∗, so that (2) is satisfied; if true, we
add c to our MDCE codebook, setting cx = c and then
incrementing x by one.

Fig. 4. MDCE probability of encoding invalid or erroneous codeword given
different number k of sensors with erroneous measurements, for pe = 0.05.
Up: exactly k sensor nodes in error; down: at most k sensor nodes in error.

Theorem 3: The resulting MDCE code satisfies

|x − x ′| = 1⇒ HD(cx , cx ′) = 2

and hence is a minimum distance combinatorial encoding.
Proof: See Appendix B. �
Table I lists the set of the MDCE and ES-C codewords for

the case |G| = 6, M = 20, where |Ax | = K ∗ = 3 respectively.
Notice that the MDCE codewords have weight equal to that of
codewords of ES-C generated by Algorithm 1 for a given M
and |G|. In fact, the set of MDCE codewords and the set of
ES-C codewords are identical, for any given M , |G| and |Ax |.
However, the mapping between codewords and messages is
rather different. The Hamming distance between any two
consecutive codewords is exactly equal to two in the case of
MDCE. We denote MDCEm,n the set of binary codewords cx

with length n and Hamming weight m; MDCEI
m,n denotes the

corresponding collection of sets |Ax |.
ES encoding, transmission, and decoding follow the same

stages described in the previous section. As in the example
above, a group of |G| = 6 nodes measures values all falling
in interval x = 5, where the total number of intervals
M = 16 and K ∗ = 3. All the nodes in G utilize the MDCE
code (e.g. Table I) and look up the codeword corresponding
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TABLE I

MDCE AND COMBINATORIAL ENCODING EXAMPLE

to x = 5: c5 = 011010; correspondingly, A5 = {4, 3, 1}.
Nodes in G with IDs 4, 3 and 1 are assigned to x = 5.
From (3), we have D4 = 1, D3 = 1, D1 = 1, D5 = 0, D2 = 0,
D0 = 0, thus nodes with IDs 4, 3, and 1 transmit a binary
symbol “1” each. The sink receives the sum of waveforms 1 j ,
for all j in Ax and determines the IDs of nodes in |A5|.
Looking up the value of x encoded by A5 = {4, 3, 1}, the sink
recovers x = 5. Now suppose that due to an instrumentation
error node 4 measures value falling in interval x = 6. From
Table 1, the codeword corresponding to x = 6, indicates
D4 = 1. Node 4 still transmits with nodes 3 and 1. Thus,
the sink infers c5 and the correct value of x = 5.

We dub the above scheme ES-MDCE.

V. TRANSMISSION ENERGY

We evaluate the transmission gains and the respective energy
savings of the ES-MDCE collaborative encoding of measure-
ments and compare those to non-cooperative (NC) transmis-
sion schemes. Suppose that all the nodes in group G measure
values falling within the interval x in the timeslot t and the
message encoding x is transmitted. Suppose that there are
M such intervals. A NC scheme relying on spatial sampling
compression would require only one representative node in the
group G to transmit the message. That is sufficient, provided
ε inaccuracy of measurements is within QoS guarantees, since
the rest of the nodes sample values in x as well.

Since each node sending a bit per ES needs to be identified
by the sink, for the analysis of ES transmission energy
consumption we consider a regular DSSS physical layer, for
example, specified by IEEE 802.15.4. Typically, a DSSS com-
munication system is described both by post-acquisition-based
capacity and acquisition-based capacity. The post-acquisition-
based capacity characterizes the maximum number of nodes
in the system so that, given processing gain F (number of
PN sequence chips per bit), the probability of a bit error

is less than a threshold μ‘. The acquisition-based capacity
characterizes the maximum number of nodes in the system,
so that the probability pa of acquiring wrong PN sequence at
the sink is less than a threshold μ.

ES relies only on the correct output of the DSSS matched-
filters at the sink after the acquisition stage. Hence, we are
interested in the acquisition-based capacity of the system.
Assume that the waveform 1 j , for all j in Ax , encoding
interval x using MDCE, arrives at the sink with independent
random time-delays (within any given reporting time-slot) and
with independent random carrier phases.6 The probability, pa ,
of acquiring a wrong PN sequence in our setting is given by:

pa ∼= F − 1

2
e−

3F
4(|G|−1) (7)

provided F > |G|, as in typical DSSS systems with long PN
sequences (e.g. see [31]). Notice that the system is interference
limited. In contrast, per NC schemes, a single representative
node transmits, sending at least log(M) bits, encoding one of
M intervals. The bit error rate of the NC scheme utilizing, for
instance, binary amplitude shift keying OFDMA over AWGN
channel7 is given by:

pb ∼= 1

2
er f c

(√
SN R

)
(8)

Throughout this paper, when comparing the energy perfor-
mance of the ES scheme to a NC scheme, we are conservative
and require not only that w.h.p. pa < pb, but also that
Pa = 1 − (1 − pa)

m < pb, where m = |Ax |. That is,
we ensure that the probability Pa of not acquiring all m signals
correctly is less than the probability of error of traditionally
demodulating a single bit. This ensures that the reduced energy
consumption of the ES schemes is not an artifact of increased
error rate vis-à-vis traditional modulation.

From (7), the acquisition capacity of the system is:

Cacq ∼= 3F

4ln(F/2μ)
(9)

where μ is the threshold of acceptable acquisition error
rate pa .

For example, Fig. 5 shows the bit error rate pb of a NC sys-
tem, the probability pa of acquiring a wrong PN sequence, and
the probability Pa that at least one of the received m = |Ax |
PN waveforms was acquired incorrectly by the ES scheme, for
different group sizes |G|. For a standard DSSS gain F = 512
and system acquisition capacity Cacq = 35 in all cases pa <
Pa < pb < μ. Here SNR ≈ 5.5 dB, pb < μ ≈ 0.005.

Suppose that both the NC and ES schemes operate with
a budget Eb per bit, so that pa < Pa < pb < μ, and
in the case of ES the system operates under acquisition
capacity Cacq , as discussed above. Given transmission energy
budget E, the ES and the NC schemes can send respectively
dES and dNC messages in total: dES = E/[w(cx )Eb] and

6Notice that these assumptions are conservative. In many systems, more
timing information is available a priori, for example by virtue of a side
feedback channel devoid of interference, and the probability of acquiring
wrong PN sequence is lower implying larger system capacity.

7This choice is general, since the bit error rate expression for pb in (8)
remains the same for BPSK and single user DSSS systems, for instance.
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Fig. 5. Probability of wrong PN sequence acquisition at the sink (both in
terms of Pa and pa) for varying number of nodes in an ES group; and bit
error rate pb for a NC scheme. Notice that in our simulation, for all group
sizes |G|, we require and satisfy pa < Pa < pb.

dNC = E /[log(M)Eb]. The ratio dES/dNC determines ES’s
energy efficiency w.r.t. a NC scheme.

A. Encoded Sensing Worst-Case Energy Efficiency
Compared to Optimal Non-Cooperative Schemes

The Hamming weight w(cx) of ES codewords equals |Ax |.
The number of messages, dES, that the ES scheme can send
decreases as |Ax | increases. For a worst-case comparison we
seek codeword Hamming weight resulting in maximum |Ax |
and minimum dES. Given fixed M and |G|, we require that (2)
is satisfied, so that ES-MDCE is a valid code.

In (2) we require that |G|CK ≥ M , where K = |Ax |.
If the group size |G| is fixed, |G|CK is maximized for |Ax | =
K = |G|/2. What is the least value of |G|/2 that guarantees
|G|C|G|/2 ≥ M? Using Sterling’s approximation we get

( |G|
|G|/2

)
≥ 2|G|−1/

√|G| /2

2|G|−1/
√|G| /2 ≥ M implies |G|C|G|/2 ≥ M . Solving for |G|

yields:

0.5|G| ≥ log(0.5|G|)/4+ log(M)/2 + 0.5.

We also notice that since log(0.5|G|)/4 ≤ 1 for practical
values of |G| (up to |G| = 32 nodes),8 then:

|G| ≥ 2�log(M)/2+ 1.5�. (10)

Satisfying (10) ensures that there are enough codewords for
each message in M . Here, K ∗ = |G|/2. This is the maximum
possible number of nodes in set Ax , largest codeword weight,
and the worst case of ES operation for fixed |G| and M .

Suppose that K ∗ = |G|/2 = �log(M)/2 + 1.5� = w(cx ) =
|Ax | bits are transmitted per message, as in the worst case of
the ES operation from (10). Then

dES = 2dNC/(1+ 3/ log(M)). (11)

In its worst regime of operation, ES is close to 2 times
as energy efficient as an optimal NC scheme. Notice, that an
optimal NC scheme would require the transmission of at least
log(M) bits. Even if we suppose that a NC scheme utilizes
different modulation, for instance orthogonal non-antipodal,
so that in effect only �log(M)/2� signals are transmitted, still
the energy per bit required to achieve the bit error rate obtained
via the former antipodal modulation would need to be at least
double.

Allowing larger group sizes |G| substantially reduces the
value of K ∗ utilized in ES as shown in Fig. 8. As we
show in section VII, in practical scenarios K ∗ � |G|/2 is
sufficient to generate enough codewords, leading to further
energy savings.

B. Encoded Sensing Best-Case Energy Efficiency Is Optimal

T-ary orthogonal codes (e.g. PPM) achieve reliable commu-
nication over AWGN channels at the minimum possible energy
per bit Eb, as T increases ([32]). There, the total power is
spread over a large time interval to achieve the Shannon limit
of Eb/N0 = −1.6dB.

Given |G| ≥ M , the ES scheme encodes interval x via
a single binary symbol since w(cx ) = K ∗ = 1. The
symbol is sent by a single source node j , whose bit is
spread over j ’s DSSS spreading sequence. Typically, DSSS
spreading sequences have low cross-correlation; ideally they
are orthogonal to each other. In the latter case, node j ’s
sequence is orthogonal to the spreading sequences of the nodes
in G/{ j} and ES operates at the optimum energy per bit level,
achieving the Shannon limit of Eb/N0 = −1.6dB ([32]).

The ES scheme realizes a non-lineartrade-off between the
number of nodes in the network and the network’s energy
efficiency. As the number of nodes within a group increases
ES provides optimal transmission efficiency by reducing w(cx )
and inherently eliminating unnecessary nodes’ transmissions
of correlated measurements via MDCE codes.

8If |G| = 32, |G|C|G|/2 ≈ 6∗108 distinct messages can be mapped, which
is sufficient for most practical applications of WSNs.
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VI. MULTIPLE GROUPS

Thus far we assumed that the network is partitioned into
groups of nodes with highly correlated measurements, so that
in each group G the maximum difference between any two
nodes’ measurements is less than ε. To this end, there are two
conditions we need to meet simultaneously:
• First, each group G occupies area O in A, where the

maximum difference between any two realizations Sj and Si

of the phenomenon at points (x j , y j ) and (xi , yi ) in O sampled
by any two sensors j and i is less than ε w.h.p..
• Second, noise due to electronic imprecision should not

offset node j ’s measurement in an interval x ′ different from x ,
for all j ∈ G, where |x − x ′| > 1.

A. Source Quantization

To meet the second condition, we quantize the range [a, b],
so that the probability is low that the measurement imprecision
W j offsets the measurement of any j ∈ G outside interval x’,
where |x − x ′| ≤ 1. The instrumentation imprecision W j

of sensor j is modeled statistically as an additive Gaussian
random variable N(0, σW ), independent at each node. We can
set the length ε of each interval x, so that the probability of
a measurement being shifted to more than one intervals due
to sensing imprecision is bounded and very low: i.e., we let
ε = 2βσW , where β ≥ 2. In applications, WSN nodes’
(e.g. TelosB, MICA, etc.) sensors are characterized by pre-
specified range and accuracy. For instance, the Sensirion tem-
perature sensor on a TelosB TPR2420 node has range [a, b] =
[−40 °C, 124 °C] and accuracy +/−0.5 °C (at 25 °C) ([36]).
By definition, the accuracy sensor parameter is the maximum
difference between a true phenomenon value and sensor’s
output. Setting ε = 1°C, results in M = 164 intervals (i.e.
1 ≤ x ≤ 164) and guarantees |x − x ′| ≤ 1 in practice.

B. Vector Quantization

To meet the first condition, the network is partitioned
in disjoint groups of highly correlated nodes. We utilize
the distributed vector quantization algorithm underlying the
CC-MAC protocol presented in [5]. Given the nodes’ spatial
statistical distribution � and the spatial correlation model,
e.g., eq. (1), as input, the algorithm selects k representative
nodes out of the N nodes in the WSN. In [5], the selected
k nodes are chosen so that the spatial correlation between
their measurements is reduced, while k is minimized, and the
distortion in the sink’s estimate of the source S is below a given
QoS threshold. As a result correlated measurements are elimi-
nated, without sacrificing needed measurements accuracy, thus
achieving optimal spatial sampling compression, w.r.t. QoS.
Here, we exploit a related property of the algorithm in [5]
to satisfy the ES requirement that w.h.p. a group G of nodes
all sense values less than ε apart. Namely, all nodes within
distance rcorr < r of each representative node, have highly
spatially-correlated measurements and report almost identical
values. rcorr is an output of the representative node vector

quantization algorithm9 used in [5]. Consider a disk, O j , with
radius rcorr , centered at representative node j .

Definition 1(Representative Group): A group of nodes, G j ,
situated in disk O j is called a Representative Group.

Nodes within each representative group Gi utilize
ES-MCDE to transmit their measurements to the sink.
ES operates independently in each Gi , as described
in sections III and IV: each short interval x is assigned to
a distinct subset of nodes Ax in Gi according to MDCE.
Upon measuring a value in interval x during time-slot t , each
node j ∈ Gi checks if it is in Ax . If so, j transmits a signal.
The sink receives the codeword cx and recovers the interval x
using the MDCE map.

Notice that ES’s cooperative transmission of nodes in each
group Gi differs significantly from the scheme suggested
in [5], where each of the representative k nodes transmits non-
cooperatively a single measurement to the sink every time-slot.
We dub the latter scheme presented in [5] non-cooperative
transmission with decorrelation (NCD).

In Appendix C, we show that, as the sensing impreci-
sion due to W j decreases, for the same minimum number
of representative groups/nodes k, the distortion DE S(k) in
sink’s estimates of S converges to the fundamentally optimal
distortion, DNC D(k), achieved by NCD, satisfying the QoS.

VII. PERFORMANCE EVALUATION

We compare the energy efficiency and measurements’ esti-
mate accuracy of the ES scheme to other state-of-the-art
communication schemes for WSN, employing
• data compression: distributed source coding

(DSC) ([11], [12]);
• sampling and communication compressions: non-

cooperative transmission with decorrelation (NCD) ([5]);
• cooperative transmission: cooperative distributed transmit

beamforming (BF) ([20]).

A. Simulation System

The simulation environment and schemes’ implementa-
tions are programmed in JAVA and utilize the BLOG Infer-
ence Engine ([33]), available online. In each simulation run,
N nodes are placed within a 100[m] × 100[m] square area.
Sj ’s are modeled as spatially correlated JGRVs with covari-
ance model Kθ (eq. (1)). The BLOG Inference Engine is used
to generate the set of JGRV Sj ’s.
• The phenomenon’s values are assumed to be in the range

[−4σS , 4σS]; where σS = 625. Notice that if nodes’ sensors
measure temperature with precision 0.1 degree, the range in
our setup would allow for temperature measurements between
−250 and 250 degrees. Per ES, the range of phenomenon
values is quantized into a sequence of intervals, where
M = 5000. Each interval is of length ε = 1, with σW = 0.25.

9If the statistical properties of the phenomenon (i.e., parameters θ1 and θ2)
do not change over time, the representative groups and correlation radius in
the network needs to be determined only once. Otherwise, to satisfy QoS
constraints over time, the representative groups and correlation radius have
to be computed periodically as in [5], depending on the frequency of the
phenomenon’s changes.
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• For all simulated schemes, the transmit power per bit,
Eb, is standard: Eb = 14[dBm]=25[mW]. All schemes utilize
a standard DSSS with processing gain F = 512, at the
physical layer. An exception here is the distributed transmit
beam forming, which is by itself a physical layer scheme.
In all our simulation runs we require that |G| < Cacq = 35
(see Fig. 8). Thus the acquisition capacity of the system is
approximately 35 users/nodes as discussed in Section V.

B. Simulated Schemes

• Per NCD [5], k representative nodes are selected by
the CC-MAC algorithm as above, and each of the k nodes
transmits, non-cooperatively, the entire measurement. The
transmissions of highly correlated nodes are eliminated with
the goal of optimal spatial sampling efficiency. Note that
the scheme’s energy efficiency is equivalent to a duty cycle
scheme. In the latter, only one node is selected to transmit the
entire measurement from each of the k representative groups,
at each timeslot.
• The algorithm underlying the DSC scheme is a single hop

variation of Algorithm 2 in [11] and Algorithm 1 in [12]. The
algorithm is frequently used in more recent works on DSC in
wireless sensor and ad-hoc networks. Given a neighborhood
radius ri around a representative node i , the algorithm con-
structs an ordered sequence Ci of the nodes that are within
the distance ri of i . Next, in the order of the nodes’ sequence,
transmission data rates are allocated as follows: the first node
in the sequence is allocated R1 = H (X1); the second is allo-
cated R2 = H (X2|X1), etc.; the last node in the neighborhood
is allocated rate: RK = H (X K |X K−1, . . . , X1), assuming
|Ci | = K . We set ri = rcorr around each representative node.
Notice that the resulting DSC scheme utilizes lossless data
compression over each sequence Ci of nodes.
• The BF scheme evaluated here is based on the coop-

erative distributed transmit beamforming scheme suggested
in [20]. An assumption in [20] is that upon each transmission,
cooperating nodes are synchronized in frequency with each
other. Furthermore, the nodes need to be synchronized in
phase, so that the gains of BF are realized due to construc-
tive interference at the sink. To satisfy the latter assump-
tion, a simple randomized algorithm is offered in [20] to
achieve phase coherency of the transmitted bits at the sink.
To evaluate the performance of BF, the phase synchronization
feedback algorithm is successfully run at each BF node in G j

to achieve 70% phase coherency at the receiver (which is
equivalent to achieving about 80% of beamforming gains) in
accordance with practical BF performance. Similarly to the
above schemes, the beamforming groups G j are formed within
correlation radius rcorr around each of k representative nodes.

C. Energy Efficiency and Estimate Inaccuracy

All schemes are simulated and compared in terms of two
metrics: energy consumption and estimate inaccuracy at the
sink. Energy consumption is given by the average energy con-
sumption E per node in the network for τ reporting timeslots.
Estimate inaccuracy is given by the average inaccuracy of the

Fig. 6. Energy consumption for 150 rounds and different rcorr
a) rcorr = 15m; inset: DSC performancs; b) rcorr = 30; 45m. Energy
consumption decreases as the correlation radius increases (number of rep-
resentative nodes decreases). The performance of ES-MDCE performs is
identical to the basic ES-C encoding scheme.

phenomenon point source estimate at the sink over τ timeslots:

V = 1

τ

∑τ

i=1
Vi

where, at timeslot i , Vi = 100|si − s′i |/M . si is the true value
of S at (xi , yi ), and s′i is the estimated measurement at the
sink given the report of representative group Gi , or in the case
ofNCD, the representative node i .

The average energy consumption per network node E for
ES tends to be less than that of NCD and DSC as shown
in Fig. 6 and is comparable to the performance of distributed
beamforming with K = 5 cooperative beamforming nodes.
As expected, both ES-MCDE and ES-C perform identically
in terms of energy efficiency. As more nodes are added to the
network (i.e., increasing the node density), E decreases for all
schemes. In the case of DSC and NCD, the decrease in E is
due to data compression and sampling compression, respec-
tively; in the case of BF, the decrease is due to the increase in
cooperating nodes per group as the network density increases.
The ES-MDCE/ES-C schemes benefit substantially more from
the network density increase, compared to DSC and NCD.
Larger network density allows for smaller values of K ∗



NIKOLOV AND HAAS: ENCODED SENSING FOR ENERGY EFFICIENT WSNs 885

Fig. 7. Estimate inaccuracy; a) rcorr = 15m and; b) rcorr = 30; 45m.
ES-MDCE achieves lower inaccuracy and lower variance than the basic ES-C
encoding scheme. However, all four scheme estimate the source relatively
accurately. The measurements at the representative sites found via vector
quantization model well the phenomenon.

leading to a smaller number of actively transmitting nodes
in |Ax | required to convey the measurement x . At network
densities of 1.5 nodes/m2, ES consumes 2 times less the
transmission energy of NCD; at 1.9 nodes/m2, the energy
is 3 times less; and nearly 5 times less at densities around
3.5 nodes/m2, depending on the correlation radii. As density
increases, |Gi | grows from 15 to 33 nodes and |Ax | decreases
from 7 to 3 nodes (Fig. 6).

BF edges over the performance of ES for the case
of 10 cooperating nodes in the region of lower network
densities. However, the synchronization assumptions of ES are
much more relaxed than those of the BF scheme (see [20]).
Cooperating more than 10 nodes would pose a challenge to
practical distributed transmit beamforming systems and in that
regime ES matches BF performance at higher network density.

DSC achieves lower energy efficiency compared to the rest
of the schemes, since all the nodes within a given neighbor-
hood with radius rcorr transmit with positive rates, allocated
to account for nodes observations’ correlations. The total rate
equals at least the joint entropy of the observed measurements
and is higher than the rest of the schemes’ rate.

Fig. 7 demonstrates that the inaccuracies in the source
estimates are rather similar for ES, NCD, and BF. This is

Fig. 8. Average number of nodes in a group Gi and number of transmitting
nodes K∗ for different network densities. Even at low densities, K∗ is less
than |G|/2, the worst-case of ES operation, and drops further with density.
K∗ is the same for both ES-MDCE and ES-C.

expected in the case of ES and NCD, since as shown in
the Appendix the distortion of the two schemes converges
numerically. However, ES-MCDE outperforms slightly ES-C,
achieving lower estimate inaccuracy. DSC obtains lower inac-
curacy, since all nodes in each rcorr neighborhood around
a representative node send information regarding the sensed
value at their position.

VIII. DISCUSSION

Often in WSN, groups of source nodes share com-
mon or correlated messages. Furthermore, in many such
wireless networks the sink has the inherent ability to recognize
the identities of transmitting nodes. The Encoded Sensing
scheme offers a novel mechanism for exploiting this a priori
knowledge in the system. As shown in this paper, collabora-
tive encoding of shared measurements by a group of nodes
possesses the potential of reducing drastically the amount of
energy required to convey reliably these measurements. In the
context of WSN, ES allows correlation patterns of information
observed at sensor nodes to be accounted for both, the data
modulation and the transmissions at the physical network
layer, via carefully designed codewords.

More specifically, the number of nodes in a group G tends
to increase both with growing network density and the larger
level of spatial correlation across nodes. Hence, increasing the
number of nodes in the network and/or the correlation of their
measurements leads to smaller Hamming weight of any ES
codeword and respectively to fewer transmitting nodes. Each
transmitting node j sends a single binary symbol message,
and the overall data that the ES transmits to convey the
measurements and the energy required per transmission are
guaranteed to be optimal as the size of a group increases.
Hence ES utilizes data compression, sampling compression,
and communication compression, coupled with collaborative
transmission gains. To the best of our knowledge ES is the
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first communication WSN scheme achieving this. We confirm
by simulation and through analytical results that indeed ES
improves energy efficiency compared to state-of-the-art com-
munication schemes by at least a factor of two.

Per ES, the multiple access transmissions’ structure itself
represents a collaborative codeword that the sink can map
back to the desired message, while the message itself is not
transmitted. Other than the energy efficiency of the information
transfer demonstrated in the paper, this novel paradigm may
have applications in providing low-overhead transmissions
security in WSN.

Codes different than the ones presented in this paper can
be used in ES. An intriguing choice of a code would be one
that provides graceful degradation of message fidelity. That is,
given that a node in Ax erroneously transmits a bit (or remains
silent), the received codeword should be guaranteed to yield
only a slightly degraded version of x when decoded. We leave
this problem open for future research.

WSN control messages sent from a group of nodes to the
sink can be handled efficiently as well by the ES schemes.
Each type of control message that needs to be conveyed
from a representative group to the sink can be assigned
to a distinct subset of nodes. Since the number of control
message types is typically low, the number of such required
“control codewords” would be small. Control messages could
be keepalive messages (i.e., test whether the link between the
sink and a given representative group is available), power con-
trol messages (increase/decrease the transmit power of nodes
within a representative group), etc. Various protocols could be
designed to optimize the performance of control codewords
(e.g., control codewords weight based on the number of control
message types and priorities). That aspect is beyond the scope
of this work.

Encoded Sensing Limitations
As presented in this paper, the ES schemes’ application

scenarios are subject to some limitations. We have only
described a single-hop ES operation (i.e., the sink receiving
sensors’ measurements is within the transmission range of the
nodes in the system). Due to space limitations we did not
consider the use of ES in a multihop network setting in this
work. However, ES can be extended for use as a cooperative
transmission layer of various wireless networks cooperative
routing schemes, such as the one in [34]. The broadcast nature
of wireless transmissions causes a number of nodes to receive
the same message x after a neighboring transmission. These
nodes can cooperate using ES to forward x onto the next hop
of a routing path. Notice that in this setting, ES no longer
relies on the amount of correlation across the measurements of
sensor nodes. Coordinating such clusters of forwarding nodes
and ensuring all nodes in a cluster receive the same message
w.h.p. is feasible and open for further investigation.

Currently, ES requires that the sensor network possesses
certain density, so that clusters of sufficiently large number
of nodes (as described in section V.A) can have highly
correlated measurements. This requirement can be satisfied
more easily in the case where the network designer can control
network topology to initially deploy sensor nodes in represen-
tative groups. However, already existing sensor networks with

random nodes distribution may require large density of nodes,
especially for phenomenon statistics depicted in the left most
column of Fig 2. The “grainier” the phenomenon is, the
smaller the correlation radius in the network. The density
of nodes in each representative group and the number of
representative groups should be larger. The required densities
may pose practical limitations on the deployment of ES,
where the statistics of the phenomenon lead to “grainier”
realizations than the ones depicted in the left-most column
of Fig. 2 (i.e., θ2 < 0.5). ES is most suitable for network
deployment scenarios where the phenomenon spatial statistics
are “smooth” (θ2 > 0.5); or, where the cost of each sensor
node is low vis-à-vis feasibility of replacing sensor nodes with
exhausted batteries, so that larger density of nodes is practical.

More generally, ES as presented in this work assumes
statistical correlation model of the sensed phenomenon. If not
available, the correlation model can be estimated as part
of exploratory deployments (e.g. [37]). Given a correlation
model, encoded sensing would be applicable if nodes are ran-
domly deployed or change positions, as long as the correlation
groups are updated with changes in topology. In cases where
the correlation model cannot be approximated, non-parametric
field estimation methods such as the ones proposed in [25] may
be used instead of encoded sensing.

APPENDIX

A. Proof of Theorem 2

Theorem 2: Let FE be the probability that a MDCE code-
word transmitted by group G is invalid or wrong, then FE → 0
as |G| → ∞.

Proof: The probability Pk that k nodes are in error is:

Pk =
( |G|

k

)
pk

e (1− pe)
|G|−k . (A.1)

Moreover, the probability that at most k nodes are in error is:

Fk =
k∑

i=0

( |G|
k

)
pk

e (1− pe)
|G|−k . (A.2)

Notice that k ≤ |G|pe, since k < |G|/2 and pe < 1. Therefore
using Chernoff’s bound, we obtain:

Fk ≤ ex p

{

− (|G| pe − k)2

2|G|pe

}

. (A.3)

Suppose node j is one of the k nodes that erroneously
determines the codeword to be transmitted is cx ′ . Node j
checks the bit at position j in cx ′ to determine its transmission
decision according to eq. (3). Notice that node j ’s decision
would be erroneous only if the bit at position j in cx ′
is erroneous. Since |x − x ′| = 1, we are guaranteed that
HD(cx , cx ′) = 2 from eq. (6). Also, we have that |cx ′ | = |G|.
Hence, the probability p j that the bit at position j in cx ′ is
erroneous is given by:

p j = 2

|G| (A.4)

Given that we have at most k nodes in error, the probability
PR that any of the k nodes reports erroneously (causing at
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least a single bit error in the codeword received at the sink)
can be bounded as follows:

PR =
⋃k

j=1
p j ≤

∑k

j=1
p j =

∑k

j=1

2

|G| =
2k

|G| , (A.5)

where the inequality follows from the union bound. Since the
probability that at most k nodes are in error is Fk from (A.3),
we have that in this case the overall probability FE of error
in the message is given by:

FE = FK PR ≤ 2k

|G|ex p

{

− (|G| pe − k)2

2|G|pe

}

(A.6)

Note that if exactly k nodes are in error then

PE = Fk PR ≤ 2k

|G|
( |G|

k

)
pk

e (1− pe)
|G|−k , (A.7)

since the probability that exactly k nodes are in error is Pk

from (A.1).
Assuming pe is small,10 k is a constant, and |G| is large

PE ≤ 2k

|G|
e−|G|pe (|G|pe)

k

k! . (A.8)

Note that PE → 0 as |G| increases, and the probability that a
MDCE codeword transmitted by group G is invalid or wrong
can be made arbitrarily low. Similarly, FE → 0 in (A.6) as
|G| increases. �

B. Proof of Theorem 3

Suppose that we have a set of M messages to encode and
consider a Gray codebook with words of length n = |G|. Let
x = 0. For each consecutive word c in the Gray codebook,
we check if m = w(c) = |Ax | = K ∗, so that eq. (2) is
satisfied; if true, we add c to our MDCE codebook, set cx = c
and increment x by one. We stop when x = M .

Theorem 3: The resulting MDCE code satisfies

|x − x ′| = 1⇒ HD(cx , cx ′) = 2

and hence is a minimum distance combinatorial encoding.
Proof: We first note that the standard reflexive binary Gray

code of length n is given recursively as

Grayn = 0Grayn−11reverse(Grayn−1)

where the reverse() operation simply reverses the binary
sequence. Let MDCEm,n be the subsequence of the Grayn

code, where w(c) = m for c ∈ Grayn . Then,

MDCEm,n = 0MDCEm,n−11reverse(MDCEm−1,n−1).

Notice that MDCE0,n = {000 . . . 0}: a run of m 0s, denoted
as 0m . Also, MDCEn,n = 1m .

By induction, we have the first word in MDCEm,n is
0n−m1m , and the last word in MDCEm,n is given by
10n−m1m−1. For example,

MDCE1,2 = {0MDCE1,1, 1reverse(MDCE0,1)}
= {02−111, 102−110} = {01, 10}.

10For instance, as the instrumentation noise decreases, likely scenario as
WSN hardware solutions improve, the probability of inaccurate measurements
decreases as well.

Invariantly, to obtain

1reverse(MDCEm−1,n−1)

we need to flip only 2 bits in

0MDCEm,n−1.

To see that, we observe that

0MDCEm,n−1 = 010n−m−11m−1

and

1MDCEm−1,n−1 = 110n−m−101m−2

by induction ∀m ≥ 2. Trivially, for m = 1 we again only flip
2 bits to transition from

0MDCEm,n−1

to

1reverse(MDCEm−1,n−1).

Therefore every two consecutive words in our code differ
by the signs of two bits, and hence |x − x ′| = 1 ⇒
HD(cx , cx ′) = 2 is satisfied. Since we only selected code-
words c where m = w(c) = |Ax | from the Gray code, we have
constructed minimum distance combinatorial encoding of the
measurements x . �

C. Distortion of Measurement per ES and NCD

The estimate of the source S at the sink produced uti-
lizing either ES or NCD is distorted, since 1) only infor-
mation regarding the measurements of the k representative
out of the N nodes in the network is taken into account,
and 2) there is channel noise and sensing imprecision noise
present. The CC-MAC algorithm in [5] utilized for repre-
sentative node selection both by NCD and ES ensures that
the number of selected k nodes is minimized, so that the
distortion D(k) is optimized within a quality of service con-
straint DQoS. We demonstrate that ES achieves similar level
of distortion. For both schemes the distortion is given by the
standard Minimum Square Error (MSE) metric:

D(k) = E[(S− S′)2] = E[S2] − 2E[SS′] + E[S′2] (C.1)

where S is the value of the point source and S’ is the estimate
of the point source at the sink given the k reports. Suppose
the channel noise is AWGN, Z j ∼ N(0, σ 2

Z ).
For a non-cooperative transmission scheme such as NCD,

the measurement X j of a representative node j is transmitted
most efficiently using uncoded transmission ([35]) subject to
power constraint P per node, per measurement. The received
signal at the sink is:

Y j =
(
Sj + W j

) √
P/

(
σ 2

S + σ 2
W

)+ Z j .

The optimal decoder at the sink is given by the standard
MMSE estimator ([48]):

S′j = Y j (E[Sj Y j ]/E[Y j ])
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Fig. 9. Distortion of measurement for ES and NCD (as given by equations
C3 and C2 respectively); σW = 0.25, 0.05, respectively, in a) and b); σS = 5
throughout. ES and NCD converge for lower values of σW .

and

S′ = (1/k)
∑k

j=1
S′j .

Evaluating (C.1) term by term and simplifying yields:

DNC D(k)

= D(k, P) = σ 2
S − σ 4

S

[(
σ 2

S + σ 2
W

) (
1+ σ 2

Z /P
)]−1

×
[

1

k

(
2
∑k

i=1
ρS,i − 1

)

− σ 2
S

k2

∑k

i=1

∑k

j=1, j �=i

ρi, j

σ 2
S + σ 2

W

− (1− 1/k) σ 2
Z

P

]

Per ES, |Ax | = K nodes transmit for each of the k
representative groups. The nodes transmit in a multi-access
interference limited system utilizing DSSS. The channel noise
is negligible in comparison to nodes’ mutual interference.
However, since the system operates at acquisition capacity,
the probability of transmission error due to interference goes
to 0 ([28]); also see section V) and w.h.p. does not incur dis-
tortion of measurement. Here, we have assumed the range of
values a phenomenon can take is split in intervals of length

ε = 2βσW , with β ≥ 2. Hence, per each group G j ,
the estimation of measurement at the sink is S′j = Sj +2βσW .

As before, S′ = (1/k)
∑k

j=1 S′j and plugging in (C.1) yields

DE S (k) = σ 2
S

[
1− 1

k

(
2

∑k

i=1
ρS,i − 1

)

+ 1

k2

∑k

i=1

∑k

j=1
ρi, j +

(
2βσW

σS

)2
]

(C.2)

Aside from the term (2βσW/σS)2, ES achieves similar dis-
tortion to NCD as the number of representative groups/nodes
increases and σW < σS . Figure 9 illustrates the numerical
evaluation of DE S(k) and DNC D(k). The behavior of the
two distortion functions is evaluated for varying number of
representative nodes/groups, given the correlation model (20)
and its parameters: θ1 ∈{100, 500, 1000}, and θ2 = 1. The
number of representative nodes in NCD is equal to the number
of representative groups in ES. For both schemes, this number
is set to the minimum, while achieving the desired distortion
of measurement imposed by QoS constraints.
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