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Abstract—Given n source nodes and k relay nodes, we model the
optimal relay topology problem allowing for simultaneous opti-
mization of the relay node locations and traffic through the net-
work, so that the overall number of packet retransmissions is min-
imized. We argue that state-of-the-art models and algorithms for
relay placement in wireless networks do not reflect salient charac-
teristics of the optimal relays topology and lead to suboptimal solu-
tions. We do not constrain the position of relays to a finite set of dis-
crete points, as the latter may not be feasible in practical networks.
In this case, we show that just listing a set of feasible sites for the
relays is already at least AP X-hard. Exploiting convexity in a spe-
cial case of the network communication cost function, we give an
optimal algorithm for the relay placement problem. However, the
algorithm is exponential on the number of nodes in the network.
We suggest a practical heuristic algorithm for relay placement:
RePlace. We compare RePlace numerically to the optimal algo-
rithm and show that RePlace achieves the optimal or almost
optimal solutions. We implement RePlace in the full network
stack simulator JiST/SWANS. The relay topologies generated by
RePlace eliminate overhead communication cost almost entirely.

Index Terms—Relays, wireless networks, reliability, throughput
maximization, communication cost, combinatorial optimization.

I. INTRODUCTION

N ETWORKS of wireless sensors are used to monitor var-
ious physical processes, ranging from measuring soil

moisture for precision agriculture (e.g. [1]) to tracking power
consumption in buildings (e.g. [2]). In many of these appli-
cations, the deployment success depends on network commu-
nication efficiency. For instance, a higher number of packet
retransmissions leads to drastically reduced network lifetime
[3]. Intuitively, growing number of packet (re)transmissions
drives network communication costs up, for instance, via grow-
ing energy depletion.

An important factor determining the number of packet
retransmissions (and correspondingly communication cost) is
the network links quality ([3], [4]). Among others, presence
of obstacles between nodes; increasing interference as the den-
sity of nodes grows; and separation distance between wireless
devices may all influence links’ quality. The relative impact of
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each of these factors on network performance depends on the
particular network scenario. A main cause of poor link qual-
ity in sparsely deployed outdoor sensor networks is the large
separation distance between sensing nodes. This induces low
SNR and low packet reception rate (PRR) [4]. To improve links’
quality and decrease network communication costs, the latter
formally defined in section II-B, network designers often rely
on the placement of relay nodes. Relay nodes do not intro-
duce new traffic in the network and only re-transmit the packets
received from a set of source nodes.

A simple relay network example is shown in fig. 1 along
with a sample traffic demand matrix. We consider the relay
placement generated by five different algorithms along with the
corresponding traffic routed on each link (i.e. edge labels in
blue) for each placement. Notice that in all cases the appropriate
placement of relay nodes effectively increases links’ PRR and
decreases communication cost. Even in the simple case of fig. 1,
the optimal placement of relay nodes accounts for more than
an 80% reduction in communication cost. It is well known [6]
that random placement of relay nodes may theoretically have
beneficial effects on network capacity as the network scales.
However, in general the number of randomly placed relay nodes
required to achieve noticeable impact on network performance
is rather large. The random deployment of relay nodes is expen-
sive and not practical. In the sample topology of fig. 1, the
random placement of relay nodes achieves only about 45% of
communication cost reduction.

Aside from the optimal and random placement, fig. 1 illus-
trates the relay nodes topologies generated by two other algo-
rithms typically utilized in various studies and applications
requiring relay nodes deployment. The first algorithm solves
the Euclidean Steiner tree problem and the second solves
the General Steiner tree problem on the given sample topol-
ogy. These algorithms however do not truly solve the optimal
relay placement problem. The inefficiencies of these algo-
rithms’ outputs compared to the optimal relay placement stem
from somewhat subtle but fundamental difference between the
corresponding problem models.

The Euclidean Steiner Tree (EST) consists of locations and
links that interconnect the n given fixed nodes in the plane. Each
connecting link has an associated weight equal to the Euclidean
distance between its vertices. The goal is to pick the locations
on the plane that will minimize the sum weight of the intercon-
necting links. The relay nodes are placed at these locations. The
problem is NP-complete [7], however good approximations are
efficiently found. While such approaches are frequently used
in practice (e.g. [4] in the field of sensor networks; and [8] in
the field of robotics), they are not necessarily optimal, as fig. 1
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Fig. 1. A network topology of n = 4 fixed nodes and a demand matrix W sum-
marizing the traffic demands for different source destination pairs. There are
k = 2 relay nodes placed in the network. Edge labels (in blue) indicate the
traffic routed on each link in the network (see eq. 7). In this work, we character-
ize the optimal relay placement problem and discuss inherent inefficiencies of
state-of-the-art relay placement algorithms. Even in the simple network topol-
ogy above, the solutions obtained by the Euclidean and Generalized Steiner
trees algorithms, often suggested for relay placement optimization both in
practice and in the technical literature, do not minimize communication cost
(defined formally in II-B). In contrast, the RePlace algorithm presented in this
paper achieves the optimum in this network example.

demonstrates. First, the EST does not account for the traffic
loads on links: heavily utilized links may require more relay
nodes placed closer to them. For instance, in fig. 1, the traffic
between sources 3 and 4 is significantly larger than the rest of
the links, shifting the optimal positions of the relay nodes away
from the EST. Second, the SNR and respectively the number of
packet retransmissions due to poor PRR do not depend linearly
on the distance between receiver and transmitter.

These issues seem to be remedied by modeling the relay
placement problem as an instance of the General Steiner Tree
(GST) model. In the GST problem, the input consists of a graph
G(V, E), where each edge i j ∈ E has an associated cost ci j .
Given a set of terminal nodes N ⊆ V, |N | = n, the goal is to
find a tree ST of minimum cost spanning the vertices in N .
Here, the weights of the edges are arbitrary. As part of their
influential work [3], Krause et al. utlize the GST model to sug-
gest locations for communication nodes within a network of
wireless sensors deployed to maximize the amount of gathered
sensing information and minimize communication cost in the
network. In [3], V is finite and represents the potential loca-
tions of network nodes. Each edge i j ∈ E in G has weight equal
to the expected number of times a packet needs to be retrans-
mitted by i so that the packet is received successfully by j . In
this model, the communication cost depends on the locations
of the nodes and distance between them but, unlike the case of
the EST, not necessarily linearly. The communication nodes are

placed at the GST vertices in the tree spanning the set of sensor
nodes.

The GST model for placing relay nodes appears sound,
however it omits a few important factors affecting the opti-
mal placement of relay nodes. First, the ideal locations of the
relay nodes depend on how the routing in the network is con-
structed: the communication cost on a link i j ∈ E depends on
the amount of traffic flow on i j . The more the packets flowing
on link i j are, the greater is the expected number of retrans-
missions, i.e. communication cost, on link i j . Furthermore, the
ideal routing in the network depends on the positions of the
relay nodes: a better routing could be achieved if the relay nodes
are positioned elsewhere within a set of available locations.
This hints that the locations of the relay nodes and the rout-
ing should be optimized simultaneously. The GST approach to
modeling the optimal relay placement does not capture these
aspects of the problem. This is corroborated by the example
in fig. 1, where Steiner tree based solutions do not match the
optimal solution, achieving markedly lower reduction in com-
munication costs even in this very simple network scenario.
Furthermore, in practice, the relay nodes may occupy a con-
tinuum of points in the plane. In some cases, confining the
points to a pre-specified set of discrete locations as per the
General Steiner tree model may not be feasible. To obtain a
good approximation of the best relay nodes positions in network
where n nodes span large area, one may need a large amount of
possible locations in V , which increases significantly the com-
plexity of the respective General Steiner tree approximation
algorithms.

In this study, we revisit afresh the problem of placing opti-
mally a set of k relay nodes within a network of n fixed nodes,
with the goal of minimizing network communication cost. We
formulate this task as a novel optimization problem that gen-
eralizes previously studied wireless network node placement
problems.

• The presented optimization framework allows nodes to
be placed at a continuum of points on the plane1.
Furthermore, the relay nodes’ locations and routing traffic
patterns in the network are simultaneously optimized.

• We show that even listing the set of potential feasible sites
for the optimal placement of relay nodes is at least AP X -
hard via equivalence to the clique problem in certain
classes of intersection graphs.

• Exploiting convexity in a special case of the network
communication cost function, we describe an optimal
algorithm solving the relay placement problem and min-
imizing network overhead retransmissions. The optimal
algorithm is exponential on the number of nodes in the
network and hence not practical for larger networks.

• We suggest an efficient relay placement and routing
heuristic algorithm (RePlace). Numerically we show that
RePlace outputs optimal or very close to the optimal solu-
tions (within 2-3% of the optimal communication cost)
in small network instances. RePlace is implemented in

1We do not consider here spatial restriction on the possible locations of the
relay nodes in the plane (e.g. due to physical obstacles such as ponds or rivers),
however the framework generalizes to settings, where relay nodes may only be
placed within constraints of continuous convex sets of points.
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the full network stack simulator JiST/SWANS [9], where
practical network effects (e.g. link asymmetry, interfer-
ence, noise, collisions, etc.) are present. As the number of
relay nodes increases RePlace eliminates almost entirely
overhead communication costs. We compare RePlace to
alternative state-of-the-art relay placement schemes and
show that RePlace outperforms them, achieving lower
delay and communication cost.

II. PRELIMINARIES AND SYSTEM MODEL

A. Link Model

Let ij denote the wireless link between two network nodes i
and j. We calculate the packet error rate ri j on link i j , assum-
ing the log-distance path-loss model [10]. This wireless signal
propagation model has been known to realistically character-
ize a number of low power network deployment scenarios
(e.g. see [13], [4], [11], and [12] among others). For instance,
as demonstrated in the network deployments studied in [11],
the log-distance path loss model accurately describes the link
performance of both outdoor and indoor wireless networks
operating over IEEE 802.11b hardware. Assuming i’s transmit
power is Pt , the received power Pr at j is

Pr = Pt − a(d0)− 10α log10(di j/d0)+ η(0, σ )+ χ(0, σ1)

(1)
and the SNR at j is correspondingly

γ (di j )= Pt − a(d0)− 10α log10(di j/d0)− η(0, σ )− χ(0, σ1)

(2)

where a(d0) is the attenuation at reference distance d0. η(0, σ )

and χ(0, σ1) are normal random variables modeling the ther-
mal noise power and shadowing respectively. The path loss
exponent α varies depending on the network deployment sce-
nario. For instance, setting α = 4 and α = 3 accurately models
respectively indoor and outdoor signal propagation (e.g. [11],
[12]).

Per the physical reception model in Gupta and Kumar’s
seminal paper [6], the received SNR has to be greater than a
minimum threshold φ for a successful transmission:

γ (di j ) ≥ φ (3)

At present, we assume that there is no interference from
nodes’ transmissions. In section VI-B, we study the effect of
interference. The bit error rate pi j on link i j is

pi j = Q

{[
2γ (di j )

] 1
2

}
(4)

if BPSK modulation is utilized. As usual, the Q(·) function here
represents the tail probability of the standard Gaussian distribu-
tion. The results below are easily extensible for other commonly
utilized modulation schemes.

The packet error rate ri j on i j is then given by

ri j = 1− (1− pi j )
b (5)

where b is the packet length in bits.

Physical link cost: the cost ci j of link i j is defined as

ci j = 1/(1− ri j ) (6)

ci j accounts for the number of dropped packets due to low
SNR at receiver j in the network. Notice that ci j captures well
links’ communication cost in terms of expected number of re-
transmissions [3]. The physical link cost ci j however does not
account for the full communication cost on link i j .

B. Network Model

Let V be a set of homogeneous network nodes. We assume
that links in the network are symmetric. The network is mod-
eled as an undirected, connected, weighted graph G(V, E). E
is the set of wireless links. The weight of edge i j ∈ E is ci j .
The graph G is captured by its weighted adjacency matrix C =[
ci j

]
|V |x |V |. Notice that the values ci j depend on the distance

between the nodes i and j , and hence on the positions of the
nodes i and j . Link i j exists iff di j ≤ R, where R is defined as
follows.

Definition 1: Maximum Transmission Range R: The maxi-
mum transmission range R of node i is the maximum distance
away from i at which, a fraction β of the time, the BER is less
than 0.5− ε, ε > 0.

The parameters ε and β depend on QoS constraints.
Suppose the initial demand matrix W = [wsd ]|V |x |V | is pro-

vided. Each entry wsd of W captures bidirectional traffic
demand [packets/sec] between nodes s and d: the sum of the
traffic demands from node s to d and from node d to s. A
demand pair is denoted 〈sd〉. For all given pairs 〈sd〉 we can
find a routing path ysd ⊂ E connecting s with d. This can
be done using any variant of Floyd-Warshall’s algorithm, for
instance. Let Y i j be the set of all 〈sd〉, such that i j ∈ ysd . The
traffic on i j is then

qi j =
∑
〈sd〉∈Y i j

wsd (7)

Link i j is utilized if qi j > 0.
Network communication cost: Assuming each packet error

on i j is an independent event with probability ri j , the expected
number of packet retransmissions until qi j packets are success-
fully received is given by

fi j = qi j ci j . (8)

The quantity fi j is the communication cost on link i j . The
greater the packet error rate ri j on i j , the larger the physical cost
ci j . The larger the qi j of link i j , the greater fi j and the average
packet delay on link i j . If link i j is not utilized it does not carry
traffic: qi j = fi j = 0. If pi j > 0, then ci j > 1 and fi j > qi j .
Ideally, if pi j = 0, then ci j = 1 and fi j = qi j .

The total network communication cost is given by

F =
∑
i j∈E

fi j (9)

Minimizing F would improve network performance in terms
of network goodput and average packet delay. In the following
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sections, we study and quantify how the addition of relay nodes,
so that F is minimized, impacts these network performance
metrics.

III. COMMUNICATION COST MINIMIZATION

Given a network of n fixed nodes and a set K of new relay
nodes, where k = |K |, our task is the minimization of overall
communication cost in G ′, where G ′ is the resulting network
graph with vertex set N ∪ K and edge set E ′. The relay nodes
are not sources of traffic and can only offload the traffic from
the original n nodes.

From (9), fi j , i j ∈ E ′, depends both on the distance between
i and j (via the term ci j ) and the traffic routed through link i j
(via the term qi j ). Hence, we need to jointly optimize two sets
of variables to minimize communication cost:

(a) the positions of relay nodes; and
(b) the routing over the links in the relay network. Notice also

that
(c) changing the positions of relay nodes may affect the

optimal routing paths in the network and changing the
routing paths in the network in turn may affect the optimal
positions of the relay nodes.

A. General Relay Placement Problem

Let Q = [qi j ](n+k)(n+k) denote the network traffic flow
matrix, where qi j denotes the traffic on link i j ∈ E ′ as
defined in (7). The coordinates of the k relay nodes
are denoted by (x j , y j ), 1 ≤ j ≤ k. We let v = [(x1, y1),

(x2, y2), . . . , (xk, yk)], v ∈ R
2k . C(v) denotes the weighted

adjacency matrix of G ′. Its entries depend on v. The general
relay placement problem (GRPP) becomes

min
Q,v
{F(Q, v)} ≡ min

Q,v
{Q : C(v)} = min

Q,v

⎧⎨
⎩

n+k−1∑
i=1

n+k∑
j=i+1

fi j

⎫⎬
⎭,

where fi j = qi j ci j ,∀i, j (10)

As usual, A:B denotes the inner product of matrices A and B;
and we have

min
Q,v

⎧⎨
⎩

n+k−1∑
i=1

n+k∑
j=i+1

fi j

⎫⎬
⎭

=
n+k−1∑

i=1

n+k∑
j=i+1

qi j

[
1− Q

(√
2γ

(
d
(
xi , yi , x j , y j

)))]−b

,

where fi j = qi j ci j ,∀i, j (11)

d(xi , yi , x j , y j ) denotes the Euclidean distance between any
two points i and j .

The candidate solutions to the GRPP (10) are uncountably
many since v may include any point on the plane. However,
the different possible routing paths that satisfy (7) and hence
the different matrices Q are finitely many. If we were able to
compute the optimal vector v for each possible input Q, we
would have an optimal enumeration algorithm for solving the
GRPP (10).

B. Relay Placement With Fixed Routing

Suppose the traffic matrix Q is provided. Can we find the
optimal locations (i.e. v) of the relay nodes and solve

min
v

{
FQ(v)

}

= min
v

⎧⎨
⎩

n+k−1∑
i=1

n+k∑
j=i+1

qi j

[
1− Q

(√
2γ

(
d
(
xi , yi , x j , y j

)))]−b
⎫⎬
⎭

s.t. d(xi , yi , x j , y j ) ≤ R,∀qi j > 0 (12)

where qi j ’s are no longer optimization variables but the entries
of the given matrix Q? We label this problem the Relay
Placement with Fixed Traffic (RPFT).

Note that RPFT’s solution must satisfy a set of simple geo-
metrical constraints due to the properties of wireless links.
Showing that the function FQ(v) is convex under these con-
straints, we are able to provide an optimal solution to the RPFT.
This allows us to pose GRPP as a combinatorial problem.

1) Convexity of RPFT: We recall the following well-known
theorem.

Theorem 1: The function

FQ(v) =
n+k−1∑

i=1

n+k∑
j=i+1

qi j g
[
d(xi , yi , x j , y j )

]
(13)

is convex if g(z) : R+ → R is convex and non-decreasing.

Proof: Please refer to [14], p. 434. �
Consider the function FQ(v) in (13). Let

g
[
d(xi , yi , x j , y j )

] = [
1− Q

(√
2γ

(
d
(
xi , yi , x j , y j

)))]−b

(14)
To determine whether FQ(v) in (12) and (13) is convex on some
domain, by Theorem 1, we only need to determine whether
g(z) is convex and non-decreasing on that domain.

Observation 1. The function g(z) is convex and non-
decreasing on the interval (0, rd0), ∀r such that rd0 > R.

Observation 1 is analyzed with more detail in Appendix A.
Figure 2 shows a plot of g(z) when Pt = 10[W ], R ≈ 110[m],
b = 256[bits], d0 = 1[m].

Given function FQ(v) in (12) and R ≤ rd0, the RPFT prob-
lem becomes

v′ = arg min
v

{
FQ(v)

}
s.t. d(xi , yi , x j , y j ) ≤ R,∀qi j > 0

(15)
The constraints inequalities in (15) are convex too ([14]).

Hence, for any fixed matrix Q and a network graph where
links are constrained within transmission range R, we can
solve (15) and find the positions of the relay nodes that
minimize the network communication cost. Standard con-
vex optimization algorithms such as the steepest gradient
descent with constraints [14] can be used to solve the RPFT
problem.

C. Optimal Brute Force Solution to the GRPP

Going back to the GRPP, we can now present a brute force
combinatorial solution. Given a graph G of fixed nodes, its
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Fig. 2. g(z) behavior for b = 256[bits], d0 = 1, R = 110[m].

Fig. 3. The given network on three source nodes and one relay node has
4x4x4 = 64 distinct possible single-path routing traffic patterns, given demand
matrix W . Equivalently, collection Y contains 64 elements. Although large, the
number of elements in Y is finite.

weighted adjacency matric C , demand matrix W , and a number
k of relay nodes, the algorithm outputs as a solution the opti-
mal coordinates v∗ of the k relay nodes and the optimal routing
Y ∗ in the resulting network G ′ on vertex set N ∪ K . The pair
(v∗, Y ∗) minimizes the network communication cost.

Let Y be a set of routing paths on the vertices N ∪ K con-
necting all 〈sd〉 pairs. Y can be found by running a variant of
Floyd-Warshall’s algorithm. Let Y be the collection of all pos-
sible sets Y . Y has finite number of elements depending on n,
k, and the maximum transmission radius R (assuming that the
flow for each pair 〈sd〉 is routed on a single path). For example,
fig. 3 illustrates a network on three source nodes and one relay
node. Assuming each source-destination commodity is routed
on a single path, there are 64 possible traffic patterns in the
resulting network.

The brute force algorithm (BruteForceMin) then follows:
1) for each set of routing paths Y ∈ Y, generate the matrix

QY = [qi j ](n+k)(n+k) using (7) and solve the constrained

Fig. 4. Top: Lens zone of link uv. Bottom: Ellipse zone of uv w/ major axis a
and minor axis b.

convex optimization problem (15) for QY, finding v′
minimizing FQY(v′);

2) pick the solution v∗ and the corresponding Y ∗ that
yields the minimum FQY(v′) over all different routing
paths Y ∈ Y:

(v∗, Y∗) = arg min
v′,Y

FQY(v′) (16)

The cardinality of Y is exponential of the number of vertices
in N ∪ K and thus solving the GRPP using BruteForceMin
is not practical for larger networks. In the next sections, we
characterize the inherent computational hardness of the GRPP.
We pose the GRPP as a maximization problem and provide an
efficient, practical heuristic algorithm for it.

IV. ZONES, OVERLAPS AND FEASIBLE REGIONS

A. Defining Zones and Overlaps

In this section, we define a set of geometrical constraints on
the possible optimal positions of the relay nodes. This allows
us to define a feasible set of regions in the network area, where
relay nodes can be initially placed. We show that listing these
feasible regions is at least AP X -hard.

Observation 2. Given a link uv in G and a relay node i ,
the communication cost of uv can be reduced if and only if i
is positioned within the lens formed by the overlap of the two
circles with centers respectively u and v, each with radius duv.

The lens of link uv is shown in fig. 4 (left). We approximate
the lens with a corresponding ellipse zone of major axis a and
minor axis b, as shown in fig. 4 (right). The ellipse approxima-
tion is chosen for ease of presentation2 and allows us to state

2It is not hard to show that the ellipse to lens approximation is tight in the
sense that the ratio of lens zone to ellipse zone’s areas is a constant c, where
0.9 < c < 0.903 for all major and minor radii a

2 , b
2 .
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Fig. 5. Lens zones construction of links 12, 13, and 23 (top); resulting elliptical
overlapping zones of the links in the same network (bottom). Relay node i
is positioned in the overlap region θ{12,13,23} of zones θ12, θ13, θ23 (shaded
region) and reduces the communication cost of all three links in the network,
iff their traffic is routed through i .

properties of the feasible relay placement regions section IV-B
with fewer geometrical technicalities. We denote this approxi-
mate ellipse zone of link uv by θuv, and refer to it as the zone
of link uv. Let θu′v′ � θuv denote the statement “the zone of link
u′v′ overlaps with the zone of link uv”. Let A be a set of links,
such that θu′v′ � θuv, ∀uv, u′v′ ∈ A. The region formed by the
overlap of all zones of links in A is denoted by θA. θA > 0 iff
the overlap region has area greater than 0.

Observation 3. Given a set of links A ⊆ E , their zones, and
a relay node i , i can reduce the communication cost of every
link in A if and only if i is placed in θA, assuming θA > 0.

Observation 3 follows from Observation 2, since i is in
the zone of every link in A, when placed within θA. Figure 5
demonstrates such an arrangement, where i is placed in
θA, |A| = 3.

Consider the set X (A) = {θS : S ⊆ A, θS > 0}. In
the example of fig. 5, A = {12, 13, 23} and X (A) ={
θ{12}, θ{13}, θ{23}, θ{12,23}, θ{12,13}, θ{13,23}, θ{12,13,23}

}
. Notice

that a zone overlaps with itself. According to Observation 3,
the relay node i can only reduce the communication cost of all
the links 12, 13, and 23 if and only if i is placed in the overlap
of the set of zones θ{12,13,23} ∈ X (A).

Observation 4. Consider the set Y ∗ ∈ Y of routing paths
connecting all 〈sd〉 pairs in the relay network G ′. Let A be a
subset of the utilized links in Y ∗ from the initial network G. For
a given relay node i , from Observations 2 and 3, ∀u, v such that

Fig. 6. S1 = S2 = {θ12, θ13, θ23}. θS1 ∈ X (E) for the graph G (left); θS2 �∈
X (E) for the graph G (right). Zones θ12, θ13 have positive overlap for the
graph on the left, and zones θ12, θ13 have zero overlap for the graph on the
right.

uv ∈ A, if ui ∈ Y ∗ and iv ∈ Y ∗ then dui < duv and div < duv.
The latter is equivalent to placing i in θA. By contraposition, if
i is not placed in θA, ∃ u and v such that uv ∈ A, ui �∈ Y ∗ and
iv �∈ Y ∗. Furthermore, ∃ a relay node i that if placed in θA, then
the set of routing paths Y ∗ minimizing network communication
cost and utilizing i should include links ui and iv, ∀u, v such
that uv ∈ A.

From Observation 4, for instance, if the zones of links u1v1
and u2v2 do not overlap, then the links u1i , iv1, u2i , and iv2
cannot all be in Y ∗. Each set of routing paths containing all
four of these links is suboptimal.

B. Feasible Regions and Their Independence

1) Feasible Regions: Based on Observations 1 - 4, in this
section we describe a set of feasible regions that necessarily
contains the optimal positions for the placement of relay nodes
in the network. Let E be the set of links in the initial graph
G. Each θS ∈ X (E), S ⊆ E , defines an overlap region. From
Observation 4, if relay node i is placed outside θS it would
be suboptimal for i to offload all links in S. θS provides an
initial feasible site at which relay node i can be placed to
offload all links in S. The relay nodes are optimally placed
in a subset of the regions contained in X (E). E.g., in fig. 5
(bottom) the overlap region θS ∈ X (E) associated with the set
of links S = {12, 13, 23} is shaded and contains relay node i .
In this example, the routing Y ∗ in the relay network is not hard
to compute. Given i’s placement in θS and the traffic routed
through i , i’s optimal position is found by solving the RPFT
with input QY∗ .

Definition 2: Let A ⊆ E be a set of links connecting some
subset of fixed nodes in G. The set of feasible regions is the set
X (A) = {θS : S ⊆ A, θS > 0}.

2) Finding the Set of Feasible Regions is at least AP X-
Hard: Notice that some zones of links in E may over-
lap while others may not have common overlap region.
For instance, fig. 6 shows an example of a network with
two sets of links S1 and S2, each containing three links.
There we have θS1 ∈ X (E) and θS2 �∈ X (E), since θS1 > 0
while θS2 = 0. For the network shown in fig. 5, X (E) ={
θ{12}, θ{13}, θ{23}, θ{12,23}, θ{12,13}, θ{13,23}, θ{12,13,23}

}
.

Obtaining X (E) is a prerequisite for finding optimal place-
ment for the relay nodes. In general, given a graph G the
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construction of the set X (E) is a problem, which has a
non-obvious solution. Can we design an efficient algorithm
generating the set of overlap regions that belong to X (E)? This
is the FEASIBLEREGIONSSET problem.

We claim that the FEASIBLEREGIONSSET problem is at
least AP X -hard.

Our proof strategy is straightforward: we show that solving a
particular AP X -hard problem cannot be harder than solving the
FEASIBLEREGIONSSET problem. In other words, we reduce a
particular AP X -hard problem to the FEASIBLEREGIONSSET

problem. The particular AP X -hard problem we consider is the
clique problem in a class of ellipse-ellipse intersection graphs.

For completion, we recall the definition of an intersection
graph directly from [30]. “Let M be a collection of sets. The
intersection graph of M is the abstract graph GM whose ver-
tices are the sets in M, and two vertices are connected by
an edge if the corresponding sets intersect.” In the case of an
ellipse-ellipse intersection graph GE, M = E is a collection of
ellipses in the plane. The set of vertices V (GE) =M = E and
for all i, j ∈ V (GE), i j ∈ E(GE) iff ellipses i and j intersect.
E(GE) is the set of edges in GE.

More specifically, let the ratio of the major to the
minor axis of an ellipse be ρ and consider the following
three problems: ELLIPSEρCLIQUE, ELLIPSE ≤ ρCLIQUE, and
FILLEDELLIPSEρCLIQUE, as in [30].

ELLIPSEρCLIQUE is the problem of finding a maximal com-
plete subgraph of GE, where all the ellipses in V (GE) have
minor to major axis ratio of exactly ρ. The range of ρ is
1 < ρ <∞. The problem considers ellipses circumferences,
without their interiors (i.e., if an ellipse is enclosed by another
ellipse, the two do not intersect).

Similarly, ELLIPSE ≤ ρ CLIQUE is the problem of finding
a maximal complete subgraph of GE, where all the ellipses in
V (GE) have minor to major axis ratio of at most ρ. The range of
ρ is 1 < ρ <∞. The problem again considers ellipses without
their interiors.

The FILLEDELLIPSEρCLIQUE is the problem of finding a
maximal complete subgraph of GE where all the ellipses in
V (GE) have minor to major axis ratio of exactly ρ. The range
of ρ is 1 < ρ <∞. This problem considers ellipses with their
interiors (i.e., if an ellipse is enclosed by another ellipse, the
two intersect).

Theorem 2: For every ρ > 1 the problem ELLIPSEρCLIQUE

is AP X -hard. Furthermore FILLEDELLIPSEρCLIQUE is at
least AP X -hard.

Proof: See p.280 and Theorem 1 in [30]. �
Consider the FILLEDELLIPSE

√
3 CLIQUE problem, (i.e. ρ

= √3 > 1) .
Theorem 3: There exist polynomial time reduction from

FILLEDELLIPSE
√

3CLIQUE to FEASIBLEREGIONSSET.

Proof: We start by defining the zone graph G Z (VZ , EZ )

of the wireless network graph G(V, E). Associate a vertex
vi j ∈ VZ to each zone θi j , i j ∈ E . Any two vertices vi j , vi ′ j ′ ∈
VZ are connected by an edge e ∈ EZ if and only if θi j � θi ′ j ′ .
The zone graphs of three sample wireless network graphs on
fixed nodes are given in fig. 7.

Suppose we are given any input graph, GE, to the
FILLEDELLIPSE

√
3 CLIQUE problem. We can construct graph

Fig. 7. Zone graphs of three network instances: a) zone graph of the network
in fig. 6 (left); b) zone graph of the network in fig. 6 (right); c) network on 4
nodes (left) and its zone graph (right). The zone graphs quickly become more
complex as the number of nodes in the corresponding networks increases.

G(V, E) with corresponding zone graph G Z = GE in polyno-
mial time of |V (GE)|.

We start with an empty graph G(V, E) where V = {} and
E = {}; as before, V is the set of fixed source/destination nodes
in the graph, and E is the set of edges in the graph. We iterate
through all ellipses in V (GE). For each ellipse e in V (GE),
we add two fixed nodes i and j to graph G, so that now
V = V ∪ i, j and E = E ∪ (i, j). We place nodes i and j in
the plane at the minor vertices of ellipse e (the minor vertices
are easily found from a description of the ellipse e, e.g., its
equation). Note that each existing link (i, j) in G(V, E) has
a corresponding elliptical zone and each elliptical zone has a
corresponding link (i, j) in E . The set of elliptical zones of
G(V, E) corresponds exactly to the vertices of zone graph G Z ,
by our definition of zone graph above; and by construction, the
set of elliptical zones of G(V, E) corresponds exactly to the
set of ellipses in V (GE). (Notice that in fig. 4 nodes u and
v are positioned at the minor vertices of the zone θuv). That
is V (G Z ) = V (GE). Furthermore, by our definition of a zone
graph, any two vertices in G Z are connected iff their respec-
tive elliptical zones intersect. The latter is exactly equivalent
to the definition of edge sets in intersection graphs, and hence
E(G Z ) = E(GE).

Since V (G Z ) = V (GE) and E(G Z ) = E(GE) the resulting
zone graph G Z of G is identical to GE. It was constructed in
polynomial time of V (GE).

All that remains to be proven is the connection between the
clique complex of the zone graph G Z and the set of feasible
regions X (E). Namely, finding all sets in X (E) is equivalent to
finding all maximal cliques of G Z .

Consider the clique complex χ(G Z ) of the graph G Z and let
VS ⊆ VZ be the set of nodes associated with the links in S ⊆ E .

We next show that VS ∈ χ(G Z ) if and only if θS ∈
X (E),∀VS ⊆ VZ .

Let θS ∈ X (E). We have θi j � θi ′ j ′ ,∀i j, i ′ j ′ ∈ S. Then, vi j

and vi ′ j ′ are connected by an edge e ∈ EZ , ∀vi j , vi ′ j ′ ∈
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VS . Therefore, VS is a clique in G Z , and VS ∈ χ(G Z ).
Conversely, let VS ∈ χ(G Z ), then the vertices in VS form a
clique in G Z . We have that vi j , and vi ′ j ′ are connected by an
edge e ∈ EZ ,∀vi j , vi ′ j ′ ∈ VS . By the definition of G Z , θi j �
θi ′ j ′,∀i j, i ′ j ′ ∈ S. This implies θS ∈ X (E).

There is equivalence between the elements in X (E) and the
elements in χ(G Z ). Listing all sets in X (E) is equivalent to
listing all cliques of G Z . Listing all cliques of G Z is at least as
hard as listing all maximal cliques in G Z . �

Solving the FEASIBLEREGIONSSET (i.e. finding all sets in
X (E)) is equivalent to finding all maximal cliques of G Z .
In turn, finding all maximal cliques of G Z yields a max-
imal complete subgraph, and respectively a solution to the
FILLEDELLIPSE

√
3 CLIQUE with input GE. We conclude that

FEASIBLEREGIONSSET is at least AP X -hard via polynomial
reduction from FILLEDELLIPSE

√
3 CLIQUE.

Hence, even listing a discrete finite set of potential regions
where relay nodes could feasibly be placed is at least AP X -
hard. Interestingly, in [31], the authors show that intersection
graph of n convex compact sets whose sides are parallel to k
different directions contains a polynomial number of cliques
(at most nk). The latter fact could be exploited in works on spe-
cial cases of relay placement, where the collection of zones
can be partitioned in k sets each containing zones with par-
allel axes. The resulting clique problem can be solved more
efficiently. Recently, in [32], the authors proof that the clique
problem in ray intersection graphs is NP-hard. Techniques simi-
lar to theirs may have various applications for more constrained
cases of relay placement problems. We discuss this further in
section VIII.

Corollary 1: X (E) is an independence system, therefore
X (E) is the intersection of m matroids, where m is finite.

Proof: From Theorem 3, X (E) is equivalent to the clique
complex χ(G Z ) of the zone graph G Z . The clique complex of
a graph is an independence system [15]. Therefore X (E) is an
independence system. It is well known that any independence
system is an intersection of a finite number of matroids [16]. �

Next, we pose the GRPP as a set function maximization
problem, subject to independence constraints. This perspec-
tive provides intuition for heuristics solving approximately the
GRPP.

C. Optimal Assignment: A Maximization Perspective

Let the communication cost reduction φK be the difference
between the communication cost in the initial network G(N , E)

and in the relay network G ′(N ∪ K , E ′):

φK =
∑
i j∈E

fi j −
∑

i j∈E ′
fi j (17)

Given X (E), the GRPP problem becomes an optimal assign-
ment problem of elements/zones in X (E) to relay nodes. Each
element in X (E) may be assigned to 0, 1 or more relay nodes.
Rename the set of overlaps X (E) to J . Let the pair (i, j), i ∈ K
and j ∈ J , denote the assignment of relay node i to the overlap
polygon j . Let � = {(i, j) : i ∈ K , j ∈ J } be the set of all pos-
sible assignment pairs, and � j = {(i, j) : i ∈ K } , j ∈ J . The
maximization problem below is equivalent to the GRPP:

O∗ = arg max
O⊆�

{
φ(O) : |O ∩� j | ≤ k, j ∈ J

}
(18)

Since we only relabeled X (E) to J in (18), � in (18) is an
independence system from Corollary 4. The function φ(O)

is defined here as the maximum communication cost reduc-
tion in the network G achieved by placing a subset of the K
relay nodes within a combination of zones in the set X (E),
according to the assignment pairs (i, j) ∈ O ⊆ �. The function
φ : O → R

+ is not given explicitly, but it can be computed.
We start from (17) and note that maximizing the communica-

tion cost reduction is equivalent to minimizing the communica-
tion cost in G ′. Given each (i, j) ∈ O for a particular set O , we
position a relay node i within the overlap j ∈ J ⇔ θS ∈ X (E)

at a random point in θS . Suppose the traffic matrix Q of the
initial network G is given. This can be obtained by running
Floyd-Warshall’s algorithm on the weighted adjacency matrix
C of G. The communication cost in G, given the resulting
routing, is computed using (9). We apply Observation 4 and
offload the traffic from all links in S only through the relay
nodes placed in θS . Given this constraint, let YO be a set of
routing paths on the vertices N ∪ K , while the relay nodes
are placed according to the assignment pairs in O . Let YO be
the collection of all possible sets YO for a fixed O . Run the
BruteForceMin algorithm with input Y = YO.

This yields the minimum communication cost FQY(v) in the
network G ′ for the fixed O . Equivalently, we have φ(O).

The BruteForceMax algorithm follows:
1) For each O ⊆ �, compute φ(O) as described above.
2) Pick O∗ that maximizes φ(O) over all O ⊆ �.
Similarly to BruteForceMin, the BruteForceMax algo-

rithm is exponential on the number of vertices in N ∪ K . The
formulation of the GRPP as maximization problem does not
in itself reduce the complexity of the solution. However, we
know that (18) is a maximization problem over an indepen-
dence system �. Typically, greedy algorithms perform well
in that context. The RePlace algorithm follows such Greedy
strategy.

V. THE RePlace HEURISTIC

Given the exponential running time of the discussed brute
force algorithms and the hardness of the exact computation
of the feasible regions in X (E), in this section, we resort to
designing an efficient heuristic for the GRPP.

Based on the initial network G(N , E) and demand matrix
W, we start by computing the adjacency cost matrix C of G
using (6). We find routing Y and traffic matrix Q by running,
for instance, all pairs shortest paths routing algorithm over the
weighted adjacency matrix C of G. Suppose we can enumerate
all sets θS ∈ X (E). (We describe a procedure to approximately
compute the set X (E) of overlap regions in V-A.)

Given input G, C, Y , W, Q, X (E) and K , the goal is to
find k positions at which to place the relay nodes and the rout-
ing through the resulting relay network, so that a best-effort
solution to (18) is computed. The RePlace algorithm given by
Algorithm 1 relies on a Greedy heuristic to achieve that.

Suppose P is the set of placed relay nodes after iteration t . vt

contains the coordinates of the nodes in P . Correspondingly,
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G ′(N ∪ P, Et ) is the resulting network with weighted adja-
cency matrix Ct = [ci j ](n+t)|(n+t), where E0 = E . Let Ft be
the communication cost in the network after iteration t . Then,
φt is the communication cost reduction:

φt = Ft − F0 =
∑

i j∈Et

fi j −
∑

i j∈E0

fi j (19)

At each iteration t of the RePlace algorithm, we place a new
relay node p at a location within the overlap region θS ∈ X (E)

that leads to the maximum φt (lines 10 - 38, Algorithm 1). To
determine θS maximizing φt at each iteration t , RePlace probes
all overlap regions prior to placing each relay node p.

Namely, at iteration t , for each θS ∈ X (E), relay node p
is temporarily placed at a random location in θS (line 11,
Algorithm 1). The network routing is updated according to
Observation 4, to account for the placement of p (lines 13 -
21, Algorithm 1). Next, node p’s position within θS is opti-
mized by solving (RPFT), with respect to the updated network
routing (lines 22 - 28, Algorithm 1). Notice that the positions
of all relay nodes placed until iteration t are also optimized,
within the constraints of their respective overlap regions. Then,
the estimated communication cost reduction φS from placing p
in overlap θS is obtained (line 28, Algorithm 1). Eventually,
p is placed in overlap θS leading to maximum φt at iteration
t . RePlace terminates when all k relay nodes are placed and
returns the Greedy solution vg for the positions of the relay
nodes, along with the corresponding routing Yg in the network.

A. RePlace Implementation

To simplify geometric computations, we approximate the
ellipse zones with rhombus zones as shown in fig. 8. The rhom-
bus approximation is chosen for representation purposes only;
any convex polygon approximation to the link zones would
suffice. Given graph G, the collection X (E) is approximately
found via Monte Carlo based approach. Suppose M points are
sampled on the plane uniformly at random. Checking whether
each of the M points is positioned within any given link’s rhom-
bus zone is efficient. Let m be a sample point and Sm be a set of
zones that contain m. Combining the sets Sm for each m yields
approximate set X ′(E). The larger M the more complete the
approximate solution X ′(E) of X (E). We can efficiently find
the overlap polygons of the zones forming θS ∈ X ′(E). To do
that, we adapt the clipping algorithm of [17]. Given a set of con-
vex zones as input, we use clipping to compute the intersection
polygons of the zones in X ′(E).

VI. NUMERICAL AND SIMULATION RESULTS

A. Numerical Evaluation

The performance of RePlace is shown in fig. 9. In small
networks, we directly compare RePlace to the optimal solu-
tion obtained by the BruteForceMax algorithm. Notice that the
two algorithms perform remarkably close. Each data point rep-
resents the communication cost reduction achieved by placing
k relay nodes in a network of n nodes and is averaged over
50 random network topologies. X (E) is computed exactly by

Algorithm 1. REPLACE

input: G, C, Y, W, Q, X (E), and K
output: vg, Yg: vector of relay node locations and a set of
routing paths

1: t ← 0; P ← ∅; Yt ← Y ; vt ← ∅; Ct ← C ; Et ← E
2: while |P| ≤ |K | do
3: p← rand(K \ P)// pick a relay node from the set of

relay nodes that are not placed yet
4: P ← P ∪ p
5: E S ← Et

6: t ← t + 1
7: φmax ← 0
8: vt ← vt−1
9: Yt ← Yt−1

10: for all θS ∈ X (E) do
11: (x p, yp)← (xrand , yrand)// tentatively placep at a

random location in θS

12: // estimatecommunication cost reduction of placing p
in θS

13: for all v ∈ N ∪ P do
14: if dvp ≤ R then
15: cvp = 1

1−rvp
// updatecommunication cost on all

links that now use p
16: E S ← E S ∪ vp// update tentative edge set
17: end if
18: end for
19: C S ← Ct

20: Y S ← FLOYDWARSHALL(G(N ∪ P, E S), C S)//

get all-pairs shortest paths Y S using Floyd-Warshall
on G(N ∪ P, E S) with matrix C S

21: Y ← Y S// update tentative network routing after
placing p in θS

22: for all i j ∈ E S do
23: // compute tentative traffic qi j on link i j per eq. (7);

set entry qi j ∈ QY

24: qi j ←∑
〈sd〉∈Y i j wsd

25: end for
26: vS←CONSTRAINEDDESCENT(FQY (vt ∪ (x p, yp)))//

Solve the RPFT problem eq. (15) w/ input QY via
constrained gradient descent; the positions of all relay
nodes already placed may tentatively shift within the
constraints of their regions

27: F S ← FQY (vS)

28: φS ← F0 − F S// communication cost reduction
29: if φmax ≤ φS then
30: φmax ← φS// communication cost decreases after

placing p in θS , update solutions
31: vt ← vS

32: Yt ← Y S

33: Et ← E S

34: end if
35: E S ← Et−1
36: Ct ← Ct−1
37: φt ← φmax

38: end for
39: end while
40: vg ← vt

41: Yg ← Yt
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Fig. 8. Rhombus zone of uv.

Fig. 9. Communication cost reduction performance in small networks for vary-
ing numbers n and k of fixed and relay nodes (x − axis: n, k): RePlace, optimal
BruteForceMax, random, and Steiner-tree based placement. The RePlace
heuristic achieves solutions remarkably close to the optimal ones and markedly
better than alternative solutions.

brute force for the input of the BruteForceMax algorithm. We
compare the results for the optimal and RePlace solutions for
networks of size up to n = 20 and k = 10 nodes. Figure 10
lists a few typical relay network topologies found by the two
algorithms for different values of n and k. In these examples,
RePlace matches exactly the optimal solution in terms of both
routing and relay nodes’ positions.

B. JiST/SWANS Simulations

To investigate the effect of bandwidth limitation, interfer-
ence, collisions, link asymmetries, etc., we simulate RePlace in
the full stack network simulator JiST/SWANS. Table I summa-
rizes the simulation setup parameters. We consider the metrics
communication cost reduction and average packet delay (i.e.
the delay of a packet successfully delivered at a destination,
averaged across all such packets on all network paths). These
metrics are investigated in networks of different sizes and vary-
ing number of relay nodes. Each data point in the simulation
figures represents the mean network performance over a 100
different random network instances.

1) Communication Cost Reduction: The communication
cost reduction obtained by RePlace (vis-a-vis the base case
where no relay nodes are deployed) is shown in fig. 11. The
communication cost metric accounts for the number of dropped
packets due to low SINR at each receiver in the network. We
observe, similarly to the work in [4], that in smaller networks
operating in mid-SNR regime, interference does not affect crit-
ically the packet loss in the network. As long as the relay
nodes are placed optimally, so that signal degradation due to

Fig. 10. The output of the RePlace and the optimal BruteForceMax algo-
rithms on typical random network topologies. The relay nodes placed by the
RePlace algorithm are marked with blue circles; the relay nodes placed by
the BruteForceMax algorithm are marked with red squares. In these cases the
solutions, both routing and positions of nodes, output by the two algorithms are
the same and the respective relay nodes placements overlap. Hence, only one
solution is visible at a time. For k = 2 and 3, all zone overlaps bounded by the
convex hull of the network are shown. For k = 6 and 10, only the zone overlaps
selected for the optimal placement of the relay nodes are visible in green. The
black dots are the sample points used for computing the approximate set X (E).

TABLE I
PARAMETERS OF THE JIST/SWANS SIMULATION

separation distance is minimized, packet loss can be reduced
significantly. For instance, in a network of 20 nodes we can
position 6 relay nodes and achieve almost 70% reduction of
dropped packets as shown in fig. 11.

2) Average Packet Delay: The communication cost reduc-
tion leads to substantial decrease of average packet delay in the
network when relay nodes are optimally deployed. This is due
to the retransmission backoff mechanism in the IEEE 802.11
MAC protocol. Reducing the number of retransmissions effec-
tively reduces the packet delay. The delay ratio DRk,n is defined
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Fig. 11. The fractional difference between the number of retransmissions due to dropped packets when relay nodes’ positions are optimized in comparison to the
base case with no relay nodes placed. As the ratio k/n varies there are three different trends: left, middle and right. As expected for large k/n, the reduction is
almost 100%. The communication cost reduction rate is highest for smaller values of k/n. The communication cost reduction rate becomes lower for larger k/n.

Fig. 12. Delay ratio DRk,n . The delay, after optimized placement of the relay nodes, is less compared to the base case with no relay nodes, for the different values
of n and k shown.

as average end-to-end packet delay in a network of n fixed
nodes with k relay nodes divided by the average packet delay
in the network of n fixed nodes without relay nodes. If the
ratio is less than 1, the delay is lower after the addition of the
relay nodes. The plots of DRk,n for the different values of k and
n are shown in fig. 12. Notice that for all values of n and k, the
achieved delay when nodes are deployed utilizing RePlace is
less than the delay when no relay nodes are deployed.

Figure 12 (left) depicts the delay ratio for large ratio k/n.
In these cases the communication cost reduction saturates, the
average path length grows longer and the delay increases as
more relay nodes are added to the network. Furthermore, the
delay increases due to the RTS/CTS mechanism on the MAC
layer as the number of relay nodes in the network grows. A
similar effect is observed in fig. 12 (middle) for k/n > 1: the
delay increases as more relay nodes are added in these cases.
In contrast, fig. 12 (right) shows the decrease of delay, as more
relay nodes are added while k/n < 1. For the set of simulated
network instances (100 random topologies per data points),
in terms of delay, the optimal ratio k/n is approximately 1.
Although not necessarily prescriptive for all network deploy-
ment cases, this ratio of relays to fixed source nodes may be
a good “rule of thumb” for sparser networks over the IEEE
802.11 MAC layer.

3) Performance Comparison: We investigate the perfor-
mance of two strategies alternative to RePlace, for placing relay
nodes in wireless networks. The Steiner tree-based strategy
follows the General Steiner Tree (GST) model discussed in
section I above. GST is utilized in [3] and [4], among other
works. The DoubleStage strategy has been recently suggested

in [18]. DoubleStage constructs a routing tree in the original
graph (sans relay nodes) by finding a shortest path connect-
ing a source-destination pair. The length of each edge in the
path models the energy required for successful transmission of
a packet on the corresponding wireless link. Hence, the result-
ing shortest path minimizes the communication cost. This is
the first stage of the algorithm. In the second stage, the authors
position k relay nodes iteratively. Each relay node’s position is
determined, so that the communication cost in the network is
minimized given the routing found in the first stage of the algo-
rithm. The routing is not updated during the placement of the
relay nodes. This inherently leads to potential inefficiencies of
the DoubleStage algorithm’s output.

The performance of the Steiner tree and DoubleStage algo-
rithms relative to the RePlace algorithm is shown in fig. 13
(left: communication cost; and right: delay ratio). The num-
ber k of placed relay nodes is the same for each of the
three schemes. RePlace outperforms the other two schemes
for varying numbers of fixed nodes in the network. Noticeably,
unlike traffic oblivious algorithms as the network size grows
RePlace maintains its performance gains while the routing
paths become longer introducing more complex traffic pat-
terns. The DoubleStage scheme performance degrades less as
network size increases since routing is optimized in the first
stage of the algorithm; however, routing paths are not updated
as more and more relay nodes are placed leading to loss of
efficiency as the network grows.

Given a topology of fixed source nodes, the relay locations
can be computed offline. However, for completion, we dis-
cuss the run-times of the three algorithms discussed in this



3598 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 5, MAY 2016

Fig. 13. RePlace vs. DoubleStage vs. Steiner-tree based approaches. Left:
Communication cost reduction. Higher values of communication cost reduc-
tion are better. Right: Delay ratio. Lower values of the delay ratio are better.
Average node degree is kept constant as the network grows. The three schemes
are given equal budgets k of relay nodes.

section. The centralized DoubleStage algorithm in [18] runs
in λ ∗ O(n2) time steps, where λ is the number of iterations
required for convergence in the second stage of the algorithm.
The authors do not provide analysis of the convergence rate
λ towards the optimal positions of the relay nodes in the net-
work plane. In the case of the general Steiner tree problem, one
can utilize different constant approximation algorithms, with
varying run-times. Here, our Steiner-based algorithm employs
the well-known Graph Iterative 1-Steiner Point (GI1S) algo-
rithm ([20]) with approximation ratio 1.53. Our GI1S imple-
mentation is the classical one found in [20] and has a run-time
of O(n|G| + n4log(n)), where |G| is the total number of edges
and vertices in the input graph G: the union of the set N of fixed
source nodes (n = |N |); the set V of vertices corresponding to
the candidate relay node locations (e.g. a Manhattan grid span-
ning the network area); and the set of edges interconnecting
N and V . In practice we observed that the Steiner-based and
RePlace algorithms had similar and somewhat longer run-times
than DoubleStage algorithm.

VII. RELATED WORK

A number of works study the placement of relay nodes
to provide connectivity in the network (e.g. [21]–[24] and

3The best known approximation ratio of 1.39 at present is due to Byrka et al.
[19]; although their algorithm is polynomial, its run-time depends on the per-
formance of the ellipsoid method and the performance of the corresponding
separation oracle.

references therein). The problem addressed by the authors in
this setting is different from the problem considered in our
work. Given a network of fixed nodes, the goal is to place a
minimum number of relay nodes so that the induced overall
network topology is connected. In some cases (e.g. [22]) to
accomplish that, the authors assume that the relay nodes have
larger transmission radius than the fixed nodes; in other cases
(e.g. [21]) a constant transmission radius is given as an input
to the problem, and the number of required rely nodes is found
so that the network is connected. The authors of [23] consider
a heterogeneous network where a minimum number of relay
nodes are utilized to connect sensor nodes to more powerful
base stations via directed paths. In [24], the authors extend this
result allowing constraints to be placed on the discrete sets of
locations available for relay node placement (e.g. due to natural
obstacles). Although the network lifetime may be increased as
a result of the improved network connectivity, the above works
approach the use of relay nodes in a different setting than the
one presented in this paper. Here the relay network topology
is explicitly optimized with the goal of reducing communica-
tion costs. Relays’ communication radius is not altered and the
physical communication model from [6] is assumed rather than
the protocol model assumed by the above studies.

A different stream of technical literature (e.g. [5], [25], and
[26]) considers the deployment of relay nodes to provide fault
tolerance in networks guaranteeing m-connectivity between
sensor nodes, or sensor nodes and base stations. In a compre-
hensive work, Patel et al. [27] study versions of these problems
restricted to a setting where sensors, relay nodes and base sta-
tions may occupy only a discrete set of locations on a 2D grid
of points. Minimizing congestion [28] and load balancing are
other application areas where topology control in the form of
relay node placement is utilized (e.g. [25]). However, network
performance in terms of communication cost is not an objective
there.

Targeting problems more similar to the one considered in this
paper, there are studies in the area of controlled mobility, where
nodes in the network may adjust their locations to optimize cer-
tain network performance metrics (e.g. [29], [8], [18]). In these
settings relay nodes may move on a continuum of points for
optimal performance. For instance, the authors of [29] allow a
set of k mobile nodes to adjust their location and provide a wire-
less communication backbone (i.e. comprising relay nodes) that
minimizes energy expenditure by increasing the reliability of
links. The authors propose a solution finding the lowest energy
level of a dynamical physical system modeling the problem.
However, in their setting routing is not considered. Similarly,
in [8] the authors construct a wireless backbone communica-
tion network of relay nodes maximizing links’ quality using
Steiner tree approximations. They study the performance of
their schemes with different routing patterns, but the location of
the relay nodes is independent of the routing and traffic loaded
on the links. More recently, the authors of [18] employ mobile
relays to minimize both energy due to transmissions and the
movement of the relay nodes. Their algorithm assumes that the
routing tree does not change during nodes’ mobility. This is
analogous to the RPFT problem defined in section III-B above,
where the assumption is that the routing pattern is fixed. In
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our case, the optimal positions of the relay nodes is obtained
by convex optimization. In contrast, the algorithm presented in
[18] does not guarantee an optimal solution.

Finally, a number of works on sensor networks have con-
sidered a form of sensor nodes placement in order to optimize
network communication cost. For instance, in [4], the authors
utilize Steiner tree model to place relay nodes in a sparse net-
work and increase links’ reliability. They observe that in the
latter setting the log-normal path-loss model is rather accurate
and interference does not contribute significantly to reduce the
PRR. This conclusion is also corroborated by the simulations
presented here in section VI-B. The authors of [3] consider the
placement of relay nodes, so that overall link cost is minimized
while the gathered information by sensor nodes is maximized.
Their algorithm approximates a General Steiner Tree to suggest
locations for the communication relay nodes. In both works,
routing in the network and its influence on communication costs
and relay nodes’ positions is not accounted for.

VIII. DISCUSSION

We study the general problem of placing optimally a set of
k relay nodes offloading traffic from n source nodes in the net-
work. Different versions of the problem have been tackled by
a number of works in the technical literature and in various
settings. The solutions suggested by state-of-the-art schemes,
in the context of minimizing network communication cost, are
based on constructing Steiner tree and placing relay nodes at
the location of the Steiner tree vertices. As we demonstrate,
this strategy does not account for the fundamental feedback
between routing, traffic load on links, and locations of relay
nodes in the network. Correspondingly, the resulting relay node
placement model is not necessarily optimal, and the result-
ing solutions possess intrinsic inefficiencies. We formulate a
novel topology control problem for communication cost min-
imization in relay networks, considering the interplay between
routing and relay nodes’ locations. We give an optimal algo-
rithm, which however is not practical for larger networks. We
show that even listing a set of feasible optimal sites for the
relay nodes is at least AP X -hard. Hence, we suggest a heuris-
tic algorithm: RePlace. In the case of small network instances
RePlace matches the optimal solution or attains a solution very
close to the optimal (within 2-3%). We simulate RePlace and
demonstrate that it reduces almost completely the communica-
tion cost due to retransmissions of packets on low quality links.
The delay in the resulting relay network topology is reduced by
(35%) as well.

In the case of relay placement where the network routing
is specified and does not change as relay nodes are added,
we show the problem can be optimally solved using standard
convex optimization algorithms. This may be of independent
interest in certain practical applications as discussed in [18],
for instance.

The maximization problem formulation of the general relay
placement problem given in (18) generalizes a number of cases,
in which a constant approximation algorithms to the optimal
solutions are known. Some of them may have practical signif-
icance. Below, we provide a brief sample of such results. The

different cases result from placing different constraints on the
communication cost reduction function φ(O) defined in (18).
We assume here that X (E) is given as part of the input.

- Case 1: φ(O) is nonmonotone and submodular function
over the independence system �. There is a Greedy algorithm
that iteratively selects assignment pairs (i, j) ∈ � and provably
achieves a constant factor ((m − 1)/m2 + ε)-approximation,
∀ε > 0 [33]. m is the number of matroids intersecting to form
the independence system �.

Potential application problem is the location of network inte-
gration points in wireless networks. This may be viewed as a
special case of the GRP where relay/integrator nodes do not
communicate with each other but only communicate with the
fixed nodes. Also, each fixed node communicates with exactly
one integrator/relay node. The case of placing a single relay
node in the network also falls in this category. The online prob-
lem of placing relay nodes given one at a time (where the
positions of the previous relay nodes cannot be altered) falls in
this category as well, given that the routing through the already
placed relay nodes is not affected by the addition of new relay
nodes.

- Case 2: φ(O) is monotone and submodular function over
the independence system �. Similarly to the above case there
is a well-known constant approximation Greedy algorithm.
The constant factor is 1/(m + 1) [16]. A potential application
problem would be the integrators placement problem, where
communication cost on the network links between integrators
and fixed nodes is relatively uniform.

- Case 3: φ(O) is nonmonotone and submodular function
and the independence system � is an intersection of a single
matroid (i.e. � is a matroid). In this case, there is a 1/3.23
constant approximation algorithm ([34]). Of course, this case
is rather restrictive and may model only very specific practical
scenarios.

- Case 4: φ(O) is monotone and submodular function and
the independence system � is a matroid. There is a well known
1/2-approximation algorithm in this case (e.g. [16]). This is
the most restrictive of all cases in terms of modeling potential
practical scenarios, and is included here only for completion.

We leave open the investigation of special cases of the relay
placement problem that permit such constant approximation
algorithms.

Limitations:
• Deployment area: notice that the problem formulation

and algorithms presented in the paper may be applied
in deployment areas containing geographical obstacles
(e.g. lakes, rivers, etc.), infrastructural obstacles (e.g.
buildings, fenced areas, etc.) or other areas constrain-
ing network deployment. In these cases, we only require
that the shapes modeling these obstacles are convex, so
that the constraints, resulting from applying the currently
used clipping algorithm ([17]) for finding zone overlaps,
are convex. A clipping algorithm feasible for non-convex
zone overlaps would obviate this assumption.

• Link model: the log-distance path-loss link model pre-
sented in section II-A does not explicitly account for
interference. Section VI-B evaluates the performance of
RePlace in the context of interference and corroborates
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prior results in the technical literature: the log-distance
path-loss model accurately characterizes links in sparsely
deployed outdoor sensor networks (e.g. [4]); scenarios
characterized by large-scale fading (e.g. [12]); or net-
works relying on interference avoidance MAC layer pro-
tocols. These are the settings in which our results apply
readily. Network deployments dominated by small scale
fading and interference may require adjustment of the
present link model.

• Network sparsity: related to the above item, as the net-
work density grows, interference effects become more
dominant, rendering the log-distance path-loss model less
accurate. In this work, we consider sparse networks where
average node degree is relatively low (e.g. approximately
four neighbors per node). As observed in various works
on relay placement (e.g. [26]) as the network density
increases the utility of relay nodes for survivability guar-
antees, throughput or link performance improvements
decreases.

APPENDIX

CONVEXITY OF THE RPFT PROBLEM

From Theorem 1, one only needs to show that the function
g(z) is convex and non-decreasing for z ∈ (0, rd0), where r >

R. For clarity of presentation, assume d0 = 1.
To analyze the above claim, consider the function

g(z) =
[
1− Q

{√
2γ (z)

}]−b

where z ∈ R
+. Substituting γ from (2), we get g(z) equals[

1− Q

{√
2
(
Pt−a(1)−10α log10(z)−η(0, σ )−χ(0, σ1)

)}]−b

Let A = Pt − a(1)− η(0, σ )− χ(0, σ1). A is a Gaussian r.v.,
however, at present A is treated a constant w.r.t. to z. Then

g(z) =
[

1− Q

{√
2
[
A − 10α log10(z)

]}]−b

=
[

1

2
+ 1

2
er f

(√
2 · 10(A−10α log10(z))/10

√
2

)]−b

Let B = 10A/20 and a = α/2. We obtain g(z) =(
1
2

)−b [
1+ er f

(
Bz−a

)]−b and only need to consider the

term g1(z) =
[
1+ er f

(
Bz−a

)]−b. If g1(z) is convex, so is
g(z). Observe that

dg1(z)

dz
= 2abB√

π
· e−Bz−2a [

1+ er f
(
Bz−a

)]−b−1

xa+1
(20)

and

d2g2(z)

dz2
= a

[
1+ er f

(
Bz−a)]−b−1

e−B2
z−2a

×
{

2(b + 1)Be−B2
z−2a[

1+ er f
(
Bz−a

)]√
π
+ 2B2

za
− za(a + 1)

a

}

If g′′2 (z) is non-negative, g(z) is convex. Notice that since a >

0, b > 0, and B > 0

a
[
1+ er f

(
Bz−a)]−b−1

e−B2z−2a
> 0

for all z. Hence, we are only interested in the inequality

2(b + 1)Be−B2z−2a[
1+ er f

(
Bz−a

)]√
π
+ 2B2

za
− za(a + 1)

a
> 0 (21)

In this form (21) does not have analytical solution expressed in
simple functions. However, one can still reason about the con-
vexity of the function g(z). First, simplify (21) further by noting
that

[
1+ er f

(
Bz−a

)]
< 2 for any z, since Bz−a is positive.

We obtain

(b + 1)Be−B2z−2a

√
π

+ 2B2

za
− za(a + 1)

a
> 0 (22)

Observe that B2z−2a < 0.15. Hence, via Taylor series expan-
sion e−B2z−2a ≈ 1− B2z−2a . This approximation is valid as
z (or equivalently, the distance between two network nodes)
increases, since B = 10A/20 and a = α/2. Typically in wire-
less networks models α = 3 and B is small in low SNR
regimes. Rearrangement of terms in (22) yields

2
√

π B(b + 1)

za
− B2(b + 1)

z3a
−
√

π(a + 1)

aB
> 0 (23)

Noting that za > 0, substituting α = 3, a = α/2 and letting

ζ1 =
√

π(a+1)

a B , ζ2 = 2
√

π B(b + 1), ζ3 = B2(b + 1) and y =
z3/2, we get ζ1 y3 − ζ2 y2 + ζ3 < 0(†) The solution intervals of
(†), after reverse substitution, are equivalent to the intervals
where g(z) is convex. The solutions of (†) can be found
explicitly, however the roots are complicated. Instead, one can
gain intuition about the asymptotic behavior of the function
g(z) by observing its first derivative as z increases. Recall that

dg1(z)

dz
= 2abB√

π
· e−Bz−2a [

1+ er f
(
Bz−a

)]−b−1

xa+1
(24)

Notice that as z increases
[
1+ er f

(
Bz−a

)]−b−1 ≈ 1. Then,
asymptotically

dg1(z)

dz
= 2abB√

π
· 1− B2z−2a

za+1
→ 0 (25)

Hence, g′′2 (z)→ 0. Thus, the function g(z) is convex in this
asymptotic regime. Intuitively this is correct since the Q(·),
analogously er f (·), and the packet error rate functions converge
to constants, as z increases. I.e., the received power is very low
at a node that is large distance away from a transmitting node.
Note that as z decreases the first two terms in (22) increase and
the third term decreases.

Let z ∈ (0, r) and respectively z ∈ (0, rd0) be intervals
where the function is convex. Figure 14 demonstrates that (21)
is indeed satisfied for large values of r depending on the trans-
mit power and the packet size. The larger the transmit power
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Fig. 14. g(x) and g′′(x) for different packet sizes and fixed transmit power
of 10[W]. Notice that the convexity interval (0, r) increases as b grows. The
transmission range, R ≈ 110[m] is less than r for various values of BER and
SNR.

and the packet size, the larger r . For instance, if the transmit
power is 10[W] and the packet size is 512 bits the function
g(z) is convex within a range of z = rd0 = 1100[m], for packet
size of 1024 bits; g(z) is convex within a range of z = rd0 =
1700[m]. d0 = 1[m] throughout. Also, to increase the trans-
mission range, the transmit power is increased, which in turn
increases the convexity interval (0, r).
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