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Predictive Distance-Based Mobility Management for
Multidimensional PCS Networks
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Abstract—This paper presents a mobile tracking scheme that ex-
ploits the predictability of user mobility patterns in wireless PCS
networks. In this scheme, a mobile’s future location is predicted
by the network, based on the information gathered from the mo-
bile’s recent report of location and velocity. When a call is made,
the network pages the destination mobile around the predicted lo-
cation. A mobile makes the same location prediction as the network
does; it inspects its own location periodically and reports the new
location when the distance between the predicted and the actual
locations exceeds a threshold. To more realistically represent the
various degrees of velocity correlation in time, a Gauss—Markov
mobility model is used. For practical systems where the mobility
pattern varies over time, we propose a dynamic Gauss—Markov
parameter estimator that provides the mobility parameters to the
prediction algorithm.

Based on the Gauss—Markov model, we describe an analytical
framework to evaluate the cost of mobility management for the
proposed scheme. We also present an approximation method that
reduces the computational complexity of the cost evaluation for
multidimensional systems. We then compare the cost of predictive
mobility management against that of the regular, nonpredictive
distance-based scheme, for both the case with ideal Gauss—-Markov
mobility pattern and the case with time-varying mobility pattern.

The performance advantage of the proposed scheme is demon-
strated under various mobility patterns, call patterns, location in-
spection cost, location updating cost, mobile paging cost, and fre-
quencies of mobile location inspections. As a point of reference,
prediction can reduce the mobility management cost by more than
50% for all systems, where a the mobile users have moderate mean
velocity and where performing a single location update is as least
as expensive as paging a mobile in one cell.

Index Terms—Distance-based location management, dynamic
parameter estimation, fluid flow, Gauss—Markov model, mobility
pattern, predictive mobility management, random walk, wireless
networking.

. INTRODUCTION

N THE operation of wireless personal communication ser-

vice (PCS) networks, mobility management deals with the
tracking, storage, maintenance, and retrieval of mobile location
information. Two commonly used standards, the EIA/TIA In-
terim Standard 41 in North America [1] and the Global System
for Mobile Communications in Europe [22] partition their cov-
erage areas into a number of location areas (LAS), each con-
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sisting of a group of cells. When a mobile entersan LA, it reports
to the network the information about its current new location
(location update). When an incoming call arrives, the network
simultaneously pages the mobile (terminal paging) in all cells
within the LA, where the mobile currently resides. In these stan-
dards, the LA coverage is fixed for all users and cannot adapt to
different and differing user traffic and mobility patterns.

Dynamic LA management schemes have been proposed in
[15], [18], and [32], where an LA is defined per mobile, as to
adapt to its traffic and mobility patterns. However, when a call
arrives, the system still needs to page the mobile in all cells
within the LA, an operation that is costly in most cases.

Dynamic mobility management schemes [2], [3], [5], [8],
[14], [19], [21] discard the notion of LA borders altogether.
A mobile in these schemes updates its locationt based on ei-
ther elapsed time, number of crossed cell borders, or traveled
distance. All these parameters can be dynamically adapted to
each mobile’s traffic and mobility patterns, hence, providing
better cost effectiveness than the LA scheme. In schemes that
do not rely on LAs, upon call arrival, the network pages the des-
tination mobile using a selective paging scheme [24], starting
from the cell location where the mobile last updated and out-
wards, in a shortest-distance-first order. With the assumption of
arandom-walk mobility model, this paging scheme is equivalent
to the highest-probability-first algorithm, which, indeed, incurs
the minimum paging cost. In particular, in the distance-based
scheme, a mobile performs location update whenever it is some
threshold distance away from the location where it last updated.
For a system with the memoryless random-walk mobility pat-
tern, the distance-based scheme has been proven to result in less
location updating and paging costs than schemes based on time
or number of cell boundary crossings [5].

However, in systems where a user’s future velocity is corre-
lated with its past and current velocity (i.e., nonmemoryless),
the highest probability location of a mobile is generally not the
cell where the mobile last reported. Thus, predicting the mo-
bile’s current location when a call arrives would result in less
paging traffic. Consequently, a mobility management scheme
that takes advantage of the predictability of the mobiles’ loca-
tion can lower the mobility management cost.

In our proposed predictive distance-based mobility manage-
ment scheme, the future location of a mobile is predicted based

1We do not address in this paper the exact mechanism by which a mobile
monitors its location and velocity. A mobile may determine its location through
a variety of methods, including the Global Positioning System, signal triangu-
lation, base-station self-identifying beacons, or a combination of the above. It
may then average position displacement over time to find its velocity. Other
methods and related references on mobile location and velocity determination
can be found in [13].
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on the probability density function (PDF) of the mobile’s loca-
tion, which is given by a Gauss—Markov mobility model based
on its location and velocity at the time of the recent location up-
dates. The prediction information is made available to both the
network and the mobiles. Therefore, a mobile is aware of the
network’s prediction of its location. The mobile checks its posi-
tion periodically (location inspection) and performs location up-
date whenever it reaches some threshold distance (updating dis-
tance) away from the predicted location. To locate a mobile, the
network pages the mobile starting from the predicted location
and outwards, in a shortest-distance-first order, until the mobile
is found.

Besides the application of prediction, another feature that sets
our work apart from the original investigation of distance-based
mobility management is the notion of sporadic location inspec-
tions. In a distance-based updating scheme, a mobile needs to
monitor its location and/or velocity. In practical systems, this
cannot be done continuously due to bandwidth and computa-
tion power limitations. We assume that a mobile measures its
location and velocity periodically, at the location inspection in-
stants. We further study how the optimal location inspection
period is affected by the mean, variance, and memory level of
a mobile’s velocity. Previous work on distance-based mobility
management schemes [2], [5], [14], [21] do not incorporate this
assumption.

Summaries of many aforementioned mobility management
schemes can be found in the survey papers [4] and [30]. A pre-
liminary version of the predictive distance-based mobility man-
agement scheme, based on a one-dimensional (1-D) system and
without considering the cost of location inspections, is presented
in [20] and summarized in [30]. Other related work include the
combination of timer, movement, and distance approaches into
a general state-based framework in [26] and an information-the-
oretic approach in [6]. Most recently, a cell-shape independent
stochastic model has been proposed in [31], which provides an
iterative algorithm to compute the optimal updating threshold
for distance-based mobility management.

The rest of this paper is organized as follows. In Section II,
we describe the Gauss—Markov mobility model and the pre-
diction algorithm. We demonstrate the broad applicability of
the Gauss—Markov model, derive the optimal location predic-
tion, and introduce an algorithm to dynamically estimate the
Gauss—Markov parameters when the mobile movement pattern
is time varying. Section Il presents the analytical framework
for evaluating the cost of the predictive distance-based scheme.
This cost is defined as the sum of a mobile’s location inspec-
tion cost, location updating cost, and the cost incurred in paging
the mobile. The numerical results are presented in Section IV.
We study how the optimal location inspection period and up-
dating distance are affected by the traffic pattern, the mobility
pattern, and the relative costs of location inspection, location
updating, and paging. To evaluate the performance gain of the
predictive scheme, the cost of the nonpredictive distance-based
scheme is measured through simulations, and is compared with
the predictive scheme. Our results indicate that, in general, pre-
diction can significantly lower the mobility management cost.
We show that the proposed scheme performs well, even when
used in conjunction with a suboptimal parameter estimation al-

gorithm, in systems with time-varying mobility pattern. Further-
more, we explain why the performance gain of the predictive
scheme does not necessarily increase as the memory level of a
mobile’s movement increases. Finally, concluding remarks are
given in Section V.

Il. SYSTEM DESCRIPTION
A. Gauss—Markov Mobility Model

A mobile user usually travels with a destination in mind. Fur-
thermore, the change of a mobile’s velocity within a short time
is limited due to physical restrictions. Therefore, a mobile user’s
future location and velocity are likely to be correlated with its
past and current location and velocity. Thus, the memoryless
nature of the random-walk model makes it unsuitable to rep-
resent such behavior. Another widely used mobility model in
cellular network analysis is the fluid-flow model [32], [33]. The
fluid-flow model is suitable for vehicle traffic on highways but
for not pedestrian movements with frequent “stop-and-go” be-
havior. A discrete Markovian model is reported in [5]. However,
in this model, the velocity of the mobiles is overly simplified and
characterized by three states only. A memoryless Brownian mo-
tion with drift model is used in [25] and [8]. It is an improvement
to the random-walk model, but it still cannot represent the time
correlation in a mobile’s velocity. In this paper, we introduce a
mobility model based on the Gauss—Markov process [11], [23],
[29]. The Gauss—Markov process has appeared in diverse fields,
such as the theory and applications of signal estimation and eco-
nomic forecast. We postulate that it can be used to model the mo-
bile movement in a PCS network, since it captures the essence of
the correlation of a mobile’s velocity in time. Furthermore, the
Gauss—Markov model represents a wide range of user mobility
patterns, including, as its two extreme cases, the random-walk
and the constant velocity fluid-flow models.

1) 1-D Case: For simplicity, we first illustrate the
Gauss—Markov mobility model in a 1-D system. In this model,
a mobile’s velocity is assumed to be correlated in time and
modeled by a Gauss—Markov random process. In continuous
time, a stationary Gaussian process v(t) is a Gauss—Markov
process if it has the autocorrelation function [11], [23], [29]

R,(7) =Ep)v(t+71)] = o2e Pl 4 12 Q)

where o is the variance of v(t), p is its mean, and 3 > 0 deter-
mines the degree of memory. When p = 0, (1) is also sometimes
called the Ornstein—Uhlenbeck solution of the Brownian motion
with zero restoring force [23].

We define a discrete version of the mobile velocity with
v, = v(nAt) and the memory level a = e~#2%, where At is
normalized to unity throughout this paper.2 Then the discrete
Gauss—Markov process described by (1) can be represented by
the following recursive realization;

Up =avp_1+ (1 —a)p+ov1—a?w,_q (2)

2In a practical system design, the value of At should match the parameters
of each individual system. It should not be too small, such that the model iden-
tification and system optimization becomes intractably complex. It also should
not be too large, such that the details of a user’s movement is lost. However, an
investigation into the optimal selection of At is outside the scope of this paper.
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where {w,, } is an uncorrelated Gaussian process with zero mean
and unit variance and is independent of {v,, }.

If the initial velocity v is Gaussian with mean 1, and variance
o2, from (2), we clearly have R, (k) = o?e=P* + 2. There-
fore, (2) satisfies the definition (1). However, since there is no
guarantee that vy has mean 1 and variance o2, or even that v
is Gaussian, the process described by (2) is generally not sta-
tionary. In this case, u is the asymptotic mean of v,,, and o is
the asymptotic standard deviation of v,,, when n approaches in-
finity.

Clearly, as o approaches zero, or 3 approaches infinity, (2)
represents a drifting random-walk mobility pattern with mean
w1 and standard deviation o, and that as . approaches one or
(3 approaches zero, (2) represents a constant velocity fluid-flow
mobility pattern with v,, = v for all n. Therefore, not only does
the Gauss—Markov model represent a wide spectrum of mobility
patterns with various degree of memory, it also includes the
random-walk and fluid-flow models as its two extreme cases.

2) Multidimensional Case: It is straightforward to extend
the Gauss—Markov mobility model to the two- or three-dimen-
sional systems by using vectors of Gauss—Markov processes. In
what follows, we use a two-dimensional (2-D) system to illus-
trate how this is done.

In the 2-D case, the location and velocity of a mobile is rep-
resented by the random vectors s,, = [s%, s¥]7 and v,, =
[vZ, v¥]T, respectively, where the superscripts denote the di-
mensions. Similarly, we define @ = [o*, |7, 1w = [u”, pY]%,
and & = [0”, o¥]T. Then, the 2-D velocity process can be ex-
pressed as follows:

vp=a0v, 1 +(l-a)on+coVvi-aow, 1 (3)

where © denotes element-by-element multiplication, and
{w,} = [{w=}, {w?}T is a 2-D uncorrelated Gaussian
process with zero mean and unit variance and is independent
of {v,}. In (3), we have made an important assumption that
the velocity processes in both dimensions are uncorrelated.
It is easy to rewrite (3) to represent the more general case of
correlated dimensions. However, as will become obvious in
Section 111, the cost analysis with even the simpler, uncorrelated
model can be highly computationally intensive. The additional
dimension of conditional probabilities in the correlated model
would render the model practically intractable.

For simplicity of presentation, one may further assume that
the velocity has the same memory level «, the same asymptotic
mean p, and the same asymptotic standard deviation ¢ in both
dimensions. In this isotropic case, (3) becomes

Vp=avp_1+(1—a)p+ov1—a?w,_1. @)

3) Duplicating Other Mobility Models: To our knowledge,
no real data are available in the public domain that describe the
user mobility pattern in the desired granularity to validate a mo-
bility model. For example, mobile traces reported in [27] and
[28] only give coarse movement patterns between large areas,
in hourly to daily time frames, aggregated among many users.
Therefore, none of the commonly used mobility models in lit-
erature can be validated against real user data.
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Nevertheless, the wide applicability of the proposed
Gauss—Markov model can still be demonstrated. We illustrate
how the parameter set («, i, o) can be tuned such that the
Gauss—Markov model can duplicate the mobile movements
described by three of the most popular mobility models: the
random-walk model [25], [8], the fluid-flow model [32],
and the random way-point model [7], [9].2 By showing this,
we demonstrate that the Gauss—Markov model is, indeed, a
mobility model that can represent a variety of mobility models.

i) The random-walk (RW) model (with drift) has no memory.
It can be represented by

V%RVV) _ ﬂ(R\V) L7 ®W) o W%RW) ()

where iz ®W) is a vector of drift velocities, @ ®"V) is a vector of
velocity standard deviations, and {w,(zRW)} is a vector of un-
correlated Gaussian processes with zero mean and unit vari-
ance. Comparing this with (3), the corresponding subfamily of
the Gauss—Markov model has the parameters {& = 0, =
ﬁ(RVV)7 5= E(RW)}.

ii) The fluid-flow (FF) model has constant velocity in all di-

mensions. It can be represented by
V7(LFF) — C(FF) (6)

where ¢FF) is a vector of constant velocities. Com-
paring this with (3), there are several subfamilies of the
Gauss—Markov model that generate movement patterns the
same as those described by the fluid-flow model. They are
f@a=1vo=c"N {@a=0,7=c"), 5 =0}, and
{i=cT 7 =0,vy=cFO)L

iii) The random way-point model is the most prevalent mo-
bility model in mobile ad hoc network (MANET) simulations.
In this model, a mobile cycles through two phases: constant ve-
locity and motionless. In each cycle, it randomly selects a des-
tination, moves toward the destination at a randomly selected
velocity until it reaches the destination, stays at the destination
for a randomly chosen amount of time, and starts a new cycle by
randomly selecting a new destination. Therefore, the movement
of a mobile under this model consists of segments of fluid-flow
with various level of velocity (including zero velocity).

Since the stochastic process of mobile velocity under the
random way-point model is nonstationary, it cannot be obtained
by direct application of the Gauss—Markov model. However,
with the Gauss—Markov model, one only needs to employ an
additional random number generator to generate movement
patterns that follow the random way-point model description.
This random number generator determines the duration of each
segment of movement. In each segment, the Gauss—Markov
model, as shown in ii), generates fluid-flow-like movement
patterns.

B. Predictive Distance-Based Mobility Management

In what follows, we describe the predictive mobility manage-
ment scheme in the context of 1-D and 2-D systems. This can
easily be extended to systems of three dimensions, such as those
in an office building, for example.

3A comparative study of various mobility models, including random-walk,
Gauss—Markov, and random way-point, in the context of mobile ad hoc network
routing, can be found in [16].
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Fig. 1. Predictive location updating and selective paging. (a) 1-D system.
(b) 2-D system.

1) Predictive Location Updating and Selective Paging: As
explained in Section |, a mobile cannot monitor its location con-
tinuously. Here, we assume that location inspections are per-
formed by the mabiles periodically, at every m units of time.

The proposed predictive distance-based scheme has the fol-
lowing components.

* Prediction: The PCS network makes predictions of the mo-
bile’s location p,,, at time instants of mobile location inspec-
tions and call arrivals to the mobile, based on the history of
the mobile’s reported location and velocity. The mobile is made
aware of the network’s prediction, either by information transfer
from the network during the last location updating or by local,
concurrent computation using the same prediction algorithm as
the network.

« Updating: At the kth location inspection instant, a mobile
observes its current location sy, It transmits a location update
to the PCS network if |sg.», — Prm| IS greater than the distance
threshold.

» Paging: When a call is made to a mobile at time n, the
system pages the mobile in cells at and around the predicted
location p,,, in a shortest-distance-first order, until the mobile
is found.4

Fig. 1 illustrates the predictive updating and paging schemes
for the 1-D and 2-D cases, respectively.

In paging a mobile, there exists a tradeoff between the paging
traffic bandwidth usage and the time delay in locating the mo-
bile (e.g., a full-system paging scheme incurs maximum band-
width usage and minimum delay). There is a spectrum of means
to trade off between bandwidth usage and paging delay. In the
rest of this paper, for both the predictive and the nonpredic-
tive cases, we have assumed a sequential ring-by-ring paging
scheme, where all cells of equal distance to the predicted lo-
cation or the last reported location, respectively, are paged at
the same time. For systems with different bandwidth and delay

4A time or distance threshold may be imposed, beyond which the paging ter-
minates, in case the sought mobile has detached from the network.

constraint requirements, the proposed predictive scheme can be
easily extended using the methods similar to those reported in
[3], [14], and [24].

The updated mobile location and velocity are assumed to be
contained in location databases residing in the wireline network
(e.g., Home Location Registers). The reliability issues of loca-
tion databases are not addressed in this paper. For reliability con-
siderations, methods similar to those described in [12] could be
employed.

2) Location Prediction: Next, we derive a formula for the
predicted location of a mobile as a function of time, when its
last reported location and velocity are given. Let n = 0 be the
initial time when a mobile last updates its location and velocity.
We can recursively expand (4) to express v,, explicitly in terms
of the initial velocity v

n—1
vp=a"vo+ (1 —a")u+ov1—a? Z o lw (7)
1=0

Definingsg = 0ands,, =s,,_1 + v,,_1, We have

1—a™ 1—a"
n — i — 1-—
Sn ZV 1—av0+( 1—04)'”
n—1i-1

+ov1— a2 Z Z oI Wi (8)

=0 5=0

It is easy to show that any linear combination of sg, s, ..
. . A . .
is Gaussian. Hence, s = {s,, } is a Gaussian process.

Let z,, be the displacement of a mobile at time » from its last
updated location, given that no location updating is performed
uptotimen — 1, i.e,

. Sn

|Skm - pkm| S N (9)
fork =1, 2, ..., [n/m]—1,where N is the updating distance
threshold. The joint PDF of z £ {z,} is

fs(8)

S —prnian Jo(€) dE°

|§km - pkm| < N7
k=1,2,...,[n/m]—1;
0, otherwise

fa(€) = (10)

where £ 2 {€,.}, and f5(&) is the joint PDF of s.

Since {s,,} is a Gaussian process, the maximum-likelihood
estimation of s,, is E[s,,]. Due to symmetry in the definition of
{2y}, as shown in (10), the maximum-likelihood estimation of
Zn IS

(11)

Furthermore, since the PDF of z,, is concave and symmet-
rical, the proposed shortest-distance-first paging scheme con-
forms with the highest-probability-first rule for optimal selec-
tive paging. Therefore, we can expect the predictive scheme to
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incur lower mobility management cost than the nonpredictive
distance-based scheme.

C. Gauss—Markov Model Parameter Estimation

In a practical system, the mobility pattern can be approxi-
mated by the Gauss—Markov model with varying mean, vari-
ance, and memory level. Applying the algorithm in Section 11-B,
the movement of a mobile is predicted based on the estimated
parameters /i, ¢, and ¢, obtained at the previous location up-
dates. Therefore, the accurate location prediction depends upon
the accurate dynamic estimation of the Gauss—Markov parame-
ters, as well as the degree of variations in these parameters be-
tween location updates.

The topic of dynamic parameter estimation has seen many
contributions within the signal-processing community. In this
work, we propose a simple estimator that computes the mean,
variance, and memory level of a mobile, separately, in each
dimension. We define a parameter estimation window weg;.
In practice, wes; is chosen such that it is small enough for the
mobile movement to remain approximately stationary but large
enough to provide sufficient amount of data samples. Given
the previous wes; Samples of the mobile velocity {v;}, the
Gauss—Markov parameters are estimated by

West

1
West, %
=1
1 West
57 = i — 1) 13
wcst—l,;(” ) (13)
1 Weast — 1
~2 ~ ~
= P — il — 14
e ; (vi = ) (vig1 — ) (14)
1, if 6~ 0
= 52 15
“ maX{O./ %}7 otherwise. (15)
(o

In the above estimation, both 52 and 67 are biased because of the
correlation between elements in {v;}. Despite this drawback,
there are two reasons that we have chosen this algorithm. First,
this estimator is simple to implement in practice. Second, a sub-
optimal parameter estimator does not invalidate the correctness
of the proposed predictive location updating and paging scheme.

With correlated data and limited estimation window size, an
optimal estimator has not been found. However, it is stated in
[17] that the above estimator can outperform an unbiased esti-
mator.

Thus, the Gauss—Markov parameter estimates of each mobile
are recomputed at each of its location updating events. These
estimates are used by the mobile and the system to predict the
future location of the mobile. Section IV-C demonstrates the
effectiveness of combining the above estimator with distance-
based predictive mobility management.

I1l. COST EVALUATION OF THE PREDICTIVE DISTANCE-BASED
MOBILITY MANAGEMENT SCHEME

In this section, we describe an analytical framework to eval-
uate the mobility management cost of the predictive distance-
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based scheme, assuming ideal Gauss—Markov mobility pattern.
The performance of the proposed scheme in the nonideal time-
varying case is studied in Section IV.

The total cost of mobility management per call arrival is de-
fined as

Ctotal = Cinspect + Cupdate + Cpage (16)

where Cingpects Cupdate, aNd Cpage are the average location in-
spection cost per call arrival, the average updating cost per call
arrival, and the average paging cost per call arrival, respectively.

Clearly, there exists a tradeoff between location updating and
mobile paging. The more often a mobile terminal updates its lo-
cation, the more precise is the network’s knowledge of its loca-
tion when a call arrives, which could lead to lower paging cost.
However, location updating drains the limited energy supply
of a mobile terminal, takes away part of the precious wireless
channel capacity, and induces access to potentially far away and
heavily loaded location databases. Therefore, the rate of location
updating, which depends on the location updating threshold in
this case, should be optimized to reduce the total cost.

The frequency of location inspection is another design pa-
rameter that needs to be optimized. On the one hand, location in-
spection takes up the limited processor power and energy supply
of amobile terminal. On the other hand, it improves the mobile’s
awareness of its location for timely location updating, which
is particularly important when the frequency of call arrivals is
high.

In order to determine the optimal location inspection fre-
quency and the optimal location updating threshold, we pro-
pose the following framework for evaluating the cost of mobility
management. We first describe the cost evaluation framework of
a 1-D system. We then extend that to 2-D and 3-D systems, and
follow that with an approximation scheme, which reduces the
computational complexity of multidimensional cost evaluation
to that of a 1-D system.

A. 1-D Cost Evaluation

Since the position of a mobile (e.g., the residence cell iden-
tity) is closely monitored by the network within a phone call
duration, a call arrival has the same effect as a mobile location
update. To distinguish the two types of location updating, we
refer to a location update based on distance as autonomous up-
date. Furthermore, we can view a call duration as a point in time,
where a location update is performed, and a new cycle of loca-
tion inspection, location updating, and mobile paging starts.

Suppose calls arrive with the interarrival time PDF f..;i(n).
The average location inspection cost per call is

Cinspect = C’i Z fcall(n) L7l/mJ

n=0

(17

where C; denotes the cost of a single location inspection. If we
assume that the call arrival times are exponentially distributed
with arrival rate A\, we can simplify (17) to

(=N

Cinspect = Cz m

(18)

The detailed derivation is presented in Appendix A.
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To determine C\pdate, We first consider the time interval be-
tween two consecutive autonomous location updates without the
interruption of phone calls. We compute the PDF of time be-
tween a location update (autonomous update or call-arrival up-
date) and the next autonomous update, denoted fypa(n).

Let n,, and z,, be the velocity and displacement of a mobile
at time n, respectively, given that no location updating is per-
formed up to the location inspection at time km = |n/m|m.
Shifting the center of the PDFs of 7,, and z,, to the origin, we
define

Up = Nn = fby, (19)
T =2Zn — s, - (20)
Then, we have ug = ro = 0, and for n # km
Up = QUp_1 + UMwn,l (21)
and
Tp = Tpe1 + Un—1- (22)

We further define u},,,, and =, as the mean-shifted velocity and
displacement of a mobile at the kth location inspection, respec-
tively, given that no location updating is performed up to the
(k — 1)th location inspection (i.e., r},,, could be greater than
N). Obviously, ugy,, is u},, conditioned on |r}, | < N, and
Tl 1S 7}, conditioned on |r},..| < N.

In order to compute the probability of an update at the kth
location inspection, we need to compute the PDF of r,,. It’s
easy to see that the statistics of (7xm, wrm) IS completely deter-
mined by (7(x—1)m, Uk—1)m ). Therefore, we can compute the
joint PDF f,., ... (r, u), through a recursion on k as follows.

Let

(k4+1)m-—1
= >, (23)
i=km
Then
TEkH)m = Tkm + Yk- (24)
By the Markovian property of w,,, we have
fyk (ks uék«}»l)m)(g/? 517 52)
= fyol(uo, u,) (U5 &1, &2)
. 1
UZIU|"0 27{'(1 - '72)
2
(0= o) = V5220 (62 = i, o)
cexp{ —
ZJSO\UO(I - 72)
(25)
where
M"Ln|"'0 = amfl (26)
1—a™
My0|uo = 1 —« fl (27)

Tt lup = (1= @™o (28)
9 —(1—-a™?+m(l-a?) —2a(l —a™) ,
Uyo\uo = _ 2 g
(1-a)
(29)

C u! u
= (upy,¥0) [uo (30)

Ouw! |ug Tyolug
and
1—a™ _m
:( o )(Oé o )0_2. (31)

C( 11—«

ul,, yo) |uo

The derivation of fy|cu,,u ) (¥, &1, €2) is presented in Ap-
pendix B.

Since 7., and y;, are independent given wug.,,,, we have from
(24)

f’l’ (Tv 517 52)

(T7 fl) * 'fykm‘(“""m’uél\-Jrl)m)(’r’ 517 52)
= 'kan1|1Lknz (T7 fl) * .fy0|(u0,u;ﬂ)(r7 517 52)

(/k+1)m|(“'km’ “fk+1)m)
= 'kan1|1Lknz

(32)

where * denotes linear 1-D convolution over the variable r.
Then, by Bayes’ rule and taking the marginal density, we have

fr’

!
(k+1)m? Ykt 1)m

= /_OO fr2k+1)m|(u;\.m,uék+1)m)(r7 517 52)
(§1, &2) d&a

(T7 52)

. o
ful\'m’ U kt+1)m

= /_OO fr£k+1)m|(““"’7“ék+1)m)(r7 617 62)
. .fu’ (527 51)

(ke 1ym [0

~ /_ From e (C. €) dC dE (33)

where

fu’k+1)m|ukm (527 fl)

(

= fu;n|u0 (52: 61)

1
_  ex _
O-u’m|u0 V2w P [

(34)

202

ul |ug

(52 - /jluin |u0 )2]

Because of the distance-based updating, we obtain

T, u)

fr’ .uz

(k+1)m>

= foo N f
’ ’
—00 J=N T 1ym M (kt1)m

f’”(k+1>m7 U(k+1)m (
(r, u)Pn(r)
(r, u)drdu

k41)m

(35)

where

1, - N<r<N

. (36)
0, otherwise.

Pt ={
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Let Rypa(k) be the probability that there is no update up
to and including the kth location inspection instant. We have
R.pa(0) = 1, and

Rupa(k +1)

o0 N
= Rupd(k‘) [m [N frzk‘+1)muzk+1)m (T, ’LL) dr du. (37)

The above iteration to compute f,... () can be terminated
either when R,,,q(%) is sufficiently small, or when the series of
PDF’S fr.., us., (T, w) converges, e.g., in terms of normalized
squared error

f— f— [kam,um 7 u) fr(k 1)711,’11(1071),”(7“:
f_ f_ fr;\m,u,\m(T U)] dr dv

where ¢ is a predefined threshold. Suppose the iteration is termi-
nated at the gth step. Since f,,, ... (7, u) uniquely determines

u)]2 drdv

<€

f,ﬂ(Hl et m (r, uw), fork > q, Rupa(k +1)/Rupa(k) is es-
sentlaily constant and
R, d(Q)
Rupa(k+1) = =—P222 _ Ra(k). 38
pd( ) Rupd(q_ 1) ld( ) (38)

Thus, we can compute R,,a(k) successively for all & > ¢. We
carry out this computation until R,,,q(k) is small enough.

Thus, we obtain the PDF of the time between a location up-
date to the next autonomous update by

fupd<k'm) = Rupd(k_ 1) - Rupd(k)7

and fupa(n) = 0 for n not a integer multiple of m. Since
fupa(km) is not dependent on the history of a mobile’s loca-
tion or velocity before time & = 0, the time between consecutive
autonomous updates is independent and identically distributed
(i.i.d.).

Next, we consider the location updates between two succes-
sive call arrivals. Since a call arrival has the same effect as a
location update, the time between the first call arrival and the
first autonomous update has PDF f,,a(n). The i.i.d. location
update time intervals comprise a renewal process with the PDF
fupa(n).

Let U(n) denote the number of location updates within the
time interval of length n between two successive call arrivals.
Then

k=1,2, ... (39)

Pr[U(n) = i] = FO(n) — F+Y(n) (40)
where
OEDIRI0 (41)
=0

and £ (n) is the PDF of time between a location update and the
1th autonomous update in the future, as given by the following
recursive relation:

f(l)(n) = fupa(n)
FOm) = fD () * fupa(n)

where * denotes the discrete convolution.

(42)
(43)
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Let M (n) be the expected value of U(n). Then

M(n) = Z'é(F("')(n) — P ()

&
Il
-

(i = DFD(n)

K

iF(i)(n) —

o

-
Il
MR
<.
||
N

FO(n). (44)

o

<
Il
—

Using (44), the average updating cost per call arrival can be
obtained by

Cupdate = Cu Z fcall(n)

n=0

M(n) (45)

where C,, is the cost of a single autonomous location update.
To find Cpage, We first need to determine the distribution

Sram s wpm (15 w). Let
km+4i—1
Z Ukm+j s 1=1,2,...,m. (46)
j=km

Similar to the mean and variance of yo|vo derived in Appendix
B, we can show that 6y ;|uk., is Gaussian with mean ((1 —
a’)/(1 — a))ugm, and variance ((—(1 — a')? + i(1 — a?) —
20(1 — a?))/((1 — @)?))a?. Then, since

Thm+i = Thm + Ok, i (47)

and 7, and &y, ; are mutually independent given u,,,, we have

Frnes®) = [ B (20 % i (7 ) (48)
where * denotes convolution in terms of r.

Let K, (r) be the number of cells in which the network needs
to page a mobile when the mobile is at a displacement of » from
its predicted location. In a 1-D predictive system with a shortest-
distance-first paging rule

K,(r)=2[r/S+05] +1 (49)
where S is the cell size. Then, the expected number of cells
paged when a call arrives at time 4 from the last location up-

dating is
- [ K0

Let P(n) be the expected number of cells paged when a call
arrives at time n from the last call arrival. We can compute P(n)
with the following recursive equation:

= Rupd ([n/m])g(n) + fupd(m)P(” —m)
+ fupa(2m)P(n — 2m) + - - -
+ fupa ([n/m]m) P (n — [n/m]m).

(50)

P(n)

(51)
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Then, the average paging cost per call arrival is given by

Cpage = Cp ¥ fean(n)P(n) (52)
n=0

where C,, is the cost of paging a single cell.

B. 2-D Cost Evaluation

Section 11I-A describes the analytical framework for
evaluating the predictive mobility management scheme in
a 1-D system. In a 2-D system, similarly to (19) and (20),

we can define mean-shifted velocity u,, = (u%, v¥)T and
mean-shifted displacement r,, = (rZ, 7¥)T, given that no

location updating is performed up to the |n/m]th location
inspection. Then, similarly to (19)-(39), we can compute
f1(112)((11)(n) and frf ,ri’_ ,ui ,u 7uy) through an
iterative procedure over .f:;7,7,7u(kfl)m,um (r, uy, uy). Here,

the location cut-off function, as shown in (36), becomes

1, )2 )2 <N
JECOIIR (r ). +(r¥)? <
0, otherwise

v (1%, r¥, u®

km

(53)

where N is the threshold radius for location updating.

Then, the computation of Cj,spect remains unchanged and
the computation of C\pqate Can be carried out exactly as in
(40)—(45). The computation of i, is similar to that described
in (46)—(52), except that K,,(r) in (49) needs to be redefined.

The number of cells paged by the network to find a mobile
is largely dependent upon the cell shape and lattice arrange-
ment. In order to obtain analytical results that are compatible
with all cell configurations, we assume that the number of cells
paged is proportional to the size of the area paged by the net-
work. Since the optimal, shortest-distance-first and ring-by-ring
paging pattern is used, the area paged when the mobile is at
(r*, r¥) is a circle centered at the predicted location and with

radius v/ (r*)2 + (r¥)2. Thus, here the 2-D K,()Qd)(r) is defined
as

KR, 1) = |7 () + (%) /50 +1 (58)
where S(24) s the average area of a cell.

As hinted by (32)—(34), the direct extension of the 1-D algo-
rithm to the 2-D case can potentially be very computationally
intensive, since it requires convolution and other manipulation
Of ferm, 01y wime (T W1, U2) With six free variables. In what
follows, we introduce an approximating algorithm for 2-D cost
evaluation, which requires only as much computation as the 1-D
algorithm.

C. 2-D Cost Approximation

As shown in Section 111-B, the difficulty there is in computing
the joint PDF of location and velocity in both dimensions. This
problem can be alleviated by an approximation based on the
assumption that a mobile performs location updating separately
in each of the two dimensions. In this case, we define a new
location cut-off function

P (", rY) =

0, otherwise
(55)

where L is the threshold distance for location updating in each
dimension, and

L=+VnN2

which maintains the same size of the range of possible mobile
location immediately after a location inspection.

With this location updating assumption, the mobile location
and update time statistics can be computed independently in
each dimension, and then combined to give the 2-D statistics.
The 2-D autonomous update time is the minimum of the 1-D
autonomous update time in each dimension. In particular, since
we have assumed that the mobiles have the same and indepen-
dent mobility pattern in both dimensions, we have

(56)

R (k) = R2,4 (k) (57)
and hence
fl(lic(lj)(km) = 2fupd(km)Rupd(km) + ffpd(km) (58)
The 2-D mobile location PDF can be obtained by
.f'rﬁ ST (Txv Ty) = .an (Tx)frn (Ty) (59)

Then, we can use the same procedures described in Sec-
tion I11-B to compute the updating and paging costs. To
make the approximation results more precise, we can modify
K,()Q’i)(r9”7 r¥) to reflect the mobile location constraint intro-
duced by (55). For simplicity, in this work, we only consider
this constraint at time n» = km. In this case, the paging area is
the intersection of a circle and a square centered at the predicted
location, with radius N = /(r®)2 + (+¥)2 and side-length
2L, respectively. Thus, we redefine

2d z 2
K3D(r", )

( N2
{%J-&l, N<L

) lan? 4 .. VNI _LZ 60
\‘_5(2‘1)_5’(2‘[) (N tan — 1 (60)
-z N2—L2)J+17 N> L

Since (55) represents a suboptimal updating scheme, Ciotal
obtained here is an upper bound of the actual cost that can be
obtained by the direct 2-D computation in Section I11-B. In all
experiments that we have conducted, this upper bound is within
2% of the actual cost. Thus, we conclude that the approxima-
tion is quite reasonable, allowing us to significantly reduce the
computation complexity.

IV. NUMERICAL RESULTS AND COMPARISONS

In this section, we evaluate the cost of a 2-D system. When
analyzing the cost of the predictive scheme in the case of ideal
Gauss—Markov mobility pattern, we use the upper-bound ap-
proximation described in Section 111-C to expedite the compu-
tations. In the case of time-varying mobility pattern, the perfor-
mance of the predictive scheme, in conjunction with the pro-
posed parameter estimator, is demonstrated through simulation.

In order to reduce the redundancy of numerical representa-
tion, we scale both the spatial parameters and the cost parame-
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ters. We normalize all distance and velocity values according to
the cell size, such that the area of a cell is assumed to be one.
Furthermore, since only the relative costs of location inspection,
location updating, and mobile paging affect the performance op-
timization, we also normalize all costs to have the units of C,,
the cost of a single paging. Thus, C,, now represents the ratio
of the cost of one location update to the cost of a single paging,
and C; now represents the ratio of the cost of one location in-
spection to the cost of a single paging.

The costs C;, Cy, and C,, depend on multiple factors such as
the mobile battery and processor capacity, the system wireless
bandwidth, and the location database architecture. It is impos-
sible to quantify all these factors using a single metric. In fact,
it is difficult to properly quantify any one of these three costs
with a single metric. Therefore, the values of C; and C,, in our
analysis merely represent the relative importance of location in-
spection, location updating, and mobile paging in evaluating the
performance of a system.

Clearly, the relative importance of these different costs is de-
termined by the system design details on a case-by-case basis.
Furthermore, these costs may change over time, depending on
the time varying characteristics of the battery power, wireless
channel usage, database loading, network congestion, and many
other factors that a system designer need to consider. In this
paper, we consider the broad applicability of predictive mobility
management in different networks. Therefore, instead of giving
the numerical results of one specific type of network, we study
the optimization and performance of the proposed scheme with
a wide range of C; and C,, values.

For the case of ideal Gauss—Markov mobility pattern, we are
interested in understanding how C,,, C;, and the other system
variables, namely, the memory factor exponent (3, the average
velocity p, the standard deviation o, the location inspection pe-
riod m, and the updating distance NV, affect the performance of
the predictive scheme. In particular, we are interested in the joint
optimization of m and N, namely

(mopt7 Nopt) = arg Hli]I\lr Ctotal(m7 N7 /Bv w, o, /\7 CU7 CL)

(61)
which gives the minimum cost of mobility management
Ctotal(mopt7 Nopt)-

We are also interested in the performance gain that the predic-
tive scheme can achieve over the nonpredictive distance-based
scheme. In particular, we are interested in how the cost ratio is
affected by the aforementioned system parameters.

Although our analytical framework accommodates a general
call-arrival distribution, in the following numerical computa-
tions, we assume that the interarrival time of calls is exponen-
tially distributed with arrival rate A [calls/unit time].

A. Joint Optimization of m and N With ldeal Gauss—Markov
Mobility Pattern

Assuming ideal prediction, . has no effect on the cost of pre-
dictive mobility management. Other than that, however, it is not
easy to solve (61) using general numerical optimization tools.
Therefore, in what follows, given a set of system parameters,
we first compute Cita1 for a range of values of m and NV and
then pick the pair that gives the minimum cost.
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Fig. 2. Joint optimization of m and NV versus 3 and o, for A = 0.01, C,, =

10, and C; = 1. (a) Minimum cost. (b) Optimal m and N.

In Figs. 2-4, we study the effect of 3, o, A, C;, and C,, on the
minimization of Ciotal.

Fig. 2 presents the plots of the minimum Cl., and the
corresponding (mopt, Nopt), 8 (3 increases along the values
{1072, 107%%, 1071, 10795, 10°, 10°°} (i.e., o decreases
along the values {0.99, 0.97, 0.90, 0.73, 0.37, 0.04}), for
various values of ¢ and for A = 0.01, C,, = 10, and C; = 1.

Fig. 2(a) illustrates a seemingly counterintuitive phenom-
enon. It shows that the minimal total cost is not always
decreasing with the memory level (o = e=#) of a mobile’s ve-
locity. On the one hand, for fixed o and small 3, as 3 increases,
a mobile’s velocity becomes less correlated, so the total cost of
using prediction increases. On the other hand, when 3 is large,
the variance of Y""_ v; approaches a local minimum no?, so
a mobile’s position becomes more predictable, and therefore
the total cost decreases.

In addition, Fig. 2(a) shows that the minimal total cost is an
increasing function of the variance of a mobile’s velocity. This
matches the intuition that the cost of predictive mobility man-
agement increases as a mobile’s velocity becomes more chaotic.

Fig. 2(b) shows that, corresponding to the results in Fig. 2(b),
the optimal m and the optimal N are, respectively, convex and
concave functions of 3. However, the optimal m is always a
decreasing function of o, and the optimal N is always an in-
creasing function of o. Therefore, as a mobile’s movement be-
comes more unpredictable, more frequent location inspections
and longer update threshold distance should be used.

Fig. 3 presents the plots of the minimum C.; and the cor-
responding (mopt, Nopt), fOr various values of A and C;. Here,
C, isfixed at 10. Fig. 4 presents the plots of the minimum C o)
and the corresponding (mopt, Nopt ), for various values of A and
C.,. Here, C; is fixed at 1. In both of these figures, 3 = 107°->
(i.e., « = 0.73),and o = 0.5.

The plots in Figs. 3(a) and 4(a) demonstrate that the minimum
cost of mobility management per call arrival is approximately an
exponentially decreasing function of the call arrival probability.
Since a mobile’s location is tracked during a call, as the interar-
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Fig. 3. Joint optimization of m and N versus A and C;, for 3 = 10792,
o = 0.5,and C,, = 10. (a) Minimum cost. (b) Optimal m and N.

rival time decreases, there is less unpredictable mobile random
movement between calls, which leads to lower mobility man-
agement cost per call. As X\ approaches 1 [arrivals/time unit],
the total cost should approach 1[C,]. In this case no location in-
spection or location updating is necessary, and the only cost is
incurred when a call arrives and the system pages once to verify
that the mobile is there.

Figs. 3(b) and 4(b) demonstrate that both the optimal location
inspection period and the optimal updating distance decrease as
the call arrival probability increases. This is intuitive since, as
call arrives more often, a mobile is better off to check and up-
date its location more often to reduce the cost of the frequent
paging operation. From these figures, we also see that mqp; is
more sensitive to C; than N, is, and on the other hand, N is
more sensitive to C,, than m, . is. For example, when A = 0.01
[arrivals/time unit], as shown in Figs. 3(b), as C; goes from 1
t0 10%-3, myp increases from 8 to 12, while N, remains un-
changed at 4. However as shown in Fig. 4(b), as C,, goes from
10'5 t0 102, N,y increases from 7 to 11, while 1, remains
unchanged at 4. The relative insensitiveness of the optimal m
and N to some of the system parameters is a welcome prop-
erty, especially when the proposed scheme is applied to a system
where the cost factors and are time varying and need to be esti-
mated.

B. Comparison Wth the Nonpredictive Distance-Based
Scheme

For the nonpredictive distance-based scheme, we use com-
puter simulations to determine its cost when the system param-
eters take various combinations of values. In these simulations,
we assume an infinite 2-D space that is divided into cells of
size 1, where a mobile travels according to the 2-D isotropic
Gauss—Markov process defined by the mobility parameters 3,
1, and o. The simulations are time driven. At the time of ini-
tiation, the mobile is assumed to have just experienced a call
arrival. Thus, it starts from the origin (s9 = 0), and has ini-
tial velocity with the Gaussian distribution defined by 1 and o.

5100 T
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%_ 800[- © cu=t0' | 1
9] Cu=10"*
= 60g] - cu=10? g
=]
2 40% b
g
E 200 g
= . >
10
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3
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O .|
15 2 25 3 35 4 45 5
Optimal log_(m)
(b) -
Fig. 4. Joint optimization of m and N versus A and C,,, for 3 = 10=°-?,

o = 0.5,and C; = 1. (a) Minimum cost. (b) Optimal m and N.

The time of the next call arrival is randomly generated following
the exponential distribution with arrival rate \. Until a call ar-
rives, the mobile inspects its position every m clock ticks. If
the mobile is IV or more unit of distance away from the origin, a
location update is performed, and the origin is shifted to the cur-
rent location. When a call arrives, the paging cost is computed
based on the mobile’s distance from the origin, using (54). The
updating cost is computed based on counting the total number
of location updates performed since time initiation. The above
experiment is repeated 10° times, and the average is taken.

To find the joint optimization of m and N through simula-
tions in the nonpredictive case would be too daunting a task.
Instead, to facilitate the comparison between the two schemes,
for both schemes, we treat m as a nondesign parameter, and only
optimize N. Thus

Nc]:pt = argn}\i,n Cfotal(N7 By s o, A, Cu, Gy, m) (62)
N:Ift = argn}\irn Cit (N, B, u, o, X\, Cy, C;, m).  (63)

Furthermore, since both the predictive and nonpredictive
schemes have the same Ciyspect, independent of N, we drop
this term and define the performance gain
np np np np
G(/B7 w, o, )\7 011,7 m) = C;pdate(N;pt) + C};age(Nc]))pt) .
Cupdate(NOpt) + Cpage(Nopt)
(64)

Thus, the predictive performance gain is a function of six in-
dependent variables. Instead of attempting to plot the perfor-
mance gain in the six-dimensional space, we divide the variables
into two groups, the mobility-related parameters (3, p, o) and
the traffic and mobility-management parameters (A, Cy, m).
For each group of variables, we study the effect of these variable
in detail, while the variables in the other group are fixed.

In Fig. 5, we study the effect of the mobility pattern, namely,
(B, 1, o), on the performance gain. The other parameters are
setto (A, Cy, m) = (0.01, 10, 10).

Fig. 5(a) presents the plots of the performance gain versus
0, for various values of u, and with fixed o = 0.5. Here 3
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Fig. 5. Performance gain with ideal Gauss—Markov mobility model, for A =

0.01, C,, = 10,and m = 10. (a) Versus 3 and p, with o = 0.5. (b) Versus p
and o, with 3 = 107°-95 (o = 0.73. (c) Versus o and beta, with u = 0.5.

takes the values {1072, 10='-5, 10~1, 1079 10°, 10°-5}.
This corresponds to the memory factor « = e~ # taking the
values {0.99, 0.96, 0.90, 0.73, 0.37, 0.042}. These plots
demonstrate the important fact that the performance gain is
a convex function of 4. On the one hand, when 3 is small,
the user mobility has a high memory level, which favors the
predictive scheme. On the other hand, at o = 0, the variance of
Y1 vi reaches a local minimum, no?. Thus, when g is large
(i.e., a is small) and p is not too small (larger than 0.1 in this
case), the disadvantage of the nonpredictive scheme is mainly
determined by a mobile’s average velocity as explained below.
Therefore, in this case, since i does not affect the cost of the
predictive scheme, the predictive performance gain is larger
for larger (3. In other words, a smaller variance in the mobile
velocity, as observed over the location inspection periods,
reflects a more fluid-flow-like movement pattern, which favors
the predictive scheme.

When p = 0, the performance gain decreases from about 2.5
down to unity, as the memory factor of the system decreases
from 0.99 to 0.042. In particular, for 4 = 0 and « =~ 0, the
mobility of the mobile has the pattern of random-walk. In this
case, the predictive scheme does not have any advantage over
the nonpredictive one. However, in all other cases, the predictive
scheme results in substantial savings.

Fig. 5(b) presents the plots of the performance gain versus
w, for various values of o, and with fixed 8 = 10795 (o =
0.73). These plots demonstrate that the performance gain is a
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faster-than-linearly increasing function of x.. Maximum savings
are achieved when p > o, since, in this case, the mobile mo-
bility pattern is close to the fluid-flow model, where a mobile’s
velocity and location are easily predictable. In this case, the mo-
bile never needs to update its location, and therefore, the only
cost incurred using the predictive scheme is the cost of paging
once in the cell of the predicted location, when a call arrives,
to verify that the mobile is indeed there. The performance gain
can grow without bound as 1 approaches infinity. For example,
when ¢ = 0.1 and ¢ = 10, a performance gain greater than
1000 can be achieved. However, when ;4 = 0.1 and o > 0.1,
the performance gain is close to unity.

Fig. 5(c) shows the plots of the performance gain versus o, for
various values of 3, and with fixed ;o = 0.5. These plots demon-
strate that, when the memory level is high enough (e.g., a >
0.73), the performance gain is a convex, nonmonotonic func-
tion of &. On the one hand, for small values of o, as shown in the
last figure, the mobility pattern become more like the fluid-flow
model and, hence, the predictive performance gain increases.
On the other hand, for large o, the advantage of using prediction
becomes more prevalent, as long as the memory level is high.
When the memory level is relatively low (e.g., « < 0.73), the
performance gain is approximately an exponentially decreasing
function of o.

In Fig. 6, we study how the parameters (\, C,,, m) affect the
performance gain. We set the mobility parameters (3, i, o) =
(10795,0.5, 0.5).
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Fig. 6(a) presents the plots of the performance gain versus A,
for various values of C,,, and with fixed m = 10. These plots
demonstrate that the predictive performance gain is a convex
function of X. On the one hand, when the call arrival rate is low,
the interarrival time becomes longer, and a mobile drifts farther
away from the location where the last call arrived. This leads to
higher updating and paging costs for the nonpredictive scheme.
On the other hand, when the call arrival rate is high, as shown
in Section IV-A, the cost of the predictive scheme approaches
one. In this case, the disadvantage of the nonpredictive scheme,
due to the nonzero mean velocity, becomes more dominant as
A becomes larger. In particular, the transition point is around
A = 0.01 for the given set of parameters.

Fig. 6(b) shows the plots of the performance gain versus C,,,
for the various values of m, and with fixed A = 0.01. These
plots demonstrate that, when m is small (e.g., m < 5), the per-
formance gain is an approximately linearly increasing function
of the updating cost to paging cost ratio. However, when m is
large (e.g., m > 10), the performance gain is a convex function
of C, (note that the C,, axis is in the logarithmic scale). As a call
arrives in-between location inspections, a mobile may have trav-
eled beyond the updating distance. In the nonpredictive scheme,
the system needs to page in more cells than it does in the pre-
dictive scheme. This problem of the nonpredictive scheme be-
comes more prominent when the paging cost to updating cost
becomes larger, i.e., when C, becomes smaller. Furthermore,
the disadvantage of the nonpredictive scheme is more apparent
as rn increases. This is studied in more detail in the next figure.

Fig. 6(c) presents the plots of the performance gain versus m,
for the various values of A, and with fixed C,, = 105, These
plots demonstrate that the performance gain is an increasing
function of the location inspection period. This shows that the
predictive scheme improves the performance of a system where
the location inspection cost is relatively high.

C. Dynamic Gauss—Markov Parameter Estimation

We use simulation to study the performance of the proposed
scheme in systems where the mobility pattern cannot be ide-
ally represented by the Gauss—Markov model. We simulated
the 2-D random way-point mobility model as described in Sec-
tion 11-A-3. The time-varying Gauss—Markov parameters are es-
timated as described in Section I1-C and applied to the predictive
scheme as described in Section I1-B.

Fig. 7 illustrates the effectiveness of combining dynamic pa-
rameter estimation and predictive mobility management. In both
figures, the parameter estimation window is wes; = 10. The call
arrival rate ) takes the values {10~%, 10=2, 10=3}. The cost per
location update is assumed to be C,, = 10[C,].5 We further as-
sume that . = 1. In the random way-point model, we assume
that the mobile velocity has unit magnitude with zero pause time
(i.e., when a mobile reaches a destination point, it immediately
moves toward a new destination). The system coverage area is
assumed to be a square with side length W. Clearly, the larger
the W, the more predictable is the mobile movement. In par-
ticular, when W approaches infinity, a mobile appears to move
with constant velocity with a pre-selected random direction.

5Simulation results with other C,, values yield similar results and are omitted
here.
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Fig. 7. Dynamic parameter estimation with random way-point mobility

model, for C,, = 10. (a) Comparison of minimum (over N) cost. (b)

Performance gain.

Fig. 7(a) plots the minimum total cost (obtained with the
optimal location threshold) of location updating and mobile
paging, per call arrival, for both the predictive scheme and
the nonpredictive scheme. This figure shows that, as W in-
creases, the mobile movement approaches the constant-velocity
fluid-flow model, and the cost of the nonpredictive scheme
approaches its maximum value. This maximum value can be
determined analytically, since when a mobile moves with unit
constant velocity,

[ee] N
Crora(N ):/0 Ae™ M <O ~+ —/ s ds) dt. (65)

It is easy to optimize N in the above and to ob-
tain the minimum cost of the nonpredictive scheme
Crh (NJE) = 1.92(Cu/A)?/3. The simulation model
can be verified by substituting the values of C,, and A into the
above equation and comparing the results with the simulation
results.

In contrast, as W increases, the cost of the predictive scheme
decreases. As expected, this cost approaches 1{Cp] when W is
very large. This is the case where the mobile location is perfectly
predictable, and, hence, the best scheme is not to update at all,
and each time a call arrives, the system pages the mobile once.

Fig. 7(b) plots the performance gain of the predictive scheme
as defined in (64). This figure shows that when W is not too
large, the performance gain is approximately linearly increasing
with W. When W is very large, as expected from the results
shown in the previous figure, the performance gain levels off and
approaches its global maximum. As a point of reference, for the
moderate case where C,, = 10 and A = 0.01, the predictive
scheme outperforms the nonpredictive scheme by a maximal
factor of 200!

It is worth noting that, in the case of dynamic Gauss—Markov
parameter estimation, the predictive performance gain can de-
grade to less than 1 when W is very small. This is in contrast
with the ideal case shown in Section 1VV-B, where the predic-
tive scheme performs as well as the nonpredictive scheme even
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when the mobile movement is memoryless. This performance
degradation is a direct result of our suboptimal parameter es-
timation algorithm. For example, if we had a priori knowledge
(e.g., through long-term observation) that the mobile movement
follows the random way-point pattern, a better parameter esti-
mation using west = 1 could be employed. For systems with
general mobility patterns, improving the parameter estimation
algorithm would further improve the performance gain of the
predictive scheme beyond what is shown in Fig. 7(b).

V. CONCLUSION

Mobile users in PCS networks move with wide variety of mo-
bility patterns, especially in networks with multilayer macrocel-
lular and microcellular infrastructures [10]. We have presented a
novel predictive distance-based mobility management scheme,
which takes full advantage of the correlation between a mo-
bile’s current velocity and location and its future velocity and
location. We have introduced a mobility model based on the
Gauss—Markov random process, which captures the various de-
grees of velocity correlation in time. It even includes both the
random-walk and fluid-flow models as its two extreme cases.
An analytical framework is introduced to evaluate the perfor-
mance of the proposed scheme. The analytical framework en-
ables us to study the effects of various parameters on the mo-
bility management cost, to optimize the location inspection fre-
quency and location updating threshold through numerical anal-
ysis, and to determine the relative performance of the proposed
scheme over the nonpredictive scheme.

The numerical results have demonstrated the important fact
that the performance gain of the predictive scheme is not an
increasing function of the memory level of a mobile’s move-
ment. This validates our observation that the memory level does
not directly indicate the predictability of a mobile’s movement.
Overall, however, the numerical analysis confirms our intuition
that the cost of predictive mobility management is inversely pro-
portional to the predictability of a mobile’s mobility pattern. In
particular, our numerical results suggest that this cost is a mono-
tonic function of the velocity variance and the call arrival rate,
that it is a concave function of the memory level, and that it is
independent of the mean velocity. Correspondingly, the optimal
location inspection period and the optimal updating distance are
monotonic functions of the velocity variance and the call arrival
rate, but they are, respectively, convex and concave functions of
the memory level. In the span of parameter values under consid-
eration, the performance improvement of the predictive scheme
ranges from unity, in the random-walk case, to a factor of a few
orders of magnitude, in the constant velocity case. As a point
of reference, as shown in Fig. 5(b), in the near fluid-flow case,
where o = 0.1, the performance gain quickly increases from 8,
when p = 0.3, to 100, when p = 3. In more general terms, the
mobility management cost can be reduced by more than 50%
for all systems where the mobiles have moderate mean velocity
(e.g., ¢ > 0.5), and where performing a location update by a
mobile is as least as expensive as paging a mobile in a cell (e.g.,
C, > 1)

Our analysis using ideal Gauss—Markov mobility pattern
has demonstrated the potentially enormous advantage of using
prediction in mobility management. For practical systems with
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time-varying mobility patterns, we have introduced a dynamic
parameter estimation algorithm to be employed in conjunction
with the proposed predictive scheme. Simulation results of
systems with the random way-point mobility model have
demonstrated that the proposed predictive scheme can largely
outperform the nonpredictive scheme, even with a suboptimal
parameter estimator.

The vast performance gain of predictive mobility manage-
ment, as shown by both analysis and simulation, offsets the cost
of enabling prediction in the mobile terminal and the wireline
backbone. This justifies the investment of such software and
hardware devices in the next generation wireless personal com-
munication networks.

APPENDIX A
DERIVATION OF Clipgpect WITH EXPONENTIALLY DISTRIBUTED
CALL INTERARRIVAL TIME

In this case, the PDF of the call interarrival time is fean(n) =

A(1 = A)™. From (17), we have
1nspoct - Cz Z )‘ Ln/mJ
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APPENDIX B
DERIVATION OF fy|(uo, u’ ) (s €1, &2)

Since  wug, U1, .., Um—1, u,, are jointly Gaussian,
Y0 = Yty w; is jointly Gaussian along with
Ugy Uty - -+ Um—1, U, . With slight abuse of notation, we have

fJo [(uo, u’ )(y7 517 52)

m

_ f(Jo ul,) \uo(y7§1 &)
T fun (62,6

m
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20y0‘“0(1 —-72)

(67)
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where jiy: 1y, and gy, ., are the means of u;, [ug and yo|uo,
respectively, oy, ju, and oy,|., are the standard deviations of
ul |ug and yo|ug, respectively, and + is the correlation factor of
yoluo and ul, [ug.

From the definition of «/,, we have

Hu! Jug = amu() (68)
and
m—1
O.Z/ o :02(1 _ 02) Z a2(m7171)
' =0
=(1-a*)o?. (69)
The mean of yq, given ug, is
m—1 m—1 ‘ 1—ogm
i = 3 Pufan = 3 o = v (70)
i=0 i=0

To find a formula for o, ., we first consider the covariance
between wu;|uo and w;|ug. For any 7 and j satisfying 0 < ¢ <
j < m — 1, we have

E[(ut |’U,0 — M, \uO)(U'j |’LL[) — M, |ug )]
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Finally, the covariance factor between «!,, and o is
Cu’ Yo )|u
vy = 2( vaog‘ 0 (73)
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