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On the Scalability and Capacity of Single-User-Detection Based
Wireless Networks with Isotropic Antennas
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Abstract— We extend the results of [1] on the capacity of single-
user-detection based wireless networks, and we determine the
implications of our results on the scalability of such networks.
In particular, we consider a wireless network of N nodes that
are equipped with isotropic antennas. The nodes are stationary
or moving arbitrarily in a network domain of an arbitrary
one, two, or three dimensional shape, as opposed to the two
dimensional circular domain in [1]. In this arbitrary dimen-
sional setting, we derive bounds on the per node end-to-end
throughput capacity and the maximum number of simultaneous
transmissions whose SINRs exceed a given threshold. We derive
these bounds with both the bounded propagation model in [1]
and a large class of bounded propagation models, which we
refer to as the general propagation model. Our results show that
with the general propagation model, the maximum number of
simultaneous transmissions, whose SINRs exceed the threshold
has an upper bound that does not depend on N, and the per
node end-to-end throughput capacity is O(1/N) for a large class
of wireless networks. Moreover, we establish several required
conditions for scalability. These conditions show that, for any
propagation model, to achieve a desired per node end-to-end
throughput as N grows, it is necessary to keep the average
source-to-destination hop count bounded. Also, for the particular
propagation model of [1], we show that the size of the network
domain must grow with N at a rate that depends on the dimension
of the network domain and the path loss exponent.

Index Terms— capacity, capacity bounds, isotropic antennas,
scalability, throughput, wireless networks.

I. INTRODUCTION

IN every wireless network, the per node end-to-end through-
put is upper bounded by the per node end-to-end through-

put capacity (λe). In general, λe may depend on many parame-
ters of the network, such as the number of nodes (N) [1]-[6].
Hence, understanding the dependence of λe on N and the
other network parameters is vital to determine the necessary
conditions for the scalability of a wireless network with the
number of nodes.

In this paper, we consider the scalability and capacity of
single-user-detection based wireless networks that are not
supported by a wired infrastructure, and where the nodes are
equipped with isotropic antennas [1]-[6]. Our work in this
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paper builds on the results of [1]. In [1], a new approach
is developed to analyze the capacity and scalability of such
networks on the plane, through the use of a more general
network model than the models used in [3] and [4]. This
generality was achieved by deriving bounds on λe while
making no restrictions on the mobility pattern of the nodes,
the temporal variation of source-destination associations, the
number of simultaneous transmissions and/or receptions that
each node can maintain, the routing protocol, and the spatial-
temporal transmission scheduling scheme. Furthermore, a
bounded propagation model, called the power law decaying
propagation model, is used in [1] as opposed to an unbounded
propagation model that was used in [3] and [4].

In the network model of [1], the network domain (Q)
is a disk of area A, and the reception model is signal-to-
interference and noise ratio (SINR) threshold based, where a
transmission at any given time t is considered successful, if
its SINR is greater than or equal to a threshold value β > 0.
The following are the three main results of [1]:

(A) The maximum number of simultaneously successful
transmissions (Nmax

t ) has an upper bound that does not
depend on N . This upper bound is called the simultane-
ous transmission capacity of the network domain (NQ

t ),
and it represents the maximum number of simultane-
ously successful transmissions that can occur within the
network domain, no matter what the number of nodes
is. Asymptotically1, NQ

t is O(G/β), where G is the
processing gain. Also, for a path loss exponent γ, NQ

t

is O(Amin{γ/2,1}) if γ �= 2, and NQ
t is O(A/ log(A)) if

γ = 2. Moreover, NQ
t is O(γdim).

(B) If the area A is fixed, then λe is O(1/N) even when
the mobility pattern of the nodes, the spatial-temporal
transmission scheduling policy, the temporal variation of
transmission powers, the source-destination pairs, and the
possibly multi-path routes between them are optimally
chosen. This result continues to hold even when the nodes
can maintain multiple transmissions and/or receptions
simultaneously, or when the communication bandwidth
is partitioned into multiple channels. Moreover, λe is
O(1/H), where H is the average number of hops be-
tween a source and a destination.

(C) For practical systems, a desired per node end-to-end
throughput is not achievable as N → ∞, unless the
following two conditions apply:

1Suppose f and g are non-negative functions of a real variable x. We say f
is O(g) (with respect to x) (or, g is an asymptotic upper bound on f) if there
are x0, y0 > 0 such that f ≤ y0g for all x ≥ x0. Also, we say f is Θ(g), if
there are x1, y1, y2 > 0 such that y1g ≤ f ≤ y2g for all x ≥ x1. We will
also use the fact that f is Θ(g) with respect to x, if lim

x→∞
(f/g) ∈ (0,∞).
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(C.1) H does not grow indefinitely with N , and
(C.2) A grows with N such that, N is O(Amin{γ/2,1}) if

γ �= 2, and N is O(A/ log(A)) if γ = 2.
In the network model of [3] and [4], A is fixed and it

is assumed that the received power at a distance x from a
transmitter equals to the product of the transmitted power2

and x−γ . The authors of [3] concluded that, if the nodes are
immobile, then λe vanishes as N → ∞. However, the authors
of [4] concluded that there exists a two-dimensional mobility
pattern of the nodes that allows λe to be Θ(1) with respect to
N . Also, both [3] and [4] concluded that Nmax

t is Θ(N).
These results of [3] and [4], differ significantly from the

corresponding results in (A) and (B) above. The main reason
for these differences, is the different propagation model that
was used in [1]. In [1], it is observed that the propagation
model of [3] and [4] leads to too optimistic evaluation of
the received power of each transmission as N grows large.
Hence, in [1], a bounded propagation model, called the power
law decaying propagation model, is used. This model replaces
x−γ above with (1 + x)−γ . This replacement provides a
more meaningful estimate of the received power for small
transmitter-receiver distances, while approximating the con-
ventionally used propagation model at large distances3. This
model was also suggested in earlier studies on connectivity
[7]-[8] to obtain more realistic results.

The results of [3] are further extended to a spherical network
domain in [5] and the authors of [6] concluded that the result
of [4], which states that λe is Θ(1), continues to hold with a
one-dimensional mobility pattern. Finally, the authors of [5]
and [6] used the propagation model of [3] and [4], and they
concluded that Nmax

t is Θ(N) in their network settings as
well.

In light of the results of [1]-[6], the following questions still
remain unanswered:

• With the more realistic power law decaying propagation
model, what are the capacity limitations of single-user-
detection based arbitrary dimensional wireless networks,
and what are the implications of these limitations on the
scalability of such networks?

• Do the main results of [1] and the corresponding results
for arbitrary dimensional wireless networks rely strongly
on the specific structure of the power law decaying
propagation model, or are they indeed valid with a large
class of propagation models?

The main contribution of this paper is providing answers to
the above questions. We answer these questions by deriving
the corresponding bounds on NQ

t , Nmax
t , and λe for the

arbitrary dimensional case, i.e., for a network domain Q that
has diameter D and dimension dim ∈ {1, 2, 3}. In addition
to the power law decaying propagation model, we introduce
the general propagation model, which is the class of all
bounded propagation models for which the received power
monotonically decreases as the transmitter-receiver separation
increases. With the help of the bounds that we derive, we

2In [3] and [4], the SINR based threshold model with this propagation
model is called physical model.

3Interested reader can see [1] or [12] for a detailed discussion on this issue
and for more detailed discussions on comparisons among the network models
of [1], [3] and [4].

prove that the result (A) above still holds, in the sense that
with both propagation models, Nmax

t is still upper bounded
by the simultaneous transmission capacity of the network
domain (NQ

t ), which does not depend on N . Moreover, we
show that NQ

t is O(G/β) with both propagation models.
Additionally, we find the arbitrary dimensional analogues of
the asymptotic upper bounds on NQ

t , Nmax
t , and λe. In partic-

ular, we show that with the power law decaying propagation
model, NQ

t is O(Dmin{γ,dim}) when γ �= dim, and NQ
t is

O(Ddim/ log(D)) when γ = dim. Also, we show that NQ
t

is O(γdim). Furthermore, we show that the O(1/N) result in
(B) continues to hold with the general propagation model, and
the O(1/H) result in (B) holds for every propagation model.

Finally, regarding the scalability of practical systems, we
show that condition (C.1) is required for every propagation
model, and the arbitrary dimensional analogue of condition
(C.2) is as follows: D grows with N , such that N is
O(Dmin{γ,dim}) if γ �= dim, and N is O(Ddim/ log(D))
if γ = dim.

Our results in this paper also extend the results of [5] and
[6] in a similar way [1] extended the results of [3] and [4], as
we pointed out in the beginning of this section.

The outline of the paper is as follows: In section II we
describe the network model and define the quantities that are
used in the derivations. In section III, we derive the upper
bounds on the simultaneous transmission capacity and the per
node end-to-end throughput capacity. Section IV presents the
analysis of the upper bounds. In section V, we discuss the
implications of the results on scalability. Finally, section VI
concludes the paper.

II. NETWORK MODEL AND DEFINITIONS

Firstly, we discuss our network model, which is an extension
of the network model in [1].

A. Network domain and Nodes : All of the N nodes are
located within the bounded network domain Q ⊆ �dim at all
times, where � is the real line.4 The diameter of the network
domain, D, is defined as D

Δ= supu,v∈Q ‖u − v‖. There are
no restrictions on whether or how nodes move.

B. Transmitter and Receiver Model : Each node is capable
of being a transmitter and/or a receiver at any given time.
All transmitters and receivers have isotropic antennas. There
are no restrictions on how the transmission power is varied
during a transmission. For the time being, we assume that
all transmissions take place within the same communication
bandwidth, but in section III-B, we will also generalize our
results to the case where the communication bandwidth is par-
titioned into sub-channels of smaller bandwidth. Information
from a transmitter can be transmitted to its intended receiver
at a rate not exceeding Wmax bits/s only when the SINR at
the receiver is not below β > 0. The processing gain G > 0
represents the factor by which the total received interference
power is reduced at each receiver. Each receiver is capable of
maintaining at most s simultaneous transmissions intended for
itself, given that the SINRs of these transmission are greater

4If all points of Q lie on a line, then dim = 1, else if all points of Q lie
on a plane, then dim = 2, otherwise dim = 3. Also, distance, area, and
volume measures have the units [m], [m2], and [m3], respectively.
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than or equal to β. Also, each node can originate at most s
simultaneous transmissions. So, it is possible that a node may
attempt transmitting to s other receivers, while it is receiving
from s other transmitters. In any of our results, letting s tend
to infinity corresponds to relaxation of the above constraints
that involve the parameter s (this corresponds to the model in
[1]).

We will refer to the transmitter-receiver model explained
so far as the full-duplex transmission model. Additionally, the
half-duplex transmission model has one more constraint: no
node can transmit and receive at the same time. Thus, the
model in [3]-[6], that a node is able to maintain either one
transmission or one reception at any given time, corresponds
to the half-duplex transmission model with s = 1. In general,
the reason for the existence of the parameter s is due to
the hardware limitations of the transmitters and the receivers.
Due to clock frequency, storage, and memory limitations of
the transmitter or receiver controller circuitry, the transmitters
and receivers cannot process more than a certain number of
transmissions or receptions within a given time interval.

When there are multiple sub-channels, implementation of
the full-duplex model at a node can take one of three different
forms at any time: (i) the node may be transmitting over
some sub-channels while it is receiving on some of the other
sub-channels, (ii) the node may be transmitting and receiving
over the same sub-channels, or (iii) some combination of (i)
and (ii). Implementation of (ii) and (iii) may be done by
equipping the nodes with multiple antennas. In narrowband
systems, (i) is implemented instead of (ii) and (iii), since in
(ii) and (iii) a node may directly contribute interference to
its own reception, and this may significantly reduce the SINR
of its own reception. For wideband systems with sufficiently
large processing gain, (ii) and (iii) may allow supporting larger
transmission rates as opposed to (i). In this paper, the results
that we derive for multiple sub-channels are valid for all the
three possible implementations of the full-duplex model.

C. Propagation Model : At any given time, suppose a
transmitter transmits with power P , and x is the Euclidean
distance between the transmitter and a given receiver. We
assume that the received power is equal to P · a(x), where
a : [0,∞) 	→ (0, 1] is called the attenuation function.
In addition to the power law decaying propagation model,
where a(x) = (1 + x)−γ and γ ≥ 0, we introduce the
general propagation model, which is defined by the class of
attenuation functions with the following properties: a(0) = 1,
0 < a(x) ≤ 1 for every x ≥ 0, and a(x + y) ≤ a(x) for
every x, y ≥ 0. Note that the power law decaying propagation
model satisfies these properties.

D. Traffic Pattern : As in [1], we make no restrictions on
the variation of source-destination associations over time and
the possibly multi-path routing protocol. Also, as in [1]-[6],
intermediate nodes do not jointly encode, transmit, and decode
information that comes from different sources.

Next, we define the quantities that we use in our derivations.
We denote the volume of the network domain by VQ, and we
define it as the outer measure5 of Q in �dim [9]. When D

5The outer measure of a set E ⊆ �dim is defined as inf{ΣkVol(Ik) :
I1,I2,... are closed cubes in �dim such that E ⊆ ∪kIk}, where Vol(Ik)
denotes the volume of the cube Ik for each k.

is allowed to be a variable parameter, we call Q a regularly
scaling network domain if Q has a nonempty interior for every
D > 0 and scaling D by a constant results in scaling all linear
dimensions of Q by the same constant. Thus, VQ is directly
proportional to Ddim if Q is regularly scaling.

At any given time t, Nt denotes the total number of
successful transmissions. Simultaneous transmission capacity
of the network, Nmax

t , is defined as the maximum value of Nt

over all the possible placements of the N nodes, selections
of transmitters and their intended receivers, and selections of
transmission powers. Simultaneous transmission capacity of
the network domain, NQ

t , is defined as the maximum value of
Nt over all the number of nodes, the placements of them,
selections of transmitters and their intended receivers, and
selections of transmission powers. It follows immediately from
these definitions that Nmax

t ≤ NQ
t .

bi(T ) denotes the total amount of information (in bits)
generated by node i and received by its destinations during
the T -second time interval [0,T ]. The end-to-end throughput
of node i, λi, is defined as follows: λi

Δ= lim
T→∞

bi(T )/T ,6 for

every 1 ≤ i ≤ N . An end-to-end throughput λ0 is said to
be achievable by all nodes, if there exist a mobility pattern,
a traffic pattern, a spatial-temporal transmission scheduling
policy, and a temporal variation of transmission powers for the
network nodes, such that λi ≥ λ0, for all 1 ≤ i ≤ N . Also, an
end-to-end throughput λ0 is said to be achievable on average,
if there exist a mobility pattern, a traffic pattern, a spatial-
temporal transmission scheduling policy, and a temporal vari-
ation of transmission powers for the network nodes, such that
1
N

∑N
i=1 λi ≥ λ0. So, if λ0 is achievable by all nodes, then

it is achievable on average. Since the contrapositive statement
is also true, we will shortly say that λ0 is not achievable if
λ0 is not achievable on average.

Finally, the per node end-to-end throughput capacity, λe, is
defined as the supremum of all end-to-end throughputs that are
achievable by all nodes. Similarly, the per node average end-
to-end throughput capacity, λm, is defined as the supremum
of all end-to-end throughputs that are achievable on average.
It follows immediately from these definitions that λm ≥ λe.

III. DERIVATION OF THE RESULTS

A. Upper Bounds on Simultaneous Transmission Capacity

1) Upper bounds that hold with every propagation model:
In this subsection, during the proof of Theorem 1, we show
that the number of simultaneously successful transmissions
that any given node receives cannot exceed 1+G/β. Then, we
combine this result with the constraints of the half-duplex and
the full-duplex transmission models to establish Theorem 1.

Theorem 1: For every propagation model and for every
time t,

Nmax
t ≤ N min

{
1+ G

β , c · s}, (T1.1)

where c
Δ=1 if transmissions are full-duplex, and c

Δ=1/2 if
transmissions are half-duplex.

6Our results also hold with the more general definition

λi
Δ
= lim

T→∞
inf
t>T

bi(t)/t, which does not require the existence of the

limit. A similar definition was used in [3] and [4].
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Proof: At an arbitrary time t, for every 1 ≤ i ≤ N , let ri(t)
be the number of successful transmissions for which node i is
the intended receiver, Pki(t) be the received power of the kth

successful transmission intended for node i, for every 1 ≤ k ≤
ri(t). Also, let ξi(t) be the power of thermal noise present in
the communication bandwidth at node i, and SINRki(t) be the
SINR of the kth successful transmission intended for node i.
If 1 ≤ i ≤ N and ri(t) > 1, then for all 1 ≤ k ≤ ri(t),

β ≤ SINRki(t) ≤ Pki(t)

ξi(t) + 1
G

∑ri(t)
j=1,j �=k Pji(t)

⇒ G
β
≥ ∑ri(t)

j=1,j 
=k
Pji(t)

Pki(t)
+ Gξi(t)

Pki(t)
(1)

(a)⇒ ri(t)
G
β
≥ ∑ri(t)

k=1

∑ri(t)
j=1,j 
=k

Pji(t)

Pki(t)
+

∑ri(t)
k=1

Gξi(t)
Pki(t)

(b)

≥ ∑ri(t)−1
k=1

∑ri(t)
j=k+1

(
Pji(t)

Pki(t)
+ Pki(t)

Pji(t)

)

(c)

≥ ∑ri(t)−1
k=1

∑ri(t)
j=k+1 2

= ri(t)(ri(t) − 1),

⇒ ri(t) ≤ 1 + G
β , if 1 ≤ i ≤ N and ri(t) > 1, (2)

where (a) follows from adding all ri(t) inequalities in
(1) for each value of i, (b) follows from rearranging the
order of the double sum and the non-negativity of the
single sum, and (c) follows from the fact that x + 1

x ≥ 2
for every x > 0. Clearly, (2) also holds if 1 ≤ i ≤ N
and ri(t) ≤ 1. Since Nt =

∑N
i=1 ri(t), this implies that

Nt ≤ N(1 + G/β) . Also, since each node can maintain
at most s simultaneous transmissions intended for itself,
ri(t) ≤ s. Since Nt =

∑N
i=1 ri(t) , this implies Nt ≤ sN .

On the other hand, if the transmissions are half-duplex,
then Nt ≤ sN/2. This is so, because in this case, no
node can transmit and receive simultaneously and each
node can be the transmitter or the receiver of at most s
simultaneous transmissions. Together with the inequalities
Nt ≤ N(1 + G/β) and Nt ≤ sN , this implies that
Nt ≤ N min{(1 + G/β), c · s}. While deriving this upper
bound on Nt, we made no restrictions on the propagation
model, the placement of the N nodes, the choices of the
transmitters, their intended receivers and the transmission
powers. Hence, this upper bound on Nt is an upper bound
on Nmax

t for every propagation model. This completes the
proof.

2) Upper bounds that hold with the general propagation
model: In this subsection, we prove Theorem 2. This theorem
allows us to show that the main results of [1] are not tied to
the particular propagation model in [1], but rather they hold
for the general propagation model as well.

Theorem 2: With the general propagation model, for every
time t,

Nmax
t ≤ NQ

t ≤ 1 + G
βa(D) , (T2.1)

Proof: At an arbitrary time t, we index each transmitter-
receiver pair that belongs to the same successful transmission
with a unique integer from {1,2. . . Nt}. Thus, receiver i is
the intended receiver of transmitter i, for all 1≤ i ≤ Nt.
Let P t

j (t) be the power transmitted by transmitter j. Now, let
ζi(t) denote the power of noise at receiver i, and let dji(t)

be the distance between transmitter j and receiver i. Also, let
P r

ji(t) be the power received by receiver i from transmitter j.
Finally, let SINRi(t) be the SINR at receiver i. Then, for all
1 ≤ i ≤ Nt,

β ≤ SINRi(t) ≤ P r
ii(t)

ζi(t) + 1
G

∑Nt

j=1,j �=i P r
ji(t)

⇒ G
β P r

ii(t) − Gζi(t) ≥
∑Nt

j=1,j �=i P r
ji(t)

=
∑Nt

j=1,j �=i P t
j (t)a(dji(t))

(d)

≥ a(D)
∑Nt

j=1,j �=i P t
j (t)

⇒ ∑Nt

i=1

∑Nt

j=1,j �=i P t
j (t)

≤ G
βa(D)

∑Nt

i=1 P r
ii(t)− G

a(D)

∑Nt

i=1 ζi(t), (3)

where (d) follows from the monotonicity of a(·), and
the fact that dji(t) ≤ D for every i, j, and t.

Now, let PT (t) Δ=
∑Nt

i=1 P t
i (t), PR(t) Δ=

∑Nt

i=1 P r
ii(t), and

ζR(t) Δ=
∑Nt

i=1 ζi(t). So, PT (t) is the total transmitted power
at time t, PR(t) is the total received power from intended
transmitters at time t, and ζR(t) is the total received noise
power at time t. Hence, from (3) and the above definitions,

(Nt − 1)PT (t) ≤ GPR(t)
βa(D)

− GζR(t)
a(D)

⇒ Nt ≤ 1+ GPR(t)
βa(D)PT (t)

− GζR(t)
a(D)PT (t)

⇒ Nt ≤ 1+ G
βa(D)

, (4)

where (4) follows from a(·) ≤ 1, which implies that
PR(t) ≤ PT (t),7 and the fact that noise and transmission
powers are non-negative. By definition, NQ

t is the maximum of
Nt over all the number of nodes, their placements, the choices
of transmitters, their intended receivers, and the transmission
powers. We did not restrict any of these choices while
deriving the last inequality in (4). Hence, its right-hand side
is an upper bound on NQ

t , which is not less than Nmax
t . This

completes the proof.
3) Upper bounds that hold with the power law decaying

propagation model: In this subsection, we derive an upper
bound on NQ

t (hence, Nmax
t ) with the power law decaying

propagation model. This upper bound, as well as the upper
bound in (T2.1), are due to co-channel interference. As it can
be deduced from the definition of NQ

t and Theorems 2 and 3,
when all transmissions occur at the same channel, it becomes
impossible to satisfy the SINR threshold requirements of all
transmissions at the same time, if the number of transmissions
exceeds a certain finite number.

Theorem 3: With the power law decaying propagation
model, for every time t,

Nmax
t ≤ NQ

t ≤ Uγ,dim
Δ=

(1+ G
β
)ddim

dim ∫1+d
1

(u−1)dim−1

uγ du
, (T3.1)

7Note that this is exactly the inequality, where the bounded behavior of the
propagation model plays a key role. If one uses an unbounded propagation
model, such as the propagation model in [3] and [4], it is not necessarily
true that PR(t) ≤ PT (t). In fact, with the propagation model of [3] and [4],
one can make PR(t) as large as desired, provided the transmitter-receiver
pairs are sufficiently close so that PR(t) > PT (t). Certainly, such a case is
unrealistic due to the law of conservation of energy.
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TABLE I

THE VALUE OF THE INTEGRAL IN (T3.1)

dim=3 dim=2 dim=1

γ /∈
{k}dim

k=1

2
υ

+

3∑
k=1

((−1)k+Iγ=2)

(1+d)γ−k(γ−k)
1
υ

–

2∑
k=1

(1+d)k−γ

(−1)k(γ−k)
1−(1+d)1−γ

υ

γ = 1 d2

2
+ log(1 + d) − d d − log(1 + d) log(1 + d)

γ = 2 d+ d
1+d−2 log(1 + d) log(1 + d) − d

1+d

γ = 3 log(1 + d) − d(3d+2)
2(1+d)2

where d
Δ= D/c

1/dim
dim , c1

Δ= 1
2 , c2

Δ= 2
3 −

√
3

2π , c3
Δ= 5

16 and
the integral in the denominator is given by the expressions in
Table I.8

Proof outline: By using the same technique as the one used
to derive inequality (7) in [1], we find that

GNt

β ≥ ∑Nt

i=1

∑Nt

j=1,j �=i a(lij(t)), (5)

where lij(t) is the distance between receiver i and receiver j.
Next, we use the following lemma:

Lemma 1: (Interpoint distance sum inequality) Let
Bdim(D) be a dim-dimensional ball9 with diameter D. Let
n ≥ 2 points be arbitrarily placed in Bdim(D). Suppose
each point is indexed by a distinct integer from {1, 2 . . . n}.
Let lij be the Euclidean distance between point i and point j.
For every 1 ≤ i ≤ n, define the mth closest point to point i,
zim, and the Euclidean distance between point i and the mth

closest point to point i, uim, as follows:

zi1
Δ= arg min

j∈{1,2...n}\{i}
{lij}

zim
Δ= argmin

j∈{1,2,...n},

j /∈{i}∪{zik}m−1
k=1

{lij}, if 2 ≤ m ≤ n − 1

uim
Δ= lizim , if 1 ≤ m ≤ n − 1.

Then, for all 1 ≤ m ≤ n − 1, Σn
i=1u

dim
im ≤ mddim.

Proof outline: The proof of this lemma parallels the proof
of Lemma 1 in [1], with the following changes: the two
dimensional disks in the proof in [1] are replaced here with
dim-dimensional balls, and the overlap ratio fS

im in [1] is
computed here for one and three dimensional balls as well.
This results in fS

im = f(y)|
y=

uim

D
, where for 0 < y ≤ 1,

f(y) = 1
2 for dim=1, and f(y) = 1

2 − 3y
16 for dim=3. Hence,

f(y) ≥ f(1) = cdim. From there, the proof follows from
inequalities (L1.3) to (L1.9) in [1], while replacing c2 in [1]
with cdim, and using the volume of the balls instead of the
area of the disks.

We note that Lemma 1 is also valid when Bdim(D) is
replaced with Q, because Q is a subset of a dim-dimensional
ball with diameter D. If we set n = Nt and the location of
points as the location of the receivers at time t, then uim(t)
becomes the distance between receiver i and the mth closest
receiver to receiver i at time t. Thus, Lemma 1 implies that
mddim ≥ ΣNt

i=1u
dim
im (t). Now, dividing both sides by Nt and

8In Table I, υ
Δ
=Πdim

k=1
(γ–k). Also, Iγ=2

Δ
=1 if γ=2, and Iγ=2

Δ
=0 if γ 
=2.

9A dim-dimensional ball with diameter D is a closed line segment having
length D when dim = 1, a closed circular disk having diameter D when
dim = 2, and a closed sphere having diameter D when dim = 3.

taking the dimth root of both sides, we find that for every
1 ≤ m ≤ Nt − 1,

d
(

m
Nt

)1/dim ≥
(∑Nt

i=1
udim

im (t)
Nt

)1/dim (a)

≥ 1
Nt

∑Nt

i=1 uim(t), (6)

where (a) follows from Jensen’s Inequality [10]. Next, from
(5), we obtain that

GNt

β ≥ ∑Nt

i=1

∑Nt

j=1,j �=i a(lij(t)) =
∑Nt−1

m=1

∑Nt

i=1 a(uim(t))

= Nt

∑Nt−1
m=1

(∑Nt

i=1
(1+uim(t))−γ

Nt

)

(b)

≥ Nt

∑Nt−1
m=1

(
1 + 1

Nt
ΣNt

i=1uim(t)
)−γ

(c)

≥ Nt

∑Nt−1
m=1

(
1+d

(
m
Nt

)1/dim
)−γ

, (7)

where (b) follows from Jensen’s Inequality and (c) follows
from (6). Now, (7) implies that

G
β ≥ ∑Nt−1

m=1

(
1 + d

(
m
Nt

)1/dim
)−γ

(d)

≥ ∫ Nt

1

(
1 + d

(
x

Nt

)1/dim
)−γ

dx

(e)
= dim Nt

ddim

∫ 1+d

1+d/N
1/dim
t

(u−1)dim−1

uγ du, (8)

where (d) is due to the fact that if a and b are integers such that
b ≥ a, and f(x) is a continuous and non-increasing function
of x over [a, b+1], then

∑b
m=a f(m) ≥ ∫b+1

a f(x)dx, and (e)
follows from changing the variable of integration by defining
u=1+d(x/Nt)1/dim. Denoting the integral in (8) by I , we
write:

I = ∫1+d
1

(u−1)dim−1

uγ du − ∫1+d/N
1/dim
t

1
(u−1)dim−1

uγ du

(f)

≥ ∫1+d
1

(u−1)dim−1

uγ du − ∫1+d/N
1/dim
t

1 (u − 1)dim−1
du

= ∫1+d
1

(u−1)dim−1

uγ du− (
dim Nt

ddim

)−1
, (9)

where (f ) is due to the inequality ∫E f1dx ≤ ∫E f2dx when
f1 and f2 are continuous functions with f1 ≤ f2 on E ⊆ �
[11]. Now, (8) and (9) imply that Nt ≤ Uγ,dim. The rest of the
proof follows along the same lines as the proof of Theorem 2
after (4).

B. Upper Bounds on Throughput Capacity

The next theorem provides the upper bounds on λe and
λm that hold with each propagation model and with multiple
sub-channels.

Theorem 4: (i) For every propagation model,

λe ≤ λm ≤ Wmax

H
min

{
1 + G

β , c · s
}

. (T4.1)

(ii) With the general propagation model,

λe ≤ λm ≤ Wmax

HN

(
1 + G

βa(D)

)
. (T4.2)

(iii) With the power law decaying propagation model,

λe ≤ λm ≤ WmaxUγ,dim

HN
. (T4.3)

Moreover, if each transmission occurs over one of M non-
overlapping sub-channels with maximum transmission rates
W1, W2. . . WM , then (i), (ii), and (iii) still hold, if Wmax is
replaced with ΣM

m=1Wm.
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TABLE II

ASYMPTOTIC UPPER BOUNDS ON N
Q
t , Nmax

t , λe , AND λm

N
Q
t Nmax

t λe and λm

D O(Dmin{γ,dim}), if γ 
= dim
O(Ddim/ log(D)), if γ = dim

O(1) O(1)

γ O(γdim) O(1) O(1)
G/β O(G/β) O(1)∗ O(1)∗

s O(1) O(1)∗ O(1)∗
N – O(1) O(1/N )

H – – O(1/H)
Wmax – – O(Wmax)

Power law (T3.1) (T1.1) (T4.1)
General (T2.1) (T2.1) (T4.2)

All – (T1.1) (T4.1)

Proof: The result in the following lemma was derived in
the proof of Theorem 2 in [1]:10

Lemma 2: If U is a time-invariant upper bound on Nmax
t ,

then λe ≤ λm ≤ WmaxU

HN
.

Replacing U with the time-invariant upper bounds in The-
orems 1, 2, and 3 proves (i), (ii), and (iii). The remaining part
of the proof follows from the proof of Corollary 2 in [2].

IV. ANALYSIS OF THE RESULTS

In this section, we discuss how the upper bounds in The-
orems 1 to 4 depend on various parameters of the network.
In Table II,11 we present the corresponding asymptotic upper
bounds on NQ

t , Nmax
t , λe, and λm. These results describe the

asymptotic growth rates of NQ
t , Nmax

t , λe, and λm as a given
network parameter grows, while the other network parameters
remain fixed.12

In Table II, the results on NQ
t imply that if the network

domain Q is regularly scaling (e.g., Q is a sphere for each
value of D), then NQ

t is O(V min{γ/dim,1}
Q ) if γ �=dim and

10One can observe from the proof of Theorem 2 in [1] that one particular
case where Lemma 2 applies is when it is assumed that time is divided
into slots and in each time slot the transmission powers and the path gains
stay the same (this was also assumed in [3]-[6]). In that case, “time t”
should be interpreted as “time slot t” in Theorems 1, 2, and 3. Another
case where Lemma 2 applies is when it is assumed that data can flow in a
given transmission only at time instants where the SINR of the transmission
is greater than or equal to β [1]-[2]. In this case, in the definition of Nmax

t ,
“number of simultaneously successful transmissions at time t” should be
interpreted as “number of simultaneous intended transmitter-receiver pairs
whose links have SINR greater than or equal to β at time instant t”.

11In Table II, the propagation models are gray-shade coded according
to the last three cells in the leftmost column. The gray-shade of each cell
represents the propagation model for which the result in that cell holds. The
last three rows indicate the equation from which the corresponding results in
each column is derived. For example, when γ=dim, the O(Ddim/log(D))
result is obtained by showing that the upper bound on N

Q
t in (T3.1) is

Θ(Ddim/log(D)), given that the parameters other than D are fixed (be-
cause limD→∞[Uγ,dim/(Ddim/ log(D))] = (1 + G/β) /(cdimdim) ∈
(0,∞) in that case). The results with * improve to O(min{s,G/β}), if the
parameters s and G/β grow together. Also, the O(γdim) result assumes D>0,
while for D=0 the result becomes O(1).

12Note that in the derivation of the theorems, we made no restrictions on
the interdependence of network parameters. In [1]-[6], while deriving the
asymptotic bounds, the approach was to keep other parameters fixed, while
a parameter is being increased. Hence, for comparison purposes, only in this
section, we adopt a similar approach. In section V, we will also consider
practical systems with possible dependencies, such as the dependency between
D and N .

(a)

(b)

Fig. 1. The upper bound on λe and λm when Q is a sphere (dim=3), G=10,
and β=20 [dB]. In Fig. 1(a), (N ,H)=(900,1) and the figure shows the presence
of a region of (VQ ,γ) pairs (hence, (D,γ) pairs), where the limitation of λe

and λm is due to shortage of space and attenuation. For (VQ,γ) pairs outside
this region, where Λ3,U =0.5, shortage of inactive pairs of nodes becomes the
dominant limitation. In Fig. 1(b), (γ,H)=(3.2,1) and the figure demonstrates
that if VQ is fixed and N is increased, then λe and λm vanish as N grows
large. However, if VQ also increases with N , then it is possible to keep the
upper bound at a constant level, so that it does not rule out the possibility of
achieving a desired per node end-to-end throughput as N grows large.

O(VQ/ log(VQ)) if γ=dim. Hence, NQ
t grows at most linearly

with the volume of Q, and this can happen only when γ>dim.
We note from Table II that the asymptotic upper bound

on NQ
t grows indefinitely with D or γ, whereas Nmax

t , λe,
and λm are O(1) with respect to D or γ. This is due to
change in the dominant upper bound on Nmax

t , λe, and λm

as D or γ grows. For Nmax
t , this change is from (T3.1) to

(T1.1), and for λe and λm, this change is from (T4.3) to
(T4.1). The reason is that beyond some finite values of D
or γ, although the network domain provides sufficient space
and attenuation to schedule more successful transmissions,
the upper bound on the number of simultaneous receptions
per node, i.e., min{1+G/β,cs}, becomes the limiting factor,
and it does not allow scheduling more transmissions. The
quantity Uγ,dim in (T3.1) and (T4.3) grows indefinitely with
D and γ. Hence, in the region of (D,γ) pairs bounded by
the D axis, by the γ axis, and by the set of (D,γ) pairs for
which Uγ,dim/N=min{1+G/β,cs}, Nmax

t , λe, and λm are
limited by shortage of space and attenuation. Since this region
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expands as N grows, it supports the following claim (which
is also noted in [1] when dim=2) for arbitrary dimensional
networks: For large N, there is a region of (D,γ) pairs
where additional space or attenuation provides considerable
increases in Nmax

t , λe, and λm, as their behaviors resemble
the asymptotic behavior of Uγ,dim, and beyond this region
their behaviors change into Θ(1) with respect to D and γ.

In Fig. 1(a) and Fig. 1(b), the above observations
are demonstrated for a half-duplex example with
s=1. In these figures, the normalized upper bound
Λdim,U

Δ=min{Uγ,dim/N ,1/2}/H on λe and λm is plotted,
where Λdim,U follows from normalizing (T4.1) and (T4.3)
by Wmax. Fig. 1(b) suggests increasing VQ with N to prevent
the vanishing of Λdim,U as N grows large. The next section
elaborates on how this should be done.

V. IMPLICATIONS ON SCALABILITY

In this section, using the power law decaying propagation
model, we investigate the required conditions to achieve a
desired throughput λ0 > 0 as N → ∞; i.e., the required
conditions for the existence of an integer N0 such that for
all N ≥ N0, the throughput λ0 is achievable by all nodes or
on average. Such conditions have been established in [1] for a
circular network domain, and here we derive the corresponding
conditions for the arbitrary dimensional network domain Q.
Hence, the conditions that we establish here depend on the
dimension of the network domain as well.

Since H ≥ 1, (T4.3) implies that one or more of the quanti-
ties Wmax, D, γ, or Wmax·G/β must grow with N , HN must
be O(WmaxUγ,dim), and H must be O(Wmaxmin{1+G/β,s})
due to (T4.1).

It is pointed out in [1] that in practical systems, arbitrarily
large growth of Wmax, γ, or Wmax·G/β with N is not
feasible. Also, s cannot grow arbitrarily large due to hardware
limitations. Thus, H must be O(1) (hence, Θ(1), since H ≥ 1).
The only remaining parameter, which can compensate for the
growth in N , is D. Since, Uγ,dim is Θ(Dmin{γ,dim}) when
γ �= dim, and Θ(Ddim/log(D)) when γ = dim, we obtain
the following result as a necessary condition for the scalability
of practical systems:

Corollary 1: A desired per node end-to-end throughput
λ0 > 0 is not achievable as N → ∞, unless:

(i) H is Θ(1) with respect to N, and13

(ii) D grows with N such that, N is O(Dmin{γ,dim}) when
γ �= dim, and O(Ddim/ log(D)) when γ = dim.

Moreover, if Q is regularly scaling, then condition (ii) is
equivalent to: N is O(V min{γ/dim,1}

Q ) when γ �= dim, and
O(VQ/ log(VQ)) when γ = dim.

Fig. 2 illustrates Corollary 1 when dim = 3. The corollary
shows that if N grows fast enough to dominate the curves in
the figure (e.g., when the node density is fixed in free space,
where γ = 2), then a desired throughput is not achievable as
N → ∞.

13Note that condition (i) is a consequence of (T4.1). Hence, condition (i)
is required for every propagation model.
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Fig. 2. Q is sphere, G=10, β=20 [dB] and H=1. The (VQ,N ) pairs, for which
Λdim,U =0.1 are plotted. As Λdim,U decreases with N and increases with
VQ , in the regions above the curves, e.g., (γ,VQ ,N )=(2,5,400), a normalized
throughput of 0.1 is not achievable. Corollary 1 provides the asymptotic
behavior of the (VQ,N ) pairs on the curves; e.g., if γ=2, then N is Θ (V 2/3

Q ).

VI. CONCLUSION

In this paper, we studied the capacity of single-user-
detection based arbitrary dimensional wireless networks with
isotropic antennas. We extended the results of [1] by deriving
upper bounds on the simultaneous transmission capacity and
the per node end-to-end throughput capacity, which hold for
any one, two or three dimensional network domain. Next,
we established the corresponding asymptotic upper bounds
on the simultaneous transmission capacity and the per node
end-to-end throughput capacity. Moreover, in this arbitrary
dimensional setting, we have shown that the main results of
[1] hold for a large class of propagation models, in addition
to the specific propagation model considered in [1]. Finally,
we established several required conditions to achieve a desired
per node end-to-end throughput as the number of nodes grows
large. These conditions make it necessary to keep the average
number of hops between a source and a destination bounded,
and to increase the size of the network domain at certain rates
that we determined, which depend on the dimension of the
network domain and on the attenuation in the medium.
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