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Optimal Capacity Sizing for Completely Green
Charging Systems for Electric Vehicles

Juliette Ugirumurera, Zygmunt J. Haas, Fellow, IEEE

Abstract— Although proliferation of electric vehicles (EVs) is
associated with significant environmental benefits, these benefits
would be forfeited if the associated EV charging systems would
rely only on conventional power grid, whose power is mainly
generated by fossil-fueled power plants. In contrast, utilizing
distributed renewable energy sources (RES) will preserve and
further amplify these environmental benefits. However, planning
of green EV charging systems has not been adequately investi-
gated in the technical literature. This paper studies the optimal
sizing of a completely green charging system, which relies entirely
on the power generated by RES, specifically by solar panels.
In particular, this paper presents a methodology to determine
the optimal resource size (e.g., the number of solar panels
and the energy-storage capacity) that minimizes the charging
system’s investment costs, while meeting the charging system’s
performance metrics. A search-based algorithm is devised to
solve the formulated nonlinear integer programming problem
in order to efficiently explore the problem’s solution space.
A 3-D Markov chain model is used to account for the inter-
mittency in solar power production. Finally, an example of a
completely green charging system is presented to demonstrate
the use of the proposed methodology.

Index Terms— Charging station model, completely green
systems, electric vehicles (EVs), energy storage systems (ESSs),
optimization, renewable energy sources (RES).

NOMENCLATURE

a Coefficient of solar radiation equation.
Ak Solar panel area size.
b Coefficient of solar radiation equation.
B Energy Storage state-of-charge level.
C f Number of kWh to fully charge EV battery.
Cs Number of installed charging stations.
d Charging completion probability.
D Average delay per EV.
Dtd Target average delay.
e Identity vector.
E[V ] Expected number of EVs.
f EV battery level index.
F Index for maximum EV battery demand.
g Number of fully charged EVs.
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geoinv Inverse cumulative geometric distribution.
G Solar radiation intensity.
h Time-of-day period index.
H Total number of periods per day.
hw Time-of-day period with smallest average solar

energy.
J Number of rows/columns in the system transition

matrix.
K Number of solar panels.
Kmax Upper bound for number of solar panels.
Kopt Optimal number of solar panels.
l Energy storage state index.
L Index for completely depleted energy storage state.
m Number of EV arrivals.
N Number of operational charging stations.
P System transition probability.
Pbl Blocking Probability.
phw Smallest average solar energy per time-of

day period.
Q System transition matrix.
r Solar radiation state index.
R Completely overcast sky state.
s Season index.
t Index for years.
T Total number of years in planning horizon.
U Discount rate.
v Number of EVs in the system.
V Maximum queue capacity.
W Present worth coefficient.
x Number of timeslots that an EV waits before

departing.
Y Charging station rate.
z System solution index.
ᾱ System throughput.
βess Energy storage capacity.
βmax Upper bound for energy storage capacity.
βopt Energy storage optimal capacity.
γ Ratio of per-kWh energy storage cost to per kW

renewable production cost.
δ1 Difference between EV battery levels.
δ2 Energy difference between energy storage states.
ε Maximum energy demand use in solution space

bounding.
ζ Solar panel investment cost per kW.
η Solar panel efficiency.
λ EV arrival rate.
μe Energy storage annual maintenance cost per kWh.
μk Solar panel annual maintenance cost per kW.
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θ Available power from all solar panels.
π Steady-state probability.
�̄ Steady-state probability vector.
ρ Solar panel output power.
℘ Probability value used in upper bounds calculations.
� Uniformly distribute random number in interval

(0, 1).
τ Duration of timeslot.
χ Elevation angle.
ψ Solar state-transition probability.
� Solar state-transition matrix.
φ Probability of charging EVs.
ω Solar panel maximum generating capacity.
� Matrix of cumulative transition probabilities.

I. INTRODUCTION

RECENTLY, growing environmental concerns, combined
with the advances in the field of energy storage, have

contributed to the rapid development of electric vehicle (EV)
technologies. Large-scale EVs deployment in the transporta-
tion sector has the potential to reduce greenhouse emissions,
increase renewable energy penetration, and save fuel cost for
drivers [1]. Since EVs run exclusively on their battery’s elec-
tric power, an increase in availability of public EV charging
stations is crucial for EV widespread usage [2]. Accordingly,
there have been works that study the optimal placement and
sizing of grid-connect EV charging stations [3]–[8], where the
charging energy is mainly drawn from the existing power grid.
However, the use of the power grid, whose power is mainly
generated by fossil-fueled power plants, reduces the overall
EVs benefits and can even increase the overall emission levels
as compared with the fossil-fueled vehicular systems [9].

Completely green charging systems (CGCSs) are EV charg-
ing systems, in which the energy is produced entirely by
renewable energy sources (RES), such as solar panels or wind
turbines. CGCSs reduce carbon emissions by charging EVs
exclusively by renewable energy, thus increasing the pen-
etration of RES in the energy sector. CGCSs also have
the potential to decrease EV charging costs [10]. However,
the uncertainty (e.g., daily randomness in cloud coverage for
solar panels) and time-dependence (e.g., seasonal variations
in sun exposure) in RES’s power generation is a significant
challenge in the design of CGCSs. Accordingly, energy storage
systems (ESSs) are important components of CGCSs, as they
helps to stabilize the RES energy production [11]. Addition-
ally, the study of CGCSs requires the utilization of stochastic
models and methods to account for the unpredictability in
renewable energy production [12].

This paper presents a methodology for the optimal sizing
of a CGCS for EVs, where the source of charging energy is
produced entirely by solar panels. A charging system located
in a secluded completely green village is considered, where the
green village is a small-scale power system isolated from the
main power grid. The load demands of the completely green
village are met entirely by the distributed RES. Isolated green
villages are appropriate for remote areas, where the expansion
of the existing power grid may be impossible or impractical,

such as is often the case in developing countries. They are also
useful as backup power sources for local communities in case
of grid failures (physical sabotage or cyber-attacks) or other
power outages (grid collapse or load shedding). Finally,
because of their beneficial effect on reducing the carbon
footprint and, consequently, the global warming, completely
green communities are expected to become more and more
common in the future. Of course, the main challenge of a
completely green system, in general, and a completely green
charging system, in particular, is the intermittent behavior
of RES; e.g., sun radiation is not present at night or may
be insufficient to meet energy demand during highly clouded
days. Although different RES types may exhibit some limited
complementary behavior (e.g., wind may partially compensate
for the lack of nocturnal solar energy generation), this typically
is insufficient for a continuous operation of a completely green
system. Accordingly, some form of energy storage is required
in such systems to compensate for: 1) randomness in the
energy generation and 2) lack of continuous energy generation
in a 24-h period of some RES types. The goal of the presented
methodology is to determine the optimal number of solar
panels and the ESS capacity that satisfy the EVs’ charging
demand and performance metrics (e.g., average EV charging
delay), while minimizing the system’s investment costs.

The rest of this paper is organized as follows. In Section II,
existing studies related to this paper are discussed. Section III
presents the system model and the problem statement, while
Section IV delineates the algorithm for the solution of the
formulated problem. The proposed methodology is applied to
an example case study in Section V. Section VI describes the
data and steps needed to successfully utilize the presented
methodology in practice. Finally, Section VII concludes the
paper.

II. RELATED WORKS

Recently, researchers have recognized the role of EVs in
increasing the utilization of renewable energy in the power
grid. Nguyen et al. [13] proposed to coordinate the charging/
discharging of EVs to handle the frequency deviation in
the power grid due to renewable energy intermittency.
Reference [14] describes a distributed charging algorithm
to control large EVs populations to balance the intermittent
renewable generation and to allow high penetration of RES in
the grid. In [15], a charging control approach was presented
that manages an EV fleet, so that the cumulative power con-
sumption of an electricity distribution network, including solar
generation, approximates a specified target profile. In compar-
ison, while [13]–[15] studied the charging/discharging of EVs
to improving renewable energy utilization in a power grid,
this paper studies the optimal planning of a completely green
charging system that is isolated from the main power grid; i.e.,
a system in which the EVs charging relies exclusively on RES.

The use of RES for EV charging has been considered in
a number of works. For example, [16] and [17] investigated
the potential of daytime solar-based charging stations located
in a workplace parking garage to cover EVs power demand.
In particular, in [17] simulations results showed that 48 parking
lots in Frauenfeld, Switzerland, if covered with solar carports,
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could meet 15%–40% of transportation energy demand.
Tulpule et al. [10] considered a grid-connected photovoltaic-
based station located in a workplace parking garage in order
to maximize the use of solar power. Similarly, [18] analyzed
the possibility of charging EV batteries at workplace in
Netherlands using solar energy, with the aim of minimizing
grid dependence and maximizing solar power use. However,
the above works [10] and [16]–[18] did not focus on the
optimal sizing of the RES (e.g., to minimize the EV charging
system’s investment/operational costs), but rather assumed
fixed RES capacity that fits the available parking lot space.

Park and Kwon [19] investigated the potential of renewable
electricity generation for taxi services in Daejeon, South
Korea, considering solar energy, wind energy, batteries, and
electric-grid connection. The cost of energy for the resulting
renewable generation system was assessed, however, without
consideration of randomness in renewable energy produc-
tion or EV charging performance level. In contrast, in this
paper, a queueing model is utilized to formulate the charging
system sizing problem in order to account for randomness
and fluctuations in renewable energy generation. In particular,
a multidimensional discrete-time Markov chain model is uti-
lized, in which each system state is defined by the number
of EVs, the solar radiation intensity (for solar panels’ energy
generation), and the ESS state of charge (SOC). Additionally,
unlike [19] that considered static daily EV load, the utilized
queueing model allows to account for the randomness in EV
arrivals, while the queueing performance measures are used
to evaluate the charging system’s operation. Examples of the
performance measures include the system’s throughput, which
determines the number of EVs charged per unit time, and the
expected system delay, which corresponds to the average time
that an EV spends in the charging system.

III. SYSTEM MODEL

As illustrated in Fig. 1, the CGCS is a collection of
EV charging stations utilizing the energy produced by solar
panels and the energy discharged from the ESS. For sim-
plicity, the system’s charging stations are assumed to be
identical and deliver power at the same charging rate of Y [in
kilowatt (kW)]. It is also assumed that the charging system’s
energy is supplied by identical solar panels with the same
power generation capacity (in kW).

Additionally, the following energy consumption policy is
assumed for the charging system: 1) by default, EVs are
charged by the power generated by the solar panels; 2) when
the produced solar energy is greater than the energy necessary
to operate the required number of charging stations to serve
the EVs currently present in the CGCS, the excess energy
is stored in the ESS; and 3) in case when the solar panels’
energy is insufficient, the charging system discharges from the
ESS as much energy as is available to cover the extra load.
As this policy gives priority to utilizing the energy produced by
solar panels, it can be derived that investment in solar power
capacity will be generally larger than the investment in the
energy storage capacity. This will be shown in the numer-
ical results presented in Section V. Other energy utilization
policies could be used; e.g., when the ESS is not completely

Fig. 1. Completely green EV charging system.

charged, the energy management protocol could always draw
some fraction of the generated power to charge the ESS.
Alternatively, the energy management protocol could put a
limit on the amount of energy discharged from ESS within
particular time periods. In this case, the investment in energy
storage capacity would be dictated by the ESS discharge limit,
and the solar panels’ capacity might be higher due to this
discharge ESS limit. Yet another energy management protocol
could limit the solar energy and ESS energy use depending
on the perceived reward from serving the EVs demand within
a particular time period. With this later scheme, the ESS and
solar panel capacity would depend on the particulars of the
reward model.

A. EV Model

It is assumed that the maximum capacity of an EV battery
is CF , and that an EV state is characterized by its energy
in kWh, C f , needed to fully charge its battery, where C0 ≤
C f ≤ CF . It is further assumed that this EV charge demand is
discretized into equal-size levels: C0,C1,C2, . . . ,C F , where
δ1 = Ci −Ci−1 is defined, for 0 < i ≤ F . Accordingly, C0 = 0
kWh corresponds to no energy demand—i.e., a fully charged
EV battery, while CF corresponds to the maximum energy
demand per EV. The duration of a timeslot τ = δ1/Y is the
time interval required to charge an EV battery with δ1 kWh.
The choice of the value of δ1 depends on the desired accuracy
of the system model. Since in practice the EV energy demand
is continuous, in the above-discretized model, a particular
demand will be approximated to the closest C f level, thus
introducing some error. Of course, the smaller δ1 is, the smaller
is this discretization error.

B. Solar Panel Model

In this paper, only solar panels are considered as RES, with
plans to incorporate other types of RES (e.g., wind turbines) in
the future works. K identical solar panels are modeled. Each
solar panel unit has a maximum power generating capacity
of ω [kW] and is also associated with a per kW investment
cost of ζ [$/kW], which includes equipment purchasing and
installation costs. A solar panel also has a per-kW annual
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TABLE I

COEFFICIENTS FOR (1)

maintenance cost of μk [$/kW] [20]. The solar output power
depends on the solar radiation, which is modeled following
the discrete-time Markov chain presented in [21] and [22].
This discrete Markov model relies on the local cloud cov-
erage data, which account for the effect of climatological
conditions on solar radiation intensity, including cloud type,
cloud movement, cloud formation and dissipation, humidity,
and atmospheric pressure.

The cloud coverage is measured in Oktas, which is an
indication of how many eighth parts of the sky are covered by
the clouds [23]. The level of cloudiness is then expressed as
an integer between 0 and 8, where 0 is the completely clear
sky state and 8 corresponds to completely overcast sky [24].
Accordingly, the solar radiation intensity, G [kW/m2], can be
in any of nine distinct states: the r = 8 state where the sun
is completely covered by clouds, so that the solar panel does
not produce any power (G0 = 0 [kW/m2]); and the r = 0
state which corresponds to the maximum solar radiation state,
where the solar panel produces its maximum power. The solar
radiation intensity is obtained from the cloud coverage and the
sun’s elevation angle χ , as shown in (1). In (1), r refers to the
number of Oktas, and the values for the constants b(r), a(r)
and ai (r) for i = 0, 1, 2 are shown in Table I [25]

Gr =
[

a0(r)+ a1(r) sin χ + a3(r) sin3 χ − b(r)

a(r)

]
. (1)

A detailed discussion on the elevation angle χ and the
empirically determined relationship in (1) is presented in [25].

The transition probabilities between the r states are esti-
mated from the measured cloud coverage data intuitively as
shown in (2) [22], where ψi, j is the estimated transition
probability from state i to state j , and qi j is the number of
transitions within one-hour period from the cloud coverage
level i to the cloud coverage level j [22], [24]

ψi, j = qi j∑8
k=0 qik

. (2)

The transition probability matrix � is then determined as

� =

⎡
⎢⎢⎢⎣
ψ0,0 ψ0,1 . . . ψ0,R
ψ1,0 ψ1,1 . . . ψ1,R
...

...
. . .

...
ψR,0 ψR,1 . . . ψR,R

⎤
⎥⎥⎥⎦ . (3)

Using the radiation intensity Gr , the solar panel’s output
power (in units of kW) is found by

ρr = η·Ak · Gr (4)

where η and Ak represent the solar panel’s efficiency (in %)
and the total area of the panel (in m2), respectively. Of course,
ρr ≤ ω.

In order to account for the seasonal and time-of-day vari-
ations in the cloud coverage, different transitions matrices
should be considered, each representative of a particular time-
of-day period for a season in a year [22]. As an example,
a typical day in a season could be represented by three matri-
ces, one for the morning period (8am–11am), one for mid-day
(11am–2pm), and another for the afternoon (2pm–5pm),
because during each of those times, the meteorological condi-
tions remain relative constant. This would result in 12 different
transition matrices, where three matrices represent a typical
day in each one of the four seasons (summer, winter, fall,
and spring) of the year. Since a solar panel can only generate
energy during daylight hours, it is assumed that the CGCS
is only operational during daylight hours, as to avoid the
need for large ESS capacity that would be required for night
operation. Of course, the number of matrices collected per
day H should be adjusted depending on the observed daily
and seasonal variations in cloud coverage of the pertinent
geographical location.

C. Energy Storage System Model

A general model for ESS is utilized that is not restricted
to any particular energy storage technology. Accordingly,
the ESS is mainly characterized by its SOC, which is a
value within the range of [0, 1] that indicates the percentage
of charged ESS’ total energy capacity [26]–[28]. The ESS
maximum energy capacity (kWh) is labeled as βess.

Furthermore, a discretized model for the ESS [29] is uti-
lized, where the ESS SOC is divided into L +1 equally spaced
levels: {B0, B1, . . . , BL}, where 0 ≤ Bl ≤ 1. For the ESS
SOC level BL = 0, the ESS is completely depleted, while the
ESS SOC level of B0 = 1 corresponds to the fully charged
state. Accordingly, it is assumed that δ2 = βess(Bl − Bl+1) =
βess/L for 0 ≤ l ≤ L − 1. For simplicity, the Bl levels are
defined in such a way that δ2 is equal to the smallest possible
transferrable energy to/from the ESS per timeslot, where a
timeslot equals to τ as previously defined. As an example,
δ2 could be the energy (in kWh) stored in the ESS during
one timeslot by a solar panel operating in the state G7 (recall
that G7 is the solar radiation state that corresponds to the
state of the smallest solar energy production). Under the above
assumptions, the ESS charging/discharging is a deterministic
process, and hence the transition probability from state l to
state l ′ of ESS is going to depend on transition probabilities
between solar radiation states (the energy generation rate)
and the probability of EVs arrival and departure (the energy
demand rate).

The ESS has an associated investment cost per kWh of ξ
[$/kWh], which includes purchasing and installation costs. The
ESS is also associated with a maintenance cost μe ($/kWh)
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per year [7], [30]. Parameter γ is used to express the ratio
of the ESS energy storage cost per kWh to the solar energy
generation cost per kW; i.e.,γ = (ξ + Tμe)/(ζ + Tμk),
where T is the system’s planning horizon in years.

This approach of ESS modeling could be customized
to fit the charging/discharging process of many different
energy storage technologies, including energy storage meth-
ods with linear and nonlinear charging/discharging process,
as well as a technology that requires a delay period before
charging/discharging starts.

D. Queueing Model

A discrete-time Markov chain is considered with a discrete
Poisson arrival process of EVs of intensity λ[arrivals/timeslot],
where the timeslot duration τ is as previously defined. The
utilized service time model is inspired in [31], which assumes
different battery sizes and corresponding exponentially dis-
tributed EV service time. However, due to the current model
being of discrete-time type, an analogous geometric service
time distribution is assumed, driven by the randomness in the
amount of energy needed by the EVs’ batteries. The parameter
d denotes the EV charging completion probability during a
timeslot [32]. Therefore, d is the probability that an EV battery
requires δ1 kWh at the beginning of a timeslot, meaning that,
if there is enough power, the EV battery will be fully charged
at the end of the timeslot. In the discrete-time model, all state
transitions (i.e., departure/arrival of EVs to/from the system,
change of radiation levels, change of ESS’s SOC) occur at the
timeslot boundary. That is, for example, if an EV arrives in
the middle of a slot, it will start charging only at the beginning
of the next timeslot.

It is assumed that a server in the queueing model cor-
responds to a charging station with rate Y , so that each
charging station can serve at most one EV at any given
time. The charging system has a maximum of Cs installed
charging stations. The challenge in analyzing the charging
system’s queueing model is that the number of operational
servers/charging stations during a timeslot is a random variable
that depends on the available insolation intensity Gr and on
the ESS SOC. Note that in the current model, ESS discharges
energy whenever the available solar radiation does not suffice
to meet the EV demand. Additionally, the number of active
charging stations cannot be greater than the number of EVs
v in the charging system. Hence, given the number of solar
panels K , the available solar power θr = K · ρr , the number
of EVs in the system v, and ESS’s SOC Bl , the number of
operational charging stations during a timeslot is

Nv,r,l = min(Nr + Nl , v,Cs ) (5)

where Nr = θr/Y is the maximum number of charging
stations that can be operated with the available solar power
of θr , and Nl = Cess·Bl/(Y · τ ) is the largest number of
charging stations that can be powered by the available ESS
energy. Hence, given v EVs in the system, the probability that
g out of v EVs are fully charged within a timeslot is given by

φv,g =
(

Nv,r,l
g

)
dg(1 − d)Nv,r,l −g. (6)

It is noted that in case of a reduction in the number of opera-
tional charging stations Nv,r,l due to a decline in solar radiation
intensity and with lack of stored energy to compensate for this
decline in the solar radiation, there is a possibility of service
interruption of the charged EVs. However, since the change in
Nv,r,l happens at the timeslot boundary, the EV service time
remains geometrically distributed. The suspension in service
is reflected by a decrease in the system’s charging completion
probability in (6) due to decline in Nv,r,l .

In the current queueing system model, there is maximum
queueing capacity of V EVs, which is set by the charging
system operator (i.e., there is space for maximum of V EVs
in the system). Once there are V EVs in the system, no more
EVs can enter the system. The goal is to minimize the average
number of blocked EVs, which corresponds to loss revenues
to the charging system owner.

E. State Space and the Transition Probabilities

Each system state is represented by a tuple (v, r, l), where
v (0 ≤ v ≤ V ) is the number of EVs in the system,
r (0 ≤ r ≤ 8) is the solar radiation state, and l (0 ≤ l ≤ L)
is the ESS SOC. The transition probabilities from state (v, r, l)
to state (v ′, r ′, l ′) are derived, where the system’s one-step
transition probability Pv,r,lv ′,r ′,l′ refers to the probability of tran-
sitioning from state (v, r, l) to state (v ′, r ′, l ′) in one timeslot.
Some of the state transition can be easily defined, for example:

Pv,8,0v+m,r,0 = ψ0,r Pr (m), v + m < V

Pv,8,0V ,r,0 = ψ0,r Pr(m ≥ V − v) (7)

where Pr (m) is the probability of having m EV arrivals in
a timeslot following a Poisson distribution with mean λ, and
Pr (m ≥ V − v) is the probability of having V − v or more
EV arrivals in a timeslot given a Poisson arrival process with
mean λ.

For state transitions where the number of EVs varies
and/or the solar radiation state varies, the ESS’ SOC also
changes depending on the need to charge/discharge energy
from the ESS. For instance, an increase in number of EVs
might require discharging the ESS to serve the arriving EVs,
while an excess of the renewable energy due to a rise in
solar intensity will start a charging process of the ESS. The
transition probability from state (v, r, l) to state (v ′, r ′, l ′) is

Pv,r,lv ′,r ′,l′ = ψr,r ′
∑

| min(0,h)|≤m≤v ′
Pr(m).φv,m+h (8)

where h = v − v ′, v ′ �= V , and φv,g is determined as shown
by (6). In addition, since the change in ESS’ SOC depends on
the current solar state r and the number of EVs v, there is a
restriction on the value of l ′, which has to corresponds either
to l1 or l2 as (or otherwise Pv,r,lv ′,r ′,l′ = 0)

l1 = max

(
l −

[
(Nr −Nv,r,l )·Y · τ

δ2

]
, 0

)
, Nr ≥ min (v,Cs )

l2 = min

(
l +

[
(Nv,r,l −Nr )·Y · τ

δ2

]
, L

)
, Nr < min(v,Cs ).

(9)
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When v ′ = V , the transition probability from state (v, r, l)
to state (V , r ′, l ′) is

Pv,r,lV ,r ′,l′ = ψr,r ′
∑

h≤m≤V

Pr(m)
∑

h≤i≤m

φv,i−h

+ψr,r ′ Pr(m > V )
∑

h≤i≤V

φv,i−h (10)

where h = V − v, l ′ is defined by (9), and Pr (m > V )
is the probability of having more than V EV arrivals in a
timeslot. Additionally, there are transitions probabilities for
which Pv,r,lV ,r ′,l′ = 0, in the following.

1) (r = 8) ∧ (l = 0) ∧ (v ′ < v), where ∧ is the
“and” operator (EVs cannot complete charging without
energy).

2) (l ′ �= l1)∧ (l ′ �= l2) (i.e., l ′ does not indicate the correct
ESS state).

3) h = v ′ − v > Nv,r,l and v ′ < v (there is not enough
energy to completely charge h EVs).

The one-step transition matrix Q is defined with J columns
and J rows, where J = (V +1) · (R +1) · (L +1) and R = 8.
The steady-state probability vector �̄ = [�̃0, . . . , �̃V ], where
�̃v = [�v,0, . . . ,�v,R], �v,r = [πv,r,0, . . . , πv,r,L] and
πv,r,l is the steady-state probability of being in the state
(v, r, l). The rows and columns in the matrix Q, which are
numbered from 1 to J , have a one-to-one correspondence
with the CGCS’s states, which are ordered from (0, 0, 0) up to
(V , R, L), following the ordering of elements of the vector �̄.
To determine the steady-state probabilities, the following equa-
tions are solved:

�̄ = �̄× Q∑
v,r,l

πv,r,l = 1. (11)

F. Performance Measures and the Sizing Problem

The queueing theory performance metrics are utilized to
evaluate the performance of the EV charging system. The
expected number of EVs at the charging system is

E[V ] =
∑

0≤v≤V

�̃v ·v · e (12)

where e denotes an identity column vector of size (R + 1)×
(L + 1). The average number of EVs that leaves the charging
system per timeslot, or the average system throughput per slot,
is determined by

ᾱ =
∑

0≤v≤V

∑
0≤r≤R

∑
0≤l≤L

πv,r,l

⎛
⎝ ∑

0≤g≤Nv,r,l

g · φv,g
⎞
⎠ (13)

where φv,g is a given in (6). The blocking probability Pbl

denotes the fraction of EVs unable to enter the charging system
and can be obtained from the average throughput as in

Pbl = 1 − (ᾱ/λ). (14)

By Little’s law, the average delay time (in timeslots) per EV is

D = E[V ]/ᾱ. (15)

The average delay is an important performance measure
for the overall performance of the charging system, as the
sizing problem seeks to determine the optimal number of
solar panels K and the size of ESS Cess, such that the
target EV delay Dtd [timeslots] is not exceeded. As the
atmospheric conditions vary per season and per time-of-day,
the charging system’s delay is evaluated for each time-of-day
period h (1 ≤ h ≤ H ) and for each season s(1 ≤ s ≤ 4)
of the year to ensure that the target delay is met at all times.
Hence, Dh,s is the average delay [timeslots] per EV found
by evaluation (15) for period h of season s. The goal of the
sizing problem is to minimize the total costs throughout the
planning period as shown in (16), where t is the year index.
The formula W = (1 + U)−(t−1) is used as the present-worth
value coefficient [33], where U is the discount rate. More
specifically, W is used to adjust the future maintenance cost
to the present value by incorporating discount rates in the
present-worth cost [20]. The same present-worth factor W is
assumed for the solar panels and for the ESS, although this
could be easily changed if needed. T is the total number of
years in the planning horizon (e.g., hardware retention time).
Thus, the overall optimization problem formulation is

min Cost (K , βess) = K · ω
⎛
⎝ζ +

∑
1≤t≤T

W · μk

⎞
⎠

+ βess

⎛
⎝ξ +

∑
1≤t≤T

W · μe

⎞
⎠

s.t Dh,s ≤ Dtd, 1 ≤ s ≤ 4, 1 ≤ h ≤ H. (16)

IV. SEARCH-BASED ALGORITHM

The EV average delay as a function of the number of
solar panels and the ESS capacity is a highly complex and
nonlinear problem [34], making (16) hard to solve even as
a nonlinear integer programming problem. For such complex
problems, search techniques have been proven to be effective
in finding optimal or near optimal solutions [35]. Accordingly,
a search-based algorithm is devised to efficiently explore the
problem’s solution space. A solution in the search space is
characterized by two parameters [K , βess], where K is the
number of solar panels and βess is the ESS capacity. The
search-based algorithm seeks to find a solution [Kopt, βopt]
that leads to the minimum system planning cost, while meeting
the predetermined EV target delay, Dtd. It was also noted that
it is only necessary to evaluate Dtd for the seasonal time-of-
day hw that produced the smallest average solar energy, since
a solution that could meet Dtd during hw would necessarily
be able to meet Dtd in any other period as well. Hence, as a
first step, the search-based algorithm determines the hw period
utilizing the transition probability matrices �h,s , where h is
the time-of-day index and s is the season index. The complete
search algorithm is outlined as Algorithm I in the flowchart
in Fig. 2.

The first step in obtaining a solution is to bound the
search space. The upper bound on the number of solar panels
was first established as follows. The geometric distribution
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Fig. 2. Algorithm I.

service process models the number of timeslots an EV have
to wait in the system before it is fully charged; it can
also be viewed as “the number of failures to depart,” which
can be interpreted as the number of energy quanta needed
before an EV is fully charged.geoinv(℘, d) is defined as the
inverse of cumulative distribution of the geometric service
time and ℘ is a probability value. Then x = geoinv(℘, d)
is the number of energy quanta that at least ℘ · 100% of
the arriving EVs have to receive from the charging stations
before they are charged and depart. Ideally, ℘ should be
set to 1 to account for the energy demand distribution of
all EVs, but that would give x= ∞, which would not be
practical; rather, ℘ is set to a value that is very close to 1,
for example ℘ can be set to 0.9999. The maximum observed
energy demand per EV for ℘ · 100% of the arriving EVs can
be found as ε =(x + 1) · δ1 · τ (the +1 accounts for the
timeslot during which the EV departs). It is then argued that
the maximum energy the system would require is when its
queue is full and all EVs’ demand equals to ε. In this case,
the system requires Kmax = �ε · V/( ¯phw · τ )	 solar panels,
utilizing the smallest average solar energy produced per solar
panel ¯phw . Similarly, in the worst case, the ESS would have
to save the energy produced by Kmax solar panels operating
at their maximum capacity, assuming the system’s queue is

TABLE II

ENERGY RESOURCES PARAMETERS

empty. Hence, the upper bound on the ESS capacity is set
to Kmax · ω · τ kWh. Setting upper bounds for the number
of solar panels and ESS capacity restricts the solution space,
which allows the search-based algorithm to find the optimal
solution faster.

In order to effectively search the solution space, the space is
further bounded from below as follows. The algorithm starts
by finding the largest ESS capacity βlg , such that [K max, βlg]
leads to Dhw > Dtd for the period with the least average
solar power generation hw , where Dhw is found as in (15)
by evaluating the Markov chain for hw . The Binary Search
method [36] is utilized in order to find such a βlg in the most
efficient way. Finding βlg allows to disregard all solutions
where βess ≤ βlg regardless of the number of solar panels,
since as [K max, βlg ] does not satisfy Dtd then no solution
with βess < βlg will be able to meet the Dtd requirement.
For each ESS capacity βess in the interval [βlg + δ2, βmax],
the search-based algorithm finds the minimum value of K
that satisfies Dtd using the Binary Search method; clearly,
this will correspond to the minimum cost solution given
this ESS capacity. In order to determine whether a solution
meets Dtd, the Markov chain analysis is used to obtain the
average EV delay Dhw for period hw . The ESS capacity is
always incremented by δ2, since an increment that is less than
δ2 will not change the ESS state. The optimal solution is the
[K , βess] pair that corresponds to the minimum planning cost,
while also satisfying the Dtd requirement.

V. CASE STUDY

A. Case Study Parameters

To illustrate the use of the described methodology, a numer-
ical example is presented in this section. In this example,
the solar radiation’s state r = 0 matches the maximum
solar radiation intensity of 1 kW/m2. The other solar panels’
parameters are shown in Table II, including the investment
and maintenance costs. With a maximum capacity of 25 kW
per solar panel, the solar states r = 0, . . . , 8 corresponds
to the output power values of G0 = 25 kW, G1 =
21.875 kW, . . . ,G7 = 3.125 kW, and G8 = 0 kW per
solar panel. In this example, Y = 25 kW is the charging
power per charging station. δ1 is set to 10 [kWh], which
corresponds to EV charging demand levels of: C0 = 0 [kWh],
C1 = 10 [kWh], C2 = 20 [kWh], etc. In this way, the charging
completion probability d corresponds to the probability that
EV demand equals 10 [kWh]. The timeslot duration is found
as τ = (Ci+1 − Ci )/Y , which is equal to 0.4 h or 24 min.
The ESS parameters are shown in Table II, which also include
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the investment and maintenance costs per kWh of ESS. The
maximum ESS’ SOC level depends on the ESS maximum
energy storage capacity Cess; that is L = Cess/δ2.

The example utilizes the weather condition in Gothenburg,
Sweden, based on the historic records from 1973 to 1999 [21].
The transition probabilities were estimated, as shown in (2).
The example considers the transition matrix shown in (17)
as the time-of-day period hw with the least solar generation
in the above geographical location [21]. As described in the
Algorithm I in Section IV, the 3-D transition matrix in (11) will
be simulated only for this period hw with lowest average solar
energy and the average EV charging delay will be calculated
to ensure that target average delay is met. The example also
considers a planning horizon of 20 years (T = 20) and
a discount rate U = 0.12, which are used to evaluate the
objective function

�1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

53.8 22.5 7.1 4.7 2.7 2.3 1.7 2.6 2.6
15.5 45.5 14.0 9.1 4.3 3.7 3.2 3 1.5

7 24.5 23.4 15.3 8.8 7.2 6.2 5.4 2.2
3.8 13.4 17.7 20.3 12.6 10.6 9 9.1 3.4
2.2 8.5 12.1 15.9 16.2 14.4 13.4 13.2 4.2
1.5 5.1 8.1 12.2 12.6 17.3 18.7 18.3 6.2
1 3 5.2 7.4 9.5 14.2 22.2 28 9.5

0.6 2 2.3 3 3.9 6.3 11.3 50.3 20.4
0.5 0.7 0.8 1.1 1.3 2 3.8 13.5 76.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

B. Simulation Results

First, the presented Markov chain model is validated by
comparing the results of the Markov chain evaluation with the
results of a simulated CGCS system (with the weather parame-
ters defined in Section V-A). The EV arrival process follows a
Poisson distribution process with the rate of λ [EVs/timeslot],
where a timeslot corresponds to 24 min, as define above.
Accordingly, the energy demand per EV is discretized into
equal-sized quanta, where an energy demand quantum equals
to 10 [kWh]. The energy demand (kWh) per EV is generated
according to a geometric distribution with success parameter
d = 0.5. That is, d = 0.5 is the charging completion
probability in a timeslot, which equals the probability of an
incoming EV having energy demand of 10 [kWh].

Using the solar states transition matrix in (17), a matrix of
cumulative transition probabilities � is generated, such that
�i, j = ∑

0≤k≤ j
ψi,k . The charging system begins in a randomly

chosen solar state r . The solar state r ′ in the next timeslot is
chosen as follows: a uniformly distributed random number � is
chosen from interval (0, 1); the next solar state r ′ corresponds
to the state with the smallest index j (r ′ = j) such that
�i, j ≥ �. The charging system was simulated for a total of
100 000 timeslots to guarantee convergence of the simulation
results. The observed EV average delay, average number of
EVs (average number of EVs in the system in a timeslot),
and system throughput (the number of departures per timeslot)
were recorded. The comparison results mainly focus on the

Fig. 3. (a) Average EV delay as arrival rate λ varies. (b) Blocking probability
as arrival rate λ varies.

EV average delay, as this is the main performance measure
used in the sizing problem.

Fig. 3(a) compares the evaluation and simulation results for
the EV average delay as a function of the EV arrival rate λ,
given 50 solar panels, βess = 500 kWh, and Cs = V (the
number of installed charging stations equals to the maximum
number of EVs that can be queued in the system). As seen
from Fig. 3, the Markov chain evaluation results closely follow
the simulated results, registering a difference of no more
than for 1%. The same results’ accuracy was observed for
the blocking probability [shown in Fig. 3(b)], the throughput,
and the average number of EVs (E[V ]). Results of no more
than 3% difference for the EV average delay, the through-
put, and the average number of EVs were observed, when
the number of solar panels, ESS capacity, and the system
queue capacity were varied for the simulated system and
for the Markov chain model. These results demonstrate that
the Markov chain model is a close approximation for the
EV charging system, validating the solution methodology.

C. Evaluation Results

1) Search-Based Algorithm Results: The minimum cost
solutions returned by the search-based algorithm is now con-
sidered, given d = 0.5, λ = 1.5, Cs = V , Dtd = 2, and
V = 6. The upper bounds on the solution space were first
defined as shown in Algorithm I with ℘ = 0.998 resulting in
Kmax = 148 and βmax = 1480. The obtained βn values are
within the interval [640, 1480]; that is βlg = 630 kWh is the
largest ESS capacity, such that [K max, βlg ] leads to Dhw > Dtd
for period hw, where Dhw is found by evaluating (15) for
the period hw . As expected and depicted in Fig. 4, the solar
panels capacity decreases as βess grows. However, the system’s
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Fig. 4. Number of solar panel and system costs as ESS capacity varies.

Fig. 5. (a) Solar panel and ESS capacity as Dtd varies. (b) Blocking
probability as Dtd varies.

investment cost does not increase or decrease monotonically as
the ESS capacity or/and number of solar panels rise or decline,
respectively. Consequently, the optimal solution is the min-
imum cost point of the system cost curve in Fig. 4, which
corresponds to the pair of [24, 1050] (in Solar Panels and kWh,
respectively) for this example case. The blocking probability
for the optimal solution is 2.84%.

2) Varying Target Average Delay: This section analyzes
how the optimal solar panels’ capacity and the ESS capacity
vary as a function of the target average EV delay. The system
parameters are set as follows: d = 0.5, λ = 1.5, Cs = V , and
V = 6. As expected, Fig. 5(a) shows that the optimal number
of solar panels and the ESS maximum capacity decreases
as the target EV delay increases. This is intuitive, since as
the EVs are allowed to spend more time in the charging
system, the charging system can benefit from utilizing its
resources over longer time to meet the target average delay
per EV. This result is mirrored in Fig. 6, which shows that
the CGCS investment cost decreases with the increase in the
target average delay. As expected, Fig. 5(b) shows that the

Fig. 6. System investment cost as Dtd varies.

Fig. 7. Solar panel and ESS capacity as γ varies.

system’s blocking probability, or the portion of EVs unable to
enter the system, rises as Dtd increases. That is, as the EVs
are allowed to spend more time at the charging system (i.e., as
Dtd grows), more arriving EVs find the system’s queue full,
and this in turn increases the system’s blocking probability.

On the other hand, as the target average delay per
EV decreases, the number of solar panels and the ESS capacity
increase in order to allow for a fast EV charging. For this
particular evaluation case, the minimum possible average
delay per EV is D = 2. Accordingly, as Dtd approaches 2,
the ESS capacity and the number of solar panels capacity
increase in order to raise the probability of having enough
energy to charge the arriving EVs.

3) Varying γ : In Fig. 7, the ratio between the cost per kWh
of ESS and the cost per kW of solar energy is varied from 10−5

up to 105, while Dtd = 2.2, d = 0.5, λ = 1.5, Cs = V , and
V = 6. Whenever γ = 10−1, the ESS is significantly cheaper
than the solar energy production, so that the ESS capacity
is greatly augmented in order to reduce the investment in
solar panels. In other words, a large ESS capacity stores more
energy, allowing for greater variations in the power generated
by the solar panels, which in turn reduces the required solar
panel capacity.

Sufficiently large stored energy allows the charging sys-
tem to compensate for the power generation fluctuations in
the solar radiation. Accordingly, it was observed that the
ESS capacity cannot be less than 190 kWh even as γ rises,
which explains why the ESS and solar panel capacity stabilizes
once γ ≥ 10. As the other system’s characteristics do not
change as γ varies beyond this limit, the charging system’s
EV blocking probability stays around 7% even as γ grows.
Similarly, as the solar panels are the only source of energy,
their number cannot be smaller than 10 solar panels even as



574 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 3, NO. 3, SEPTEMBER 2017

Fig. 8. (a) Solar panel and ESS capacity as d varies with Dtd = 2.2.
(b) Blocking probability as d varies with Dtd = 2.2.

they become more expensive than the ESS. This explains why
the solar panels’ optimal capacity also flattens for γ ≤ 0.1.

4) Varying EV Departure Probability: In this section,
the EV departure probability d is varied, while maintaining
the arrival rate = 1.5, Cs = V , and V = 6. As d decreases,
a larger fraction of the arriving EVs requires less than
10 [kWh] to be fully charged. Accordingly, a rise in d corre-
sponds to a decrease in charge demand per EV, which explains
the drop in the number of solar panels and the ESS capacity
in Fig. 8(a) as d increases. It was also observed that the charg-
ing system cannot satisfy the target average delay Dtd = 2.2
when d < 0.5. However, when Dtd = 5, it was possible to find
solutions for d ≥ 0.2. It is concluded that as the EV charging
demand intensifies (as d decreases), a rise in target delay Dtd
permits the charging system to accommodate more EV load
demand. As the electric demand per EV decreases with an
increase in d , the charging system requires less resources to
meet Dtd = 2.2. However, the decrease in solar panels and
ESS capacity, due to the rise in d , results in a rise in blocking
probability, as shown in Fig. 8(b).

5) Varying Arrival Rate λ: In this section, the arrival rate
λ is varied, while maintaining the queueing capacity V = 10,
Cs = V , d = 0.7, and Dtd = 2. As expected, the energy
resource capacity generally grows as the average number
of arriving EVs increases with λ, as shown in Fig. 9(a).
When λ> 5, the system gets saturated, so that the average
queue length stops increasing significantly (staying bounded
at 10 EVs). Accordingly, though the number of solar panels
augments to meet the growing arrival of EVs, the average
queue length does not increase so as to require an increase
in ESS capacity. In fact, the increase in the number of
solar panels alleviates some of the randomness effects of the
arrival process, allowing to satisfy the demand with actually

Fig. 9. (a) Solar panel and ESS capacity as λ varies. (b) Blocking probability
as λ varies.

less ESS capacity. This is why the ESS curve exhibit the
nonmonotonous behavior in Fig 9(a), starting to decrease for
λ> 5. In contrast, if the queue capacity is designed to be
greater or equal to 2λ, both the solar panels and ESS capacity
continue to grow monotonically as λ rises. The average queue
length increases with λ, leading to the rise in the blocking
probability as λ grows [Fig. 9(b)].

Similar to the above results, when the system’s queueing
capacity V grows, the charging system has to also increase
the energy resource capacity (solar panels and ESS) in order
to handle the growing energy demand due to the rise in
the number of EV that can enter the system. As expected,
the blocking probability decreases as V rises, since more
EV are able to enter the charging queue.

6) Varying the Number of Installed Charging Stations: This
section analyzes how the optimal energy resources capacities
change as the number of installed charging stations Cs varies,
with V = 6, d = 0.8, and Dtd = 2.36. A rise in Cs allows
to reduce the charging’s systems average queue length, and
this explains the decrease in number of solar panels and the
ESS capacity as Cs grows [Fig. 10(a)]. However, a drop in
energy resources capacity leads to a slight increase in the
overall system blocking probability, as depicted in Fig. 10(b).

7) Varying ω: In this section, the maximum generating
capacity per solar panel ω is varied, while maintaining the
arrival rate = 1.5, Cs = V , d = 0.5, Dtd = 2.2, and V = 6.
As anticipated, Fig. 11 illustrates that the rise in maximum
generating capacity per solar panel leads to a decline in
the optimal number of solar panels required by the system.
In particular, when ω doubles from 25 to 50 kW, the optimal
number of solar panels is reduced to half from 16 solar panels
to 8 solar panels. As the EVs’ demand characteristics (arrival
rate, departure probability, and queue capacity) do not change,
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Fig. 10. (a) Solar panel and ESS capacity as Cs varies. (b) Blocking
probability as Cs varies.

Fig. 11. Solar panel and ESS capacity as ω varies.

the ESS capacity does not change. Similarly, the system
blocking probability remains around 6.5%.

8) Varying the Charging Rate: This section illustrates how
the number of solar panels and the ESS capacity change as
the power rate (kW) per charging station Y is varied, while
maintaining the arrival rate λ = 1.5, Cs = V , d = 0.7, V = 6,
and Dtd = 90 min. As Y changes, the timeslot duration τ
also varies. In particular, τ = 60 min for Y = 10 kW, while
τ = 6 min for Y = 100 kW. As expected, the sys-
tem’s throughput increases as Y grows (Fig. 12), and this
allows meeting the target averaged delay of 90 min with less
resources. This in turn explains the declined in the energy
resources capacity, as indicated in Fig. 12(a). In particular,
as the rate of solar energy use increases with Y , the need to
store energy also declines. This explains the significant drop
in ESS capacity as Y increases [Fig. 13(a)]. However, as the
number of solar panels and the ESS capacity decrease with Y ,
the average queue length grows, as shown in Fig. 12. Accord-
ingly, more EVs are unable to enter the system, and this jus-
tifies the rise in blocking probability as Y grows [Fig. 13(b)].

Fig. 12. Average number of EVs and throughput as Y varies.

Fig. 13. (a) Solar panel and ESS capacity as Y varies. (b) Blocking
probability as Y varies.

VI. IMPLEMENTATION OF THE CGCS METHODOLOGY

This section summarizes the necessary steps to implement
the methodology for the sizing of a CGCS presented in this
paper. The goal of the proposed methodology is to appropri-
ately size the energy-generating resources (solar panels, in the
case analyzed in this paper) and the energy storage resources,
as to minimize the investment cost, while ensuring the required
level of performance (average EC charging time, in the case
analyzed in this paper).

First, the designer should characterize the EV fleet served
by the CGCS. The recorded EV fleet attributes include the
EV arrival rate per unit of time and the maximum and mini-
mum energy demand per EV. The CGCS planner should obtain
the physical characteristics of the future CGCS. This includes
the number of installed charging stations and the power rate
per charging station, the maximum power capacity, the area
size and efficiency per solar panel, as well as the CGCS’ maxi-
mum queue capacity, which limits the number of EVs that can
be in the system at any time. The CGCS planner should also
specify the ESS technology to be used, as this will influence
the attributes of the ESS model. Additionally, the CGCS sizing
problem requires knowledge of the ESS’ investment cost
per kWh and annual maintenance cost per kWh, as well
as solar panels’ investment cost and yearly maintenance
cost per kW. The maintenance costs are incurred throughout
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the CGCS’ expected lifetime or planning horizon, which
should also be specified.

To model the energy demand per EV, one should spec-
ify the EV energy demand quantum, which is the number
of kWh transferred to an EV per timeslot. As previously
shown (Section III), the timeslot duration is calculated by
dividing the EV energy demand quantum by the power rate
per charging station and is used in to analyze/evaluate the
future CGCS. One should note that the ESS quantum is
the minimum number of kWh charged/discharged to/from the
ESS per timeslot.

The CGCS system model accounts for the randomness in
solar power generation, which is driven by the unpredictably of
the solar radiation. The variation in solar radiation intensity is
influenced by the local cloud coverage, and, as such, cloud
coverage data for the CGCS’ location, or for a location
with similar meteorological conditions, need to be obtained.
In practice, cloud coverage data can be easily obtained through
measurements, without requiring expensive apparatus [21].
Since each cloud coverage level corresponds to a solar radi-
ation state [as per (1)], one can determine the solar state-
transition probabilities by recording the number of transitions
among the different cloudiness levels occurring during one-
hour period (Section III-B). Multiple solar radiation transition
matrices should be generated, depending on the time-of-day
and seasonal variations observed. Accordingly, a system state
is described by the solar radiation state, number of EVs, and
the SOC of the ESS.

The CGCS service time model should be characterized.
Due to assumed distribution of EV battery sizes, this paper
assumed a geometric distributed service time model with a
success probability equal to the probability that an EV gets
fully charged after one timeslot. The value for the charging
completion probability indicates the fraction of EVs that only
require one quantum of energy within a timeslot and can
be obtained from the observed energy demand levels of the
EV fleet. The CGCS designer should also define the system’s
energy management policy, which dictates how the solar
energy and the energy stored by the ESS are utilized. This
energy consumption policy influences the transition probability
among the CGCS system states (see Section III-E).

Finally, the solution to the sizing problem also depends
on the target performance measure of the CGCS. This paper
considered this measure to be the target average delay per EV,
which is the average number of timeslots necessary to fully
charge an EV. The target average delay is set by the CGCS’
operator and is influenced by the intended use of the CGCS;
e.g., if the CGCS is used by office employees, the target delay
per EV will typically be on the order of a duration of a business
day and will be longer than when the CGCS is in a mall
parking lot, in which case the target delay per EV will be on
the order of an average customer’s shopping time. Both of
these scenarios will be longer than when the CGCS is used as
a conventional gas station, in which case the target delay per
EV could be on the order of few minutes. Other metrics, such
as the system’s utilization and throughput, can also be used
to characterize the system’s performance. Furthermore, it is
possible to extend the current methodology to accommodate

priorities in the serving order of the EVs; e.g., an EV of a
customer who intends to spend only a short time shopping
could be given higher priority than a customer who intends to
shop for longer time.

With the above data, one can model the CGCS using afore-
described 3-D Markov chain model and formulate the sizing
problem as described in Section III. Once the problem is
formulated, the solution algorithm presented in Section IV
can be applied to find the optimal number of solar panels
and the optimal ESS capacity that meets the target CGCS’
performance measure.

VII. CONCLUSION

This paper studies the optimal planning problem for a
completely green EV charging system, such as one which is
situated in a green village, whose energy is generated exclu-
sively by solar panels. The goal was to design a methodology
for determining the optimal number of solar panels and the
optimal ESS capacity that minimize the charging system’s
investment costs while satisfying a specified target average
charging delay of an EV. The solar panels’ output power
is driven by the solar radiation, which is represented by a
discrete Markov chain model and is affected by the local cloud
coverage. The transition probability from one solar radiation
state to the next is determined by the number of transition in
the corresponding cloudiness levels within one-hour period.
Accordingly, the methodology relies on a 3-D Markov chain
model, in which each state is characterized by the solar
radiation state, the number of EVs in the system, and the ESS
SOC. A search-based algorithm was designed to efficiently
explore the solution space of the formulated nonlinear integer
programming problem in order to find an optimal solution. The
system’s model was validated by simulations. The use of the
methodology was demonstrated by a simple example. From
the evaluation results of the example, it was observed that the
optimal number of solar panels and the ESS capacity depend
mostly on the system’s queueing capacity and the number
of installed charging stations, which determine the system’s
throughput and the average number of EVs, and which in turn
determine the overall EV average delay. The evaluation results
also showed that, as expected, the optimal number of solar
panel and the ESS capacity decreased with the increase in the
target average delay, the EV charging completion probability,
the number of installed charging stations, and the power rate
per charging station. The presented methodology could be
easily extended to accommodate more complex scenarios,
such as different priorities assigned to customers and different
policy of the use of the energy storage (see Section III), for
example. Other possible extensions include a model in which
EV can leave a CGCS after being only partially charged, with
a reward depending on the average charge delivered during a
visit to a CGCS.
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[9] O. Arslan and O. E. Karaşan, “Energy management in microgrids with
plug-in electric vehicles, distributed energy resources and smart home
appliances,” in Plug In Electric Vehicles in Smart Grids. Singapore:
Springer, 2015.

[10] P. J. Tulpule, V. Marano, S. Yurkovich, and G. Rizzoni, “Economic
and environmental impacts of a PV powered workplace parking garage
charging station,” Appl. Energy, vol. 108, pp. 323–332, Aug. 2013.

[11] S. Bahramirad, W. Reder, and A. Khodaei, “Reliability-constrained
optimal sizing of energy storage system in a microgrid,” IEEE Trans.
Smart Grid, vol. 3, no. 4, pp. 2056–2062, Dec. 2012.

[12] H. Liang and W. Zhuang, “Stochastic modeling and optimization in a
microgrid: A survey,” Energies, vol. 7, no. 4, pp. 2027–2050, 2014.

[13] H. N. T. Nguyen, C. Zhang, and J. Zhang, “Dynamic demand control
of electric vehicles to support power grid with high penetration level
of renewable energy,” IEEE Trans. Transport. Electrific., vol. 2, no. 1,
pp. 66–75, Mar. 2016.

[14] C. Le Floch, F. Belletti, and S. Moura, “Optimal charging of electric
vehicles for load shaping: A dual-splitting framework with explicit
convergence bounds,” IEEE Trans. Transport. Electrific., vol. 2, no. 2,
pp. 190–199, Jun. 2016.

[15] V. del Razo, C. Goebel, and H.-A. Jacobsen, “Vehicle-originating-signals
for real-time charging control of electric vehicle fleets,” IEEE Trans.
Transport. Electrific., vol. 1, no. 2, pp. 150–167, Aug. 2015.

[16] D. P. Birnie, “Solar-to-vehicle (S2V) systems for powering commuters
of the future,” J. Power Sour., vol. 186, no. 2, pp. 539–542, Jan. 2009.

[17] H.-M. Neumann, D. Schär, and F. Baumgartner, “The potential of
photovoltaic carports to cover the energy demand of road passenger
transport,” Prog. Photovolt. Res. Appl., vol. 20, no. 6, pp. 639–649,
Sep. 2012.

[18] G. R. C. Mouli, P. Bauer, and M. Zeman, “System design for a solar
powered electric vehicle charging station for workplaces,” Appl. Energy,
vol. 168, pp. 434–443, Apr. 2016.

[19] E. Park and S. J. Kwon, “Renewable electricity generation systems for
electric-powered taxis: The case of Daejeon metropolitan city,” Renew.
Sustain. Energy Rev., vol. 58, pp. 1466–1474, May 2016.

[20] E. Hajipour, M. Bozorg, and M. Fotuhi-Firuzabad, “Stochastic capacity
expansion planning of remote microgrids with wind farms and energy
storage,” IEEE Trans. Sustain. Energy, vol. 6, no. 2, pp. 491–498,
Apr. 2015.

[21] J. S. G. Ehnberg and M. H. J. Bollen, “Simulation of global solar
radiation based on cloud observations,” Solar Energy, vol. 78, no. 2,
pp. 157–162, 2005.

[22] J. Ehnberg, "Autonomous Power Systems based on Renewables - On
generation reliability and system control,” Ph.D. dissertation, Dept.
Energy Environ., Chalmers Univ. Technol., Gothenburg, Sweden. 2007

[23] P. A. Jones, “Cloud-cover distributions and correlations,” J. Appl.
Meteorol., vol. 31, pp. 732–741, Jul. 1992.

[24] H. Madsen, H. Spliid, and P. Thyregod, “Markov models in discrete and
continuous time for hourly observations of cloud cover,” J. Climatol.,
vol. 24, pp. 629–639, Jul. 1985.

[25] L. B. Nielsen, L. P. Prahm, R. Berkowicz, and K. Conradsen, “Net
incoming radiation estimated from hourly global radiation and/or cloud
observations,” J. Climatol., vol. 1, no. 3, pp. 255–272, 1981.

[26] Z. Yanhui, S. Wenji, L. Shili, L. Jie, and F. Ziping, “A critical review
on state of charge of batteries,” J. Renew. Sustain. Energy, vol. 5, no. 2,
p. 021403, 2013.

[27] S. Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge
determination and their applications,” J. Power Sour., vol. 96, no. 1,
pp. 113–120, 2001.

[28] X. Hu, S. E. Li, and Y. Yang, “Advanced machine learning approach
for lithium-ion battery state estimation in electric vehicles,” IEEE Trans.
Transport. Electrific., vol. 2, no. 2, pp. 140–149, Jun. 2016.

[29] J. Li and W. Wei, “Probabilistic evaluation of available power of a
renewable generation system consisting of wind turbines and storage
batteries: A Markov chain method,” J. Renew. Sustain. Energy, vol. 6,
no. 1, p. 013139, Feb. 2014.

[30] S. X. Chen, H. B. Gooi, and M. Q. Wang, “Sizing of energy storage
for microgrids,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 142–151,
Mar. 2012.

[31] I. S. Bayram, G. Michailidis, M. Devetsikiotis, and F. Granelli, “Electric
power allocation in a network of fast charging stations,” IEEE J. Sel.
Areas Commun., vol. 31, no. 7, pp. 1235–1246, Jul. 2013.

[32] T. Robertazzi, Computer Networks and Systems: Queueing Theory and
Performance Evaluation, 3rd ed. New York, NY, USA: Springer, 2012.

[33] A. Khodaei and M. Shahidehpour, “Microgrid-based co-optimization of
generation and transmission planning in power systems,” IEEE Trans.
Power Syst., vol. 28, no. 2, pp. 1582–1590, May 2013.

[34] C.-H. Wu, W.-C. Lee, J.-C. Ke, and T.-H. Liu, “Optimization analysis
of an unreliable multi-server queue with a controllable repair policy,”
Comput. Oper. Res., vol. 49, pp. 83–96, Sep. 2014.

[35] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Boston, MA, USA: Addison-Wesley, Oct. 1989.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009, p. 799.

Juliette Ugirumurera received the B.Sc. degree
in computer engineering from Oklahoma Christian
University, Edmond, OK, USA, in 2012. and the
M.Sc. and Ph.D. degrees in computer science from
the University of Texas at Dallas, Richardson, TX,
USA, in 2015 and 2017, respectively.

She is currently a Post-Doctoral Fellow with the
Lawrence Berkeley National Laboratory, Berkeley,
CA, USA, where she is developing high performance
computing algorithms for traffic engineering prob-
lems. Her current research interests include opti-

mization, scheduling of resources in complex networks, algorithm design,
and Internet of things.

Zygmunt J. Haas (F’07) received the B.Sc. and
M.Sc. degrees in electrical engineering and the
Ph.D. degree from Stanford University, Stanford,
CA, USA, in 1979, 1985, and 1988, respectively. He
subsequently joined the Network Research Depart-
ment, AT&T Bell Laboratories, where he pursued
research on wireless communications, mobility man-
agement, fast protocols, optical networks, and opti-
cal switching.

From 1994 to 1995, he was with the AT&T
Wireless Center of Excellence, where he investi-

gated various aspects of wireless and mobile networking, concentrating on
Transmission Control Protocol/Internet Protocol networks. In 1995, he joined
the faculty of the School of Electrical and Computer Engineering at Cornell
University, Ithaca, NY, USA. He joined the Computer Science Department,
UT Dallas, Richardson, TX, USA, in 2013. He has authored for numerous
technical papers and holds 18 patents in the fields of high-speed networking,
wireless networks, and optical switching. He has organized several workshops
and delivered numerous tutorials at major IEEE and Association for Com-
puting Machinery (ACM) conferences. His current research interests include
mobile and wireless communication and networks, biologically inspired
networks, and modeling of complex systems.

Dr. Haas has served in the past as a Chair of the IEEE Technical Committee
on Personal Communications. He is a Voting member of the ACM. He has
served as an Editor of several journals and magazines, including the IEEE
TRANSACTIONS ON NETWORKING, the IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS, the IEEE COMMUNICATIONS
MAGAZINE, the Springer Wireless Networks journal, the Elsevier Ad Hoc
Networks journal, the Journal of High Speed Networks, and the Wiley Wireless
Communications and Mobile Computing journal. He has been a Guest Editor
of the IEEE JOURNAL ON SELECTED AREAS OF COMMUNICA-
TIONS issues on “gigabit networks,” “mobile computing networks,” and
“ad-hoc networks.”



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


