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Analysis of Multipath Routing, Part 2: Mitigation
of the Effects of Frequently Changing

Network Topologies
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Abstract—In this paper, we extend the analysis of multipath
routing presented in our previous work, so that the basic restric-
tions on the evaluation and optimization of that scheme can be
dropped (e.g., disjoint paths and identical paths in terms of failure
probability). In that work, we employed Diversity Coding in order
to provide increased protection against frequent route failures by
splitting data packets and distributing them over multiple disjoint
paths. Motivated by the high increase in the packet delivery ratio,
we study the increase we can achieve through the usage of multiple
paths in the general case, where the paths are not necessarily
independent and their failure probabilities vary. For this reason, a
function that measures the probability of successful transmission
is derived as a tight approximation of the evaluation function
succ. Given the failure probabilities of the available paths and

their correlation, we are able to find in polynomial time the set of
paths that maximizes the probability of reconstructing the original
information at the destination.

Index Terms—Ad hoc networks, ad hoc routing, alternate-path
routing, diversity coding, multipath routing, network-fault toler-
ance, quality of service.

I. INTRODUCTION

I N THIS PAPER, we extend our work in [1], where we
proposed a multipath scheme for mobile ad hoc networks

based on diversity coding [2]. Data load is distributed over mul-
tiple paths in order to minimize the packet drop rate, achieve
load balancing, and improve end-to-end-delay. We evaluate
our scheme by calculating the probability that a transmission
from the source results in successful packet reception at the
destination. The probability function of successful reception is
analytically derived and data is split over multiple paths in such
a way that the function is maximized.

The majority of the protocols proposed for routing in ad hoc
networks utilizes one route at a time in order to send data from
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a source to a destination node, although multiple routes may be
kept in a cache. Examples of such protocols can be found in [3]
for dynamic destination-sequenced distance-vector routing, [4]
for dynamic source routing, [5] for ad hoc on-demand distance
vector routing, [6] for temporally ordered routing algorithm, and
[7] for zone routing protocol. Multipath routing has been pro-
posed in [8]–[11], and [12]. However, these schemes either use
one primary route, and route traffic to alternative routes when it
fails, or distribute traffic among the available routes, hoping that
the packet delivery ratio will increase through load balancing.
No analytical model was offered in order to justify the selec-
tion of a specific set of routes, since there is no consideration of
the route failure characteristics. For a more detailed reference
see [1].

In [1], multiple paths are utilized in order to increase the prob-
ability of successful transmission of data packets, denoted as

. The basic assumption for the network model is that the
mean time of packet transmission is much smaller than the mean
time between variations in network topology. If this assumption
holds, then one can assume that the probability that one or more
path links fail is constant during the transmission of a packet. In
other words, one can assume that the topology of the network
will not change significantly while a packet is being transmitted.
In this paper, we develop an approximation for , so that
the complex cases we did not deal with in [1] can be tackled.
In particular, we offer a simple approximation method in order
to maximize by effectively choosing the optimal path set
to be utilized, in the case where the paths are not necessarily
independent and their failure probabilities vary. In [13], Chan
and Chan also try to evaluate and optimize the effect of diver-
sity coding on the success probability, but they only focus on
its asymptotic behavior. Thus, they only provide a bound for the
evaluation function (accurate only when hundrends of paths are
used) and optimized accordingly. In contrast, we provide a tight
approximation and use that approximation for optimization.

Our paper is organized as follows. Section II provides a short
description of the proposed scheme and the definition of the
successful transmission probability function , the function
used for the evaluation of the scheme. In Section III, we derive
an approximation of , so that we can extend the results ob-
tained in [1] to more general cases. More specifically, we find
which of the available paths must be used so that is maxi-
mized. In Section V, we present various examples of evaluation
scenarios of our scheme. Finally, in Section VI, we present con-
clusions and we set the goals for future work.

1536-1276/04$20.00 © 2004 IEEE
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Fig. 1. Information and overhead packet fragmentation.

II. BRIEF DESCRIPTION OF THE SCHEME

In this section, we briefly describe the scheme that we pro-
posed in [1]. The general case of multipath transmission is con-
sidered, in which disjoint paths are available for a packet
transmission. Each path is treated as a pure erasure channel and
it is associated with some failure probability , which is defined
as the probability that, at the transmission attempt time, the path
is down. The failure probabilities of the available paths are or-
ganized in the probability vector , ,
so that . Given , we also define , ,

, which is the vector of the success probabili-
ties. Throughout this paper, we use and interchangeably.

In [14], a path availability model for wireless ad hoc networks
is proposed, which provides us with some indication on how the
quality of the network can be expressed in terms of the proba-
bility vector . In addition, there are other protocols, such as as-
sociativity-based routing (ABR) [15] and signal-stability based
routing (SSA) [16], that quantify the stability of the routes in a
network using various criteria, based on network measurements.

Our scheme splits the original -bit packet into blocks
and adds overhead bits, which are partitioned into blocks
of overhead (calculated using linear transformations from the
original blocks with -for- diversity coding, as explained
in [2]). This process is depicted in Fig. 1. All blocks are equal
in size ( bits). If the total number of bits (information plus
overhead) is , then the overhead factor is defined as

(1)

where and take integer values and the fraction cannot
be further simplified, i.e., the greatest common divisor of and

is 1.
In our scheme, we assume an allocation vector ,

where is the number of blocks allocated to path ,
, and where is the number of paths that

are used in practice (out of the available ones). If is the
number of blocks that actually reaches the destination through
path , then

This is so, because we assume that if a path fails, then all
the blocks sent over the path are lost (recall the pure erasure
channel assumption). -for- diversity coding can recon-
struct the original -bit information packet, provided that at

least blocks reach the destination. Therefore, we can define
in terms of the number of paths that are actually used and

the corresponding allocation vector

(2)

In Section III, we derive a tight approximation for , and
we use it in order to determine the optimal path set, i.e., the one
that maximizes .

III. APPROXIMATION OF

As we explained in [1], it is evident that neither the optimal
number of paths, nor the optimal allocation vector, can be calcu-
lated in the general case where the probability vector is nonuni-
form. The main problem is the complexity of in terms of
continuity and the required computation time. Since is not
continuous because of the presence of unit-step functions in its
formula, its derivative is not defined everywhere. Moreover, the
time required to calculate is exponential, which simply
means that real-time computation is impossible to perform.

To address the above problems of evaluation, we will
present an approximation of based on the following obser-
vations: 1) the binomial distribution can be approximated by the
normal distribution and 2) the sum of independent, normally
distributed random variables follows the normal distribution.

In Section III-A, we will find an approximation for in
the simplest case in which all paths are characterized by the
same probability of failure and the allocation vector is uni-
form, i.e., all paths carry one block. In Section III-B, we de-
rive an approximation for an arbitrary path probability vector.
Section IV presents the approximation of in the general
case where the allocation vector is arbitrary. A generalized al-
gorithm for the calculation of the optimal block allocation is
also given. Finally, in Section IV-A, we calculate when
the paths we are using are correlated, i.e., they have nodes or
links in common.

A. Uniform Probability Vector, Uniform Allocation Vector
Case

As a starting point, we will find an approximation for the sim-
plest case; we assume a uniform probability vector (i.e., all paths
have the same probability of failure ) and a uniform alloca-
tion vector (i.e., all paths are assigned equal number of blocks).
In [1], we showed that in the case where a uniform allocation
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vector is used, and the probability vector is uniform as well, the
probability function is simplified to the following expression:

(3)

where .
In order to derive the approximation for (3), we assume the

random variable , which represents the number of successful
paths out of available ones. follows the binomial distribu-
tion

(4)

can be approximated by a Gaussian distribution of mean value
and standard deviation (see [17]). The

probability density function is

(5)

By integrating (5), we get an approximation for the as it
is defined in (3). The lower bound in the sum is , and, as ex-
plained in [18], if we shift it by -1/2, we derive a better approx-
imation of , denoted as

(6)
The validity of the approximation and an estimation of the error
it introduces are discussed in the Appendix. We also offer an al-
ternative, higher-order approximation, which is more accurate,
but requires a tedious computation effort. The error function

that appears in (6) is defined as

(7)

In Fig. 2, both and its approximation, calculated using
(6), are presented for and . Extended sim-
ulations showed that the approximation is very tight when the
number of paths is sufficiently large. This is so, when

(8)

where is defined in (1).
There are two important observations we can make about (6).

First, the approximation function described by that equation is
defined not only for integer values of , but it can be also cal-
culated for real values. Second, we can define a new function
where can take any real value greater than or equal to 1. This
function is “made” continuous simply by replacing with

and, thus, it is called the continuous version of the approx-
imation , denoted as

(9)

This function passes through the local maxima of , which
approximately coincide with the local maxima of . This is
so, because is an ascending function and .
Therefore, , only when , or, equiv-

Fig. 2. P and P for r = 3=2 and q = 0:8.

Fig. 3. P , P , and P for r = 3=2 and q = 0:8.

alently, when , where is an integer and is defined in
(1). If , then . Consequently, the
global maximum candidates for are the following values:

(10)

Since the derivative of is defined for all 1, we can use
it to calculate the global minimum and maximum of the func-
tion. Calculating the global maximum of will give us a good
approximation of the optimal number of paths. We only have to
take as the optimal number of paths the value , integer,
that is closest to the value calculated when is maximized.
This will be the global maximum of . In Fig. 3, we study the
behavior of , , and for and .

The derivative of with respect to is

(11)

In Fig. 4, we have drawn and its derivative. The left vertical
axis holds the values for and the right axis holds the values
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Fig. 4. P and derivative for r = 3=2 and q = 0:8.

for the derivative. As expected, the derivative is zero at the value
of that minimizes .

Our first goal is to find the threshold value of the probability
of each path beyond which is ascending for 1. However,
what we actually need is the value of beyond which is
ascending within the subspace of its local maxima. Therefore,
we will extract an approximation of that value given the fact that

is a tight approximation of for , in the subspace of
the local maxima defined by (10). We will compare the results
of this method with the accurate results produced in [1]. First,
we give the definition of the set of potential global maxima

(12)

We define the threshold value as the following:

1) for all and for all , with :
;

2) for all there are , with , for
which .

Using , we can find an approximation for , because for all
, and is a tight approximation of

. The approximation of the threshold is calculated as the
number for which the following two properties hold:

1) the root of for all is less than or equal
to ;

2) the root of for all is greater than .

The value of at is its global minimum, if , as
it will be shown promptly. The value is chosen so as to ensure
the validity of the approximation [see (8)].

We will now work on finding an analytical approximation for
using the derived continuous approximation of . has

a global minimum at , where its derivative is zero, if

(13)

If the minimum point is less than or equal to , then
is ascending for all , that is for all that yield a good

Fig. 5. Threshold q and its approximation.

approximation [see (8)]. Therefore, an approximation for is
obtained when the rightmost part of (13) is set to :

(14)

In Fig. 5, we can compare and its approximation described
by (14).

The following are the main conclusions of this section.

1) If , then is ascending for and, there-
fore, the optimal number of paths is the maximum number
in the set of potential global maxima , which is

2) If , then is descending with respect to and so
is the set of local maxima of . The optimal number
of paths for this case is

3) If , then the optimal number is found at

In Fig. 6, we show a comparison of and the point where
exhibits its maximum, for .

Using the approximation analysis presented in this section,
we will proceed with the derivation of an approximation formula
for when the assumption of a uniform probability vector
is dropped.

B. Uniform Allocation Vector Case

In this section, we derive an approximation for in the
case of an arbitrary path probability vector . The allocation
vector remains uniform. First, we define a random variable ,
which represents the average number of successful transmis-
sions out of attempts to transmit over path . follows the
binomial distribution, and, as it was explained in Section III-A,
we can approximate it using the normal distribution

(15)
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Fig. 6. Minimum points for r = 3=2.

where the mean value is and the standard deviation is
. We define the random variable that represents

the number of paths that succeed, averaged over independent
trials

(16)

is the sum of independent variables that follow the normal dis-
tribution; therefore, follows the normal distribution as well.
The probability density function of is given by the following:

(17)

where the mean value is and the standard de-
viation is . The approximation of is
derived in the same way as in Section III-A by integrating

(18)

Extended simulations showed that the approximation is tight,
when the number of paths is sufficiently large. This is so, when

, as it was pointed out in (8). As an example, in Fig. 7, we
have drawn both and its approximation, calculated using
(18), for . The probability vector is , for 1

10, and , 10.
As in Section III-A, we define the “continuous” version of

by replacing with . Of course, can take only integer
values because functions and involve summations indexed
from 1 to

(19)

This function passes the local maxima of at positions
, integer [see (10)], which approximately coincide with the

local maxima of at the same positions. In Fig. 8, and
are drawn on the same graph for the same values of and

that was used to produce Fig. 7.
The function (i.e., the error function) is a monotonically

ascending function, so, in order to maximize , it is sufficient

Fig. 7. P and P for r = 3=2.

Fig. 8. P and P for r = 3=2.

to maximize the expression that this function takes as its argu-
ment. Therefore, the optimal number of paths is given by the
following:

(20)

The maximum of is found at the point where its deriva-
tive, which is given by the following equation, is zero. Taking
into account that the derivative of is , and that
the derivative of is , we can calculate the
derivative of

(21)

In Fig. 9, and its derivative are presented for the same
probability vector we used in Fig. 8. The derivative is zero at

, and, therefore, the global maximum is found at
. In Fig. 10, we present a more complex case where has

more than one points that are candidates for a global maximum.
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Fig. 9. P and its derivative for r = 3=2.

The conclusion of this section is that the problem of finding
the maximum and minimum of (and, therefore, a good ap-
proximation of the maximum and minimum of ) is reduced
to the problem of finding the roots of its derivative. The roots
can be calculated from the following:

(22)

We only have to check those values of that can give local
maxima of as explained in Section III-A by (10). In the
next section, we present a method for the computation of the
optimal block allocation, i.e., the uniformity of the block allo-
cation is dropped.

IV. OPTIMAL BLOCK ALLOCATION

In this section, we study the optimal allocation of blocks to
the multitude of paths, based on the approximation formula (pre-
sented later in this section) for the general case in which the al-
location vector is not necessarily uniform. We assume paths,
the path probability vector and the block allocation vector

, 1 . The blocks allocated to path can
take only integer values, greater than or equal to one.1 How-
ever, as we will see promptly, in order to solve the maximiza-
tion problem, we will assume that the can take real values
(greater than or equal to one), so that we can easily solve the cor-
responding continuous maximization problem, instead of the in-
teger one. In the end, the “continuous” solution will be adjusted,
in order to adhere to the integer constraints of the problem.

If we go through the same approximation analysis that we
followed in the previous sections, we can calculate the approx-
imation

(23)

1The probability of success P and its approximation P are presented as
functions of the vector v and n. This means than for fixed n, v � 1 for all
i � n.

Fig. 10. P and its derivative for r = 2.

where

(24)

(25)

As mentioned before, in the integer version of the approxima-
tion, i.e., , the blocks are integers with . We now de-
fine the continuous version of the approximation by dropping
the integer constraint imposed on the s. Also, without loss of
generality, we assume that the last path receives one block, i.e.,

. In other words, we normalize all ’s over , which
is less than or equal to all other s. This is so, because it is the
path with the highest failure probability, and as such, it cannot
receive more blocks than any other path with lower failure prob-
ability. After the block values are normalized, we get , for

, and . Having all these remarks in mind,
we define the continuous approximation as

(26)

where we defined as

(27)

In order to find the extrema of , we calculate the points where
the partial derivatives with respect to the s are all zero, and
where 1 1 and 1. We employ the following
simple substitution, so that we can get rid of the inequality
constraints:

(28)

where s are all real numbers. A simple observation can save
us a lot of tedious calculations; in order to maximize , it is
sufficient to maximize the expression inside the error function
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, because this function is monotonically increasing. We
denote the expression to be maximized as :

(29)

The optimal solution can now be calculated at the point where
the gradient of with respect to the s is zero

(30)

Let us first calculate the partial derivatives of the mean value
and the standard deviation, as defined in (27) and (25)

(31)

(32)

The partial derivatives of with respect to the s are

(33)

When the gradient is zero, and in the case that

(34)

or, in the case that

(35)

where

(36)

The optimal solution given the number of paths is in the
following format:

(37)

where the first elements of are obtained from (35). The fea-
sible solutions of (35) are those for which 1, and they
represent the local extrema of (equivalently, the local extrema
of ). The optimal solution is the maximum of all the local
extrema, that is for all and

(38)

We could determine which of the local extrema correspond to
local maxima versus local minima, by calculating the Hessian
matrix of , defined as a matrix , , whose

th entry is . If is the th leading principal
minor of , then a local extremum corresponds to a local
maximum if is nonzero and has the same sign as .
However, computing the Hessian matrix is time consuming and,
therefore, we choose to calculate all local extrema and then pick
the maximum.

The only task left now is to calculate , which can be
accomplished by making use of (35), for 1 , if 0.
In the case of , we simply get the uniform allocation of
one block per path. For , (35) yields

(39)

If we divide (35) by (39), we can express all s in terms of

(40)

Now, we can return to (39) and substitute the s using (40), in
order to calculate . In addition, we should not forget that for

1 ,

(41)

From (40), we can observe that , so

(42)

The coefficients of cancel each other out and, therefore,
is simply given by

(43)

This solution is valid only when 1, because if 1, then
. This cannot hold, because is a real number. The rest

of the s, for , are computed using (40). Finally, after the
vectors are found for all and , and the global max-
imum is determined using (38), we only have to convert the
continuous solution to an integer one, in which all s are inte-
gers obtained from the corresponding real value using rounding
and, in addition, the expression inside the ceiling function in
(23) takes on an integer value. If the latter is not true, then the
effective overhead ratio (i.e., the number of total blocks sent,
divided by the minimum required number of blocks that must be
received, so that the original signal can be reconstructed) would
be less than the overhead ratio employed by

(44)

In the rest of this section, we will give an example of
how the calculation of the optimal block allocation is car-
ried out in practice. We assume , , and

. We will calcu-
late the optimal block allocation for . In Table I, we
list the values of , for 1 9, as they were calculated
using (43). Only for , the value is greater than 1. Thus,
the following is the only feasible solution, together with the
uniform solution (obtained, if we choose for all ):

• , with ;
• , with .

If we run the same algorithm for all possible , we still find
that the optimal solution is ,
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TABLE I
VALUES v OBTAINED FROM (43)

with . This solution must be converted to an integer
solution, which is obviously , with

. The exact value of the probability of success for
is .

Finally, the algorithm we developed in this section in order to
find an approximation of the maximum of can be summa-
rized as follows. As a first step, we derive an extension of the
approximation (see (23)), so that the general case of nonuni-
form allocation is included. We find an approximation of the
maximum of by calculating the maximum of . The real
extension of the problem of maximizing is solved and all the
local extrema are computed

(45)

where

(46)

and for , . The optimal solution is the
maximum of all local extrema, that is for all and

(47)

Note that for we get the uniform solution. This solution
is rounded to the closest integer solution, so that the expression
inside the ceiling function in (23) takes on an integer value.

A. Correlation Among Paths

In this section, we extend the formula of in order to
cover the case where the multiple paths provided by a route
discovery, update, repair, and maintenance mechanisms demon-
strate some sort of correlation, as they might share nodes or
links. As it is explained in [19], this is not an uncommon event
due to short-term variations in the amount of local traffic and
“topological bottlenecks.” Although in [19] diversity of routes
is increased through diversity injection, there might still exist
correlated paths in the acquired multipath set, especially if we

require so many routes that the “diversity capacity” of the net-
work is exceeded.

As we argued in [1], the problem of finding the optimal dis-
tribution over the available paths is reduced to a path selection
problem, because there is no point in reusing paths, i.e., sending
more than one block on any path. Consequently, in our analysis
we assume that paths are used and each of them conveys one
block.

The problem of developing an approximation for is a
variant of the problem presented in Section III-B, where the
random variable , defined in (16), is a sum of random variables

[see (15)] that are not independent. is normally distributed
with the same mean value

(48)

and a standard deviation given by the following:

(49)

where is the covariance of random variables and

(50)
Let us assume two paths, denoted as and , which have some
links in common. The behavior of the paths is modeled through
the random variables and , as explained in Section III-B.
Having that in mind, we can compute the mean value of
as

(51)

The success probabilities of paths and are and , respec-
tively. Also, the probability that all common links succeed is
( ), hence

(52)

Using the equations derived earlier, we are able to calculate the
covariance of random variables and

(53)

where . Thus, the approximation of is written
again as

(54)

and its continuous approximation as

(55)

In the remainder of this section, we will demonstrate how the
covariance between paths can be calculated, when they share
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Fig. 11. Example of pairs of correlated paths.

Fig. 12. P and its approximation for r = 2, q = 0:7, and q = 0:9.

links in common. We will also present a graph, so that the values
of and its approximation can be compared.

In our example, we assume pairs of correlated paths.
Each of the total paths is composed of two links and has the
same probability of success . The paths are organized in
pairs, whose paths share one of their two links. The common
links have a probability of success . The topology is depicted
in Fig. 11. From (53), it follows that

(56)

where and and, therefore, the
standard deviation is

(57)

The mean value is , so the approximation of is

(58)

In Fig. 12, we show and for , , and
. In Fig. 13, we compare the approximations of

for the topology of Fig. 11 ( 2 pairs of correlated paths) and

Fig. 13. P for independent and correlated paths for r = 2, q = 0:7, and
q = 0:9.

the one in which we have independent paths at our disposal.
As expected, the latter yields higher probability of success, but
in both cases converges to 1, as is large.

The algorithm we are using in order to select the set of paths,
belongs to the family of greedy algorithms. The objective of the
algorithm is to maximize the argument of the error function in
(55)

(59)

where is the selected set of paths and the size of this set,
i.e., the number of used paths. It has to be pointed out that if there
is correlation among the paths, there can be no ordering of the
paths according to the failure probabilities. Therefore, starting
by choosing the best path, we must always decide on the path
we will use next. This is why a greedy algorithm is applicable.
The formal definition of the process follows. Initially, the set of
selected paths consists of the path with the maximum success
probability

(60)
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Fig. 14. Mean value of P and probability gain.

Given an already selected set at iteration , the next path
that is selected from among the remaining paths is the one

that yields the highest value of function

(61)

and, based on that path, the next set and the corresponding value
of function are computed

(62)

The process stops when equals the number of paths. The
number of paths is

(63)

Therefore, the optimal set is the one acquired at the th step
of the algorithm

(64)

V. NUMERICAL RESULTS

In this section, we present various numerical results of evalu-
ation scenarios. In the first case, the multiple paths from source
to destination are independent, whereas in the second one they
share links in common. The overhead factor is and
the mean value of the path success probability is in
all the cases. The number of available paths is assumed to be

. Our scheme is compared to the simple scheme in
which routing is performed over one single route, in terms of
the successful transmission probability ( ).

A. Independent Paths

Our evaluation program constructs independent paths.
The success probability of each path is a random variable with
mean value . However, we assume an uncertainty in the prob-
abilities , uniformly spread over the range .
Thus, the sender is not aware of the exact probability values and,
therefore, it cannot distinguish between the paths. The proposed

Fig. 15. Standard deviation of P .

TABLE II
EVALUATION PARAMETERS

scheme uses all the paths and the single path scheme picks up
a route at random. In Fig. 14, we show the mean value of
(both the value expected in theory and the one obtained from our
program) for both schemes. It is clear that our scheme performs
much better than the single path scheme. The gain in proba-
bility, defined as the increase in , is around 0.15. More-
over, as Fig. 15 proves, the standard deviation in the value of

is significantly bigger in the case where one path is used.
Thus, there is undesired fluctuation in the performance of the
single path scheme, which, in turn, makes the task of guaran-
teeing quality of service (QoS) even harder. The performance
of our scheme is only slightly affected in terms of stability.

B. Correlated Paths

In the second part of the evaluation, we constructed paths
that have links in common. The following are the characteristics
of the paths:

1) random path length of mean value , uniformly dis-
tributed over the range ;

2) random number of common links of mean value , uni-
formly distributed over the range ;

3) random link success probability of mean value , uni-
formly distributed over the range .
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Fig. 16. Mean value of P and probability gain.

Fig. 17. Standard deviation of P .

In our experiment, we used with a mean suc-
cess probability of . The rest of the evaluation parame-
ters are shown in Table II.

The diversity was quantified as the ratio of the number of
unique links among the multiple paths to the total number of
links. In Figs. 16 and 17, we can observe the mean value and the
standard deviation of for the two schemes. It is also im-
plied in the graphs that the multitude of paths can compensate
for the lack of diversity, even when it is as low as 65%. At the
same time stability (i.e., lower standard deviation) is provided.
As expected, in the multipath scheme increases when di-
versity increases, while in the single path scheme diversity plays
no role at all.

VI. CONCLUSION AND FUTURE WORK

In this paper, we extended the evaluation and optimization
methods for the scheme proposed in [1]. Given the path failure
probabilities, the overhead factor , and the allocation of the

original and overhead blocks to the paths, we were able to
approximate the probability function , namely, the proba-
bility that the original packet can be reconstructed at the destina-
tion. We showed how to maximize (in terms of the block
allocation) fast enough (Section III), so that the requirement for
a real-time recalculation of the optimal solution, due to topology
changes, could be met.

Our evaluation showed that our scheme can significantly
increase the successful transmission probability, compared to a
simple packet replication scheme. Even in the case where only
limited knowledge about the probability vector is available
(mean value and standard deviation), our scheme can still
compute and, thus, evaluate its performance. Under some
constraints on the path failure probabilities, it was found that the
probability of a successful communication of packets between
source and destination increases with the number of used paths.
Moreover, this would effectively reduce transmission delay and
traffic congestion through load balancing.

The proposed scheme can also be used to enforce error-rate
QoS requirements, whenever the characteristics of the offered
paths make it possible. In that case, we do not have to maximize

, but, instead, simply set it to the required probability (in-
dicated by the QoS requirements) and then find the number of
paths and the block allocation that satisfies it. This could make
real-time data transmission feasible in an environment that is
hostile to such type of communication. Moreover, by keeping
track of the probability of success and by constantly comparing
it with the QoS requirement, we obtain a metric that may be
used in order to trigger new route discoveries, for example if

tends to drop below the requirements.
By extending the definition of the path failure probabilities,

we could enforce different classes of QoS requirements, such
as maximum delay requirements. This can be done, by simply
defining the path failure probability, as the probability that a
packet will not arrive on time, i.e., within the maximum delay
time, and, as a result, we assume it is lost.

We will take a moment here to comment on the impact the
overhead associated with diversity coding has on the overall per-
formance. The scheme proposed in this paper intends to mitigate
the effects of frequent topological changes in ad hoc networks.
In real-time traffic applications it is often unacceptable to lose
connectivity because of changes in topology that render routes
obsolete. Clearly, the kind of multipath routing proposed in this
paper guarantees reliable end-to-end connectivity despite the in-
herent unreliability of the wireless ad hoc network. Of course,
this is done at the price of increased traffic load, which means
that fewer connections can be supported at a certain quality of
service (as defined by ) and at a certain network capacity
level. In other words, traffic load can always be controlled by
accommodating fewer connections, without having to compro-
mise on the quality of the connections.

Possible goals for future research include the following:

• evaluation of the proposed scheme when used for
achieving load balancing and satisfying delay constraints;

• development of algorithms in order to estimate the proba-
bility vector on a real-time basis;

• implementation of our scheme on top of existing routing
protocols and comparative performance evaluation.
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